New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_B.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Annex_B.tex @ 2541

Last change on this file since 2541 was 2282, checked in by gm, 14 years ago

ticket:#658 merge DOC of all the branches that form the v3.3 beta

  • Property svn:executable set to *
File size: 18.5 KB
Line 
1% ================================================================
2% Chapter Ñ Appendix B : Diffusive Operators
3% ================================================================
4\chapter{Appendix B : Diffusive Operators}
5\label{Apdx_B}
6\minitoc
7
8
9\newpage
10$\ $\newline    % force a new ligne
11
12% ================================================================
13% Horizontal/Vertical 2nd Order Tracer Diffusive Operators
14% ================================================================
15\section{Horizontal/Vertical 2nd Order Tracer Diffusive Operators}
16\label{Apdx_B_1}
17
18
19In the $z$-coordinate, the horizontal/vertical second order tracer diffusion operator
20is given by:
21\begin{eqnarray} \label{Apdx_B1}
22 &D^T = \frac{1}{e_1 \, e_2}      \left[
23  \left. \frac{\partial}{\partial i} \left\frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.         
24                       \left.
25+ \left. \frac{\partial}{\partial j} \left\frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]         
26+ \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
27\end{eqnarray}
28
29In the $s$-coordinate, we defined the slopes of $s$-surfaces, $\sigma_1$ and
30$\sigma_2$ by \eqref{Apdx_A_s_slope} and the vertical/horizontal ratio of diffusion
31coefficient by $\epsilon = A^{vT} / A^{lT}$. The diffusion operator is given by:
32
33\begin{equation} \label{Apdx_B2}
34D^T = \left. \nabla \right|_s \cdot 
35           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
36\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
37 1 \hfill & 0 \hfill & {-\sigma _1 } \hfill \\
38 0 \hfill & 1 \hfill & {-\sigma _2 } \hfill \\
39 {-\sigma _1 } \hfill & {-\sigma _2 } \hfill & {\varepsilon +\sigma _1
40^2+\sigma _2 ^2} \hfill \\
41\end{array} }} \right)
42\end{equation}
43or in expanded form:
44\begin{subequations}
45\begin{align*} {\begin{array}{*{20}l} 
46D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left.
47{\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right\\
48&\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\
49&\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right.
50 \left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right]
51\end{array} }     
52\end{align*}
53\end{subequations}
54
55Equation \eqref{Apdx_B2} is obtained from \eqref{Apdx_B1} without any
56additional assumption. Indeed, for the special case $k=z$ and thus $e_3 =1$,
57we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in Appendix~\ref{Apdx_A} 
58and use \eqref{Apdx_A_s_slope} and \eqref{Apdx_A_s_chain_rule}.
59Since no cross horizontal derivative $\partial _i \partial _j $ appears in
60\eqref{Apdx_B1}, the ($i$,$z$) and ($j$,$z$) planes are independent.
61The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$)
62transformation without any loss of generality:
63
64\begin{subequations} 
65\begin{align*} {\begin{array}{*{20}l} 
66D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z
67                     +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)     \\
68\\
69\allowdisplaybreaks
70&=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s
71                                                    -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\ 
72& \qquad \qquad \left. { -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]   
73\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]}  \qquad \qquad \qquad \\ 
74\\
75\allowdisplaybreaks
76&=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\ 
77&  \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
78&  \qquad \qquad \quad \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\ 
79\end{array} }     \\
80 {\begin{array}{*{20}l}
81%
82\allowdisplaybreaks
83\intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:}
84%
85& =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
86& \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
87& \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\ 
88\\
89&=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
90& \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ 
91& \qquad \qquad \quad-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ 
92& \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
93%
94\allowdisplaybreaks
95\intertext{using the same remark as just above, it becomes:}
96%
97&= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 
98& \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ 
99& \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
100& \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\ 
101%
102\allowdisplaybreaks
103\intertext{Since the horizontal scale factors do not depend on the vertical coordinate,
104the last term of the first line and the first term of the last line cancel, while
105the second line reduces to a single vertical derivative, so it becomes:}
106%
107& =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
108& \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
109%
110\allowdisplaybreaks
111\intertext{in other words, the horizontal Laplacian operator in the ($i$,$s$) plane takes the following form :}
112\end{array} }     \\
113%
114D^T = {\frac{1}{e_1\,e_2\,e_3}}
115\left( {{\begin{array}{*{30}c}
116{\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
117{\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
118\end{array}}}\right)
119\cdot \left[ {A^{lT}
120\left( {{\begin{array}{*{30}c}
121 {1} \hfill & {-\sigma_1 } \hfill \\
122 {-\sigma_1} \hfill & {\varepsilon_1^2} \hfill \\
123\end{array} }} \right)
124\cdot 
125\left( {{\begin{array}{*{30}c}
126{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
127{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
128\end{array}}}       \right) \left( T \right)} \right]
129\end{align*}
130\end{subequations}
131 
132
133% ================================================================
134% Isopycnal/Vertical 2nd Order Tracer Diffusive Operators
135% ================================================================
136\section{Iso/diapycnal 2nd Order Tracer Diffusive Operators}
137\label{Apdx_B_2}
138
139
140The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in the ($i$,$j$,$k$)
141curvilinear coordinate system in which the equations of the ocean circulation model are
142formulated, takes the following form \citep{Redi_JPO82}:
143
144\begin{equation*}
