New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 10406 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_OBS.tex – NEMO

Ignore:
Timestamp:
2018-12-18T11:25:09+01:00 (5 years ago)
Author:
nicolasmartin
Message:

Edition of math environments

Location:
NEMO/trunk/doc/latex
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex

    • Property svn:ignore
      •  

        old new  
        33*.blg 
        44*.dvi 
        5 *.fdb_latexmk 
         5*.fdb* 
        66*.fls 
        77*.idx 
  • NEMO/trunk/doc/latex/NEMO

    • Property svn:ignore
      •  

        old new  
        33*.blg 
        44*.dvi 
        5 *.fdb_latexmk 
         5*.fdb* 
        66*.fls 
        77*.idx 
  • NEMO/trunk/doc/latex/NEMO/subfiles

    • Property svn:ignore
      •  

        old new  
        33*.blg 
        44*.dvi 
        5 *.fdb_latexmk 
         5*.fdb* 
        66*.fls 
        77*.idx 
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_OBS.tex

    r10354 r10406  
    578578All horizontal interpolation methods implemented in NEMO estimate the value of a model variable $x$ at point $P$ as 
    579579a weighted linear combination of the values of the model variables at the grid points ${\rm A}$, ${\rm B}$ etc.: 
    580 \begin{eqnarray} 
     580\begin{align} 
    581581{x_{}}_{\rm P} & \hspace{-2mm} = \hspace{-2mm} &  
    582582\frac{1}{w} \left( {w_{}}_{\rm A} {x_{}}_{\rm A} +  
     
    584584                   {w_{}}_{\rm C} {x_{}}_{\rm C} +  
    585585                   {w_{}}_{\rm D} {x_{}}_{\rm D} \right) 
    586 \end{eqnarray} 
     586\end{align} 
    587587where ${w_{}}_{\rm A}$, ${w_{}}_{\rm B}$ etc. are the respective weights for the model field at 
    588588points ${\rm A}$, ${\rm B}$ etc., and $w = {w_{}}_{\rm A} + {w_{}}_{\rm B} + {w_{}}_{\rm C} + {w_{}}_{\rm D}$. 
     
    597597  For example, the weight given to the field ${x_{}}_{\rm A}$ is specified as the product of the distances 
    598598  from ${\rm P}$ to the other points: 
    599   \begin{eqnarray} 
     599  \begin{align} 
    600600  {w_{}}_{\rm A} = s({\rm P}, {\rm B}) \, s({\rm P}, {\rm C}) \, s({\rm P}, {\rm D}) 
    601601  \nonumber 
    602   \end{eqnarray} 
     602  \end{align} 
    603603  where  
    604   \begin{eqnarray} 
     604  \begin{align} 
    605605   s\left ({\rm P}, {\rm M} \right )  
    606606     & \hspace{-2mm} = \hspace{-2mm} &  
     
    610610               \cos ({\lambda_{}}_{\rm M} - {\lambda_{}}_{\rm P})  
    611611                   \right\} 
    612    \end{eqnarray} 
     612   \end{align} 
    613613   and $M$ corresponds to $B$, $C$ or $D$. 
    614614   A more stable form of the great-circle distance formula for small distances ($x$ near 1) 
    615615   involves the arcsine function ($e.g.$ see p.~101 of \citet{Daley_Barker_Bk01}: 
    616    \begin{eqnarray} 
     616   \begin{align} 
    617617   s\left( {\rm P}, {\rm M} \right)  
    618618     & \hspace{-2mm} = \hspace{-2mm} &  
    619619      \sin^{-1} \! \left\{ \sqrt{ 1 - x^2 } \right\} 
    620620   \nonumber 
    621    \end{eqnarray} 
     621   \end{align} 
    622622   where 
    623    \begin{eqnarray} 
     623   \begin{align} 
    624624    x & \hspace{-2mm} = \hspace{-2mm} &  
    625625      {a_{}}_{\rm M} {a_{}}_{\rm P} + {b_{}}_{\rm M} {b_{}}_{\rm P} + {c_{}}_{\rm M} {c_{}}_{\rm P} 
    626626   \nonumber 
    627    \end{eqnarray} 
     627   \end{align} 
    628628   and  
    629    \begin{eqnarray} 
     629   \begin{align} 
    630630      {a_{}}_{\rm M} & \hspace{-2mm} = \hspace{-2mm} & \sin {\phi_{}}_{\rm M},  
    631631      \nonumber \\ 
     
    641641      \nonumber 
    642642   \nonumber 
    643   \end{eqnarray} 
     643  \end{align} 
    644644 
    645645\item[2.] {\bf Great-Circle distance-weighted interpolation with small angle approximation.} 
    646646  Similar to the previous interpolation but with the distance $s$ computed as 
    647   \begin{eqnarray} 
     647  \begin{align} 
    648648    s\left( {\rm P}, {\rm M} \right)  
    649649     & \hspace{-2mm} = \hspace{-2mm} &  
     
    651651      + \left( {\lambda_{}}_{\rm M} - {\lambda_{}}_{\rm P} \right)^{2} 
    652652        \cos^{2} {\phi_{}}_{\rm M} } 
    653   \end{eqnarray} 
     653  \end{align} 
    654654  where $M$ corresponds to $A$, $B$, $C$ or $D$. 
    655655 
     
    719719denote the bottom left, bottom right, top left and top right corner points of the cell, respectively.  
    720720To determine if P is inside the cell, we verify that the cross-products  
    721 \begin{eqnarray} 
     721\begin{align} 
    722722\begin{array}{lllll} 
    723723{{\bf r}_{}}_{\rm PA} \times {{\bf r}_{}}_{\rm PC} 
     
    743743\end{array} 
    744744\label{eq:cross} 
    745 \end{eqnarray} 
     745\end{align} 
    746746point in the opposite direction to the unit normal $\widehat{\bf k}$ 
    747747(i.e., that the coefficients of $\widehat{\bf k}$ are negative), 
Note: See TracChangeset for help on using the changeset viewer.