New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11043 for NEMO/trunk/doc/latex/SI3/subfiles/chap_model_basics.tex – NEMO

Ignore:
Timestamp:
2019-05-23T15:51:08+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Several fixes for the LaTeX compilation of the manuals

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/SI3/subfiles/chap_model_basics.tex

    r11031 r11043  
    2828 
    2929\subsection{Scales, thermodynamics and dynamics} 
    30 Because sea ice is much wider -- $\mathcal{O}$(100-1000 km) -- than thick -- $\mathcal{O}$(1 m) -- ice drift can be considered as purely horizontal: vertical motions around the hydrostatic equilibrium position are negligible. The same scaling argument justifies the assumption that heat exchanges are purely vertical\footnote{The latter assumption is probably less valid, because the horizontal scales of temperature variations are $\mathcal{O}$(10-100 m)}. It is on this basis that thermodynamics and dynamics are separated and rely upon different frameworks and sets of hypotheses: thermodynamics use the ice thickness distribution \citep{thorndike_1975} and the mushy-layer \citep{worster_1992} frameworks, whereas dynamics assume continuum mechanics \citep[e.g.,][]{lepp_ranta_2011}. Thermodynamics and dynamics interact by two means: first, advection impacts state variables; second, the horizontal momentum equation depends, among other things, on the ice state. 
     30Because sea ice is much wider -- $\mathcal{O}$(100-1000 km) -- than thick -- $\mathcal{O}$(1 m) -- ice drift can be considered as purely horizontal: vertical motions around the hydrostatic equilibrium position are negligible. The same scaling argument justifies the assumption that heat exchanges are purely vertical\footnote{The latter assumption is probably less valid, because the horizontal scales of temperature variations are $\mathcal{O}$(10-100 m)}. It is on this basis that thermodynamics and dynamics are separated and rely upon different frameworks and sets of hypotheses: thermodynamics use the ice thickness distribution \citep{thorndike_1975} and the mushy-layer \citep{worster_1992} frameworks, whereas dynamics assume continuum mechanics \citep[e.g.,][]{lepparanta_2011}. Thermodynamics and dynamics interact by two means: first, advection impacts state variables; second, the horizontal momentum equation depends, among other things, on the ice state. 
    3131 
    3232\subsection{Subgrid scale variations} 
     
    7070 & Description & Value & Units & Ref \\ \hline 
    7171$c_i$ (cpic) & Pure ice specific heat & 2067 & J/kg/K & ? \\ 
    72 $c_w$ (rcp) & Seawater specific heat & 3991 & J/kg/K & \cite{TEOS_2010} \\ 
     72$c_w$ (rcp) & Seawater specific heat & 3991 & J/kg/K & \cite{teos-10_2010} \\ 
    7373$L$ (lfus) & Latent heat of fusion (0$^\circ$C) & 334000 & J/kg/K & \cite{bitz_1999} \\ 
    7474$\rho_i$ (rhoic) & Sea ice density & 917 & kg/m$^3$ & \cite{bitz_1999} \\ 
     
    154154\subsection{Dynamic formulation} 
    155155 
    156 The formulation of ice dynamics is based on the continuum approach. The latter holds provided the drift ice particles are much larger than single ice floes, and much smaller than typical gradient scales. This compromise is rarely achieved in practice \citep{lepp_ranta_2011}. Yet the continuum approach generates a convenient momentum equation for the horizontal ice velocity vector $\mathbf{u}=(u,v)$, which can be solved with classical numerical methods (here, finite differences on the NEMO C-grid). The most important term in the momentum equation is internal stress. We follow the viscous-plastic (VP) rheological framework \citep{hibler_1979}, assuming that sea ice has no tensile strength but responds to compressive and shear deformations in a plastic way. In practice, the elastic-viscous-plastic (EVP) technique of  \citep{bouillon_2013} is used, more convient numerically than VP.  It is well accepted that the VP rheology and its relatives are the minimum complexity to get reasonable ice drift patterns \citep{kreyscher_2000}, but fail at generating the observed deformation patterns \citep{girard_2009}. This is a long-lasting problem: what is the ideal rheological model for sea ice and how it should be applied are still being debated \citep[see, e.g.][]{weiss_2013}.  
     156The formulation of ice dynamics is based on the continuum approach. The latter holds provided the drift ice particles are much larger than single ice floes, and much smaller than typical gradient scales. This compromise is rarely achieved in practice \citep{lepparanta_2011}. Yet the continuum approach generates a convenient momentum equation for the horizontal ice velocity vector $\mathbf{u}=(u,v)$, which can be solved with classical numerical methods (here, finite differences on the NEMO C-grid). The most important term in the momentum equation is internal stress. We follow the viscous-plastic (VP) rheological framework \citep{hibler_1979}, assuming that sea ice has no tensile strength but responds to compressive and shear deformations in a plastic way. In practice, the elastic-viscous-plastic (EVP) technique of  \citep{bouillon_2013} is used, more convient numerically than VP.  It is well accepted that the VP rheology and its relatives are the minimum complexity to get reasonable ice drift patterns \citep{kreyscher_2000}, but fail at generating the observed deformation patterns \citep{girard_2009}. This is a long-lasting problem: what is the ideal rheological model for sea ice and how it should be applied are still being debated \citep[see, e.g.][]{weiss_2013}.  
    157157 
    158158%------------------------------------------------------------------------------------------------------------------------- 
     
    296296$C$ (rn\_crhg) & ice strength concentration param. & 20 & - & \citep{hibler_1979} \\ 
    297297$H^*$ (rn\_hstar) & maximum ridged ice thickness param. & 25 & m & \citep{lipscomb_2007} \\ 
    298 $p$ (rn\_por\_rdg) & porosity of new ridges & 0.3 & - & \citep{lepp_ranta_1995} \\ 
     298$p$ (rn\_por\_rdg) & porosity of new ridges & 0.3 & - & \citep{lepparanta_1995} \\ 
    299299$amax$ (rn\_amax) & maximum ice concentration & 0.999 & - & -\\ 
    300300$h_0$ (rn\_hnewice) & thickness of newly formed ice & 0.1 & m & - \\ 
     
    313313Transport connects the horizontal velocity fields and the rest of the ice properties. LIM assumes that the ice properties in the different thickness categories are transported at the same velocity. The scheme of \cite{prather_1986}, based on the conservation of 0, 1$^{st}$ and 2$^{nd}$ order moments in $x-$ and $y-$directions,  is used, with some numerical diffusion if desired. Whereas this scheme is accurate, nearly conservative, it is also quite expensive since, for each advected field, five moments need to be advected, which proves CPU consuming, in particular when multiple categories are used. Other solutions are currently explored. 
    314314 
    315 The dissipation of energy associated with plastic failure under convergence and shear is accomplished by rafting (overriding of two ice plates) and ridging (breaking of an ice plate and subsequent piling of the broken ice blocks into pressure ridges). Thin ice preferentially rafts whereas thick ice preferentially ridges \citep{tuhkuri_2002}. Because observations of these processes are limited, their representation in LIM is rather heuristic. The amount of ice that rafts/ridges depends on the strain rate tensor invariants (shear and divergence) as in \citep{flato_1995}, while the ice categories involved are determined by a participation function favouring thin ice \citep{lipscomb_2007}. The thickness of ice being deformed ($h'$) determines whether ice rafts ($h'<$ 0.75 m) or ridges ($h'>$ 0.75 m), following \cite{haapala_2000}. The deformed ice thickness