145\textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
146\left[ {{\begin{array}{*{20}c}
147 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\
148 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\
149 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
150\end{array} }} \right]
151\end{equation*}
152where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions:
153\begin{equation*}
154a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
155\qquad , \qquad
156a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} 
157\right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
158\end{equation*}
159
160In practice, the isopycnal slopes are generally less than $10^{-2}$ in the ocean, so
161$\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{Cox1987}:
162\begin{equation*}
163{\textbf{A}_{\textbf{I}}} \approx A^{lT}
164\left[ {{\begin{array}{*{20}c}
165 1 \hfill & 0 \hfill & {-a_1 } \hfill \\
166 0 \hfill & 1 \hfill & {-a_2 } \hfill \\
167 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
168\end{array} }} \right]
169\end{equation*}
170
171The resulting isopycnal operator conserves the quantity and dissipates its square.
172The demonstration of the first property is trivial as \eqref{Apdx_B2} is the divergence
173of fluxes. Let us demonstrate the second one:
174\begin{equation*}
175\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
176          = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
177\end{equation*}
178since
179\begin{subequations} 
180\begin{align*} {\begin{array}{*{20}l} 
181\nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T} 
182\right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
183\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
184{\frac{\partial T}{\partial j}} \right)^2} \right. \\ 
185&\qquad \qquad \qquad
186{ \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\
187&=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial j}-a_2 \frac{\partial T}{\partial k}} \right)^2} \right]      \\
188& \geq 0
189\end{array} }     
190\end{align*}
191\end{subequations}
192the property becomes obvious.
193
194The resulting diffusion operator in $z$-coordinate has the following form :
195\begin{multline*} \label{Apdx_B_ldfiso}
196 D^T=\frac{1}{e_1 e_2 }\left\{ 
197 {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]}
198 {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
199\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]} \\ 
200\end{multline*}
201
202It has to be emphasised that the simplification introduced, leads to a decoupling
203between ($i$,$z$) and ($j$,$z$) planes. The operator has therefore the same
204expression as \eqref{Apdx_B3}, the diffusion operator obtained for geopotential
205diffusion in the $s$-coordinate.
206
207% ================================================================
208% Lateral/Vertical Momentum Diffusive Operators
209% ================================================================
210\section{Lateral/Vertical Momentum Diffusive Operators}
211\label{Apdx_B_3}
212
213The second order momentum diffusion operator (Laplacian) in the $z$-coordinate
214is found by applying \eqref{Eq_PE_lap_vector}, the expression for the Laplacian
215of a vector,  to the horizontal velocity vector :
216\begin{align*}
217\Delta {\textbf{U}}_h
218&=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
219\nabla \times \left( {\nabla \times {\textbf{U}}_h } \right)    \\
220\\
221&=\left( {{\begin{array}{*{20}c}
222 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
223 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
224 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
225\end{array} }} \right)-\left( {{\begin{array}{*{20}c}
226 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
227}\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial 
228u}{\partial k}} \right)} \hfill \\
229 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
230}\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta 
231}{\partial i}} \hfill \\
232 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
233}{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial 
234j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]} 
235\hfill \\
236\end{array} }} \right)
237\\
238\\
239&=\left( {{\begin{array}{*{20}c}
240{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
241{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
2420 \\
243\end{array} }} \right)
244+\frac{1}{e_3 }
245\left( {{\begin{array}{*{20}c}
246{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
247{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
248{\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
249\end{array} }} \right)
250\end{align*}
251Using \eqref{Eq_PE_div}, the definition of the horizontal divergence, the third
252componant of the second vector is obviously zero and thus :
253\begin{equation*}
254\Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)
255\end{equation*}
256
257Note that this operator ensures a full separation between the vorticity and horizontal
258divergence fields (see Appendix~\ref{Apdx_C}). It is only equal to a Laplacian
259applied to each component in Cartesian coordinates, not on the sphere.
260
261The horizontal/vertical second order (Laplacian type) operator used to diffuse
262horizontal momentum in the $z$-coordinate therefore takes the following form :
263\begin{equation} \label{Apdx_B_Lap_U}
264 {\textbf{D}}^{\textbf{U}} =
265     \nabla _h \left( {A^{lm}\;\chi } \right)
266   - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
267   + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
268            \frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\ 
269\end{equation}
270that is, in expanded form:
271\begin{align*}
272D^{\textbf{U}}_u
273& = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
274     -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
275     +\frac{1}{e_3} \frac{\partial u}{\partial k}      \\
276D^{\textbf{U}}_v   
277& = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
278     +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
279     +\frac{1}{e_3} \frac{\partial v}{\partial k}
280\end{align*}
281
282Note Bene: introducing a rotation in \eqref{Apdx_B_Lap_U} does not lead to a
283useful expression for the iso/diapycnal Laplacian operator in the $z$-coordinate.
284Similarly, we did not found an expression of practical use for the geopotential
285horizontal/vertical Laplacian operator in the $s$-coordinate. Generally,
286\eqref{Apdx_B_Lap_U} is used in both $z$- and $s$-coordinate systems, that is
287a Laplacian diffusion is applied on momentum along the coordinate directions.
Note: See TracBrowser for help on using the repository browser.