New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 10442 for NEMO/trunk/doc/latex/NEMO/subfiles/annex_C.tex – NEMO

Ignore:
Timestamp:
2018-12-21T15:18:38+01:00 (5 years ago)
Author:
nicolasmartin
Message:

Front page edition, cleaning in custom LaTeX commands and add index for single subfile compilation

  • Use \thanks storing cmd to refer to the ST members list for 2018 in an footnote on the cover page
  • NEMO and Fortran in small capitals
  • Removing of unused or underused custom cmds, move local cmds to their respective .tex file
  • Addition of new ones (\zstar, \ztilde, \sstar, \stilde, \ie, \eg, \fortran, \fninety)
  • Fonts for indexed items: italic font for files (modules and .nc files), preformat for code (CPP keys, routines names and namelists content)
File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/annex_C.tex

    r10414 r10442  
    1010\minitoc 
    1111 
    12 %%%  Appendix put in gmcomment as it has not been updated for z* and s coordinate 
     12%%%  Appendix put in gmcomment as it has not been updated for \zstar and s coordinate 
    1313%I'm writting this appendix. It will be available in a forthcoming release of the documentation 
    1414 
     
    3939$dv=e_1\,e_2\,e_3 \,di\,dj\,dk$  is the volume element, with only $e_3$ that depends on time. 
    4040$D$ and $S$ are the ocean domain volume and surface, respectively. 
    41 No wetting/drying is allow ($i.e.$ $\frac{\partial S}{\partial t} = 0$). 
     41No wetting/drying is allow (\ie $\frac{\partial S}{\partial t} = 0$). 
    4242Let $k_s$ and $k_b$ be the ocean surface and bottom, resp. 
    43 ($i.e.$ $s(k_s) = \eta$ and $s(k_b)=-H$, where $H$ is the bottom depth). 
     43(\ie $s(k_s) = \eta$ and $s(k_b)=-H$, where $H$ is the bottom depth). 
    4444\begin{flalign*} 
    4545  z(k) = \eta - \int\limits_{\tilde{k}=k}^{\tilde{k}=k_s}  e_3(\tilde{k}) \;d\tilde{k} 
     
    9999\label{sec:C.1} 
    100100 
    101 The discretization of pimitive equation in $s$-coordinate ($i.e.$ time and space varying vertical coordinate) 
     101The discretization of pimitive equation in $s$-coordinate (\ie time and space varying vertical coordinate) 
    102102must be chosen so that the discrete equation of the model satisfy integral constrains on energy and enstrophy.  
    103103 
    104104Let us first establish those constraint in the continuous world. 
    105 The total energy ($i.e.$ kinetic plus potential energies) is conserved: 
     105The total energy (\ie kinetic plus potential energies) is conserved: 
    106106\begin{flalign} 
    107107  \label{eq:Tot_Energy} 
     
    487487  +   \frac{1}{2} \int_D {  \frac{{\textbf{U}_h}^2}{e_3} \partial_t ( e_3) \;dv } 
    488488\] 
    489 Indeed, using successively \autoref{eq:DOM_di_adj} ($i.e.$ the skew symmetry property of the $\delta$ operator) 
     489Indeed, using successively \autoref{eq:DOM_di_adj} (\ie the skew symmetry property of the $\delta$ operator) 
    490490and the continuity equation, then \autoref{eq:DOM_di_adj} again, 
    491491then the commutativity of operators $\overline {\,\cdot \,}$ and $\delta$, and finally \autoref{eq:DOM_mi_adj} 
    492 ($i.e.$ the symmetry property of the $\overline {\,\cdot \,}$ operator) 
     492(\ie the symmetry property of the $\overline {\,\cdot \,}$ operator) 
    493493applied in the horizontal and vertical directions, it becomes: 
    494494\begin{flalign*} 
     
    599599 
    600600When the equation of state is linear 
    601 ($i.e.$ when an advection-diffusion equation for density can be derived from those of temperature and salinity) 
     601(\ie when an advection-diffusion equation for density can be derived from those of temperature and salinity) 
    602602the change of KE due to the work of pressure forces is balanced by 
    603603the change of potential energy due to buoyancy forces:  
     
    621621  % 
    622622  \allowdisplaybreaks 
    623   \intertext{Using successively \autoref{eq:DOM_di_adj}, $i.e.$ the skew symmetry property of 
     623  \intertext{Using successively \autoref{eq:DOM_di_adj}, \ie the skew symmetry property of 
    624624    the $\delta$ operator, \autoref{eq:wzv}, the continuity equation, \autoref{eq:dynhpg_sco}, 
    625625    the hydrostatic equation in the $s$-coordinate, and $\delta_{k+1/2} \left[ z_t \right] \equiv e_{3w} $, 
     
    811811 
    812812Let us first consider the first term of the scalar product 
    813 ($i.e.$ just the the terms associated with the i-component of the advection): 
     813(\ie just the the terms associated with the i-component of the advection): 
    814814\begin{flalign*} 
    815815  &  - \int_D u \cdot \nabla \cdot \left(   \textbf{U}\,u   \right) \; dv   \\ 
     
    867867When the UBS scheme is used to evaluate the flux form momentum advection, 
    868868the discrete operator does not contribute to the global budget of linear momentum (flux form). 
    869 The horizontal kinetic energy is not conserved, but forced to decay ($i.e.$ the scheme is diffusive).  
     869The horizontal kinetic energy is not conserved, but forced to decay (\ie the scheme is diffusive).  
    870870 
    871871% ================================================================ 
     
    893893 
    894894The scheme does not allow but the conservation of the total kinetic energy but the conservation of $q^2$, 
    895 the potential enstrophy for a horizontally non-divergent flow ($i.e.$ when $\chi$=$0$). 
     895the potential enstrophy for a horizontally non-divergent flow (\ie when $\chi$=$0$). 
    896896Indeed, using the symmetry or skew symmetry properties of the operators 
    897897( \autoref{eq:DOM_mi_adj} and \autoref{eq:DOM_di_adj}), 
     
    942942  } 
    943943\end{flalign*} 
    944 The later equality is obtain only when the flow is horizontally non-divergent, $i.e.$ $\chi$=$0$.  
     944The later equality is obtain only when the flow is horizontally non-divergent, \ie $\chi$=$0$.  
    945945 
    946946% ------------------------------------------------------------------------------------------------------------- 
     
    971971\end{equation} 
    972972 
    973 This formulation does conserve the potential enstrophy for a horizontally non-divergent flow ($i.e.$ $\chi=0$).  
     973This formulation does conserve the potential enstrophy for a horizontally non-divergent flow (\ie $\chi=0$).  
    974974 
    975975Let consider one of the vorticity triad, for example ${^{i}_j}\mathbb{Q}^{+1/2}_{+1/2} $, 
     
    10261026the internal dynamics and physics (equations in flux form). 
    10271027For advection, 
    1028 only the CEN2 scheme ($i.e.$ $2^{nd}$ order finite different scheme) conserves the global variance of tracer. 
     1028only the CEN2 scheme (\ie $2^{nd}$ order finite different scheme) conserves the global variance of tracer. 
    10291029Nevertheless the other schemes ensure that the global variance decreases 
    1030 ($i.e.$ they are at least slightly diffusive). 
     1030(\ie they are at least slightly diffusive). 
    10311031For diffusion, all the schemes ensure the decrease of the total tracer variance, except the iso-neutral operator. 
    10321032There is generally no strict conservation of mass, 
     
    10721072 
    10731073The conservation of the variance of tracer due to the advection tendency can be achieved only with the CEN2 scheme, 
    1074 $i.e.$ when $\tau_u= \overline T^{\,i+1/2}$, $\tau_v= \overline T^{\,j+1/2}$, and $\tau_w= \overline T^{\,k+1/2}$.  
     1074\ie when $\tau_u= \overline T^{\,i+1/2}$, $\tau_v= \overline T^{\,j+1/2}$, and $\tau_w= \overline T^{\,k+1/2}$.  
    10751075It can be demonstarted as follows: 
    10761076\begin{flalign*} 
     
    11081108the conservation of potential vorticity and the horizontal divergence, 
    11091109and the dissipation of the square of these quantities 
    1110 ($i.e.$ enstrophy and the variance of the horizontal divergence) as well as 
     1110(\ie enstrophy and the variance of the horizontal divergence) as well as 
    11111111the dissipation of the horizontal kinetic energy. 
    11121112In particular, when the eddy coefficients are horizontally uniform, 
     
    13461346\end{flalign*} 
    13471347 
    1348 If the vertical diffusion coefficient is uniform over the whole domain, the enstrophy is dissipated, $i.e.$ 
     1348If the vertical diffusion coefficient is uniform over the whole domain, the enstrophy is dissipated, \ie 
    13491349\begin{flalign*} 
    13501350  \int\limits_D \zeta \, \textbf{k} \cdot \nabla \times 
     
    13961396    \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv = 0    &&& 
    13971397\end{flalign*} 
    1398 and the square of the horizontal divergence decreases ($i.e.$ the horizontal divergence is dissipated) if 
     1398and the square of the horizontal divergence decreases (\ie the horizontal divergence is dissipated) if 
    13991399the vertical diffusion coefficient is uniform over the whole domain: 
    14001400 
     
    14631463the heat and salt contents are conserved (equations in flux form). 
    14641464Since a flux form is used to compute the temperature and salinity, 
    1465 the quadratic form of these quantities ($i.e.$ their variance) globally tends to diminish. 
     1465the quadratic form of these quantities (\ie their variance) globally tends to diminish. 
    14661466As for the advection term, there is conservation of mass only if the Equation Of Seawater is linear.  
    14671467 
     
    15301530\biblio 
    15311531 
     1532\pindex 
     1533 
    15321534\end{document} 
Note: See TracChangeset for help on using the changeset viewer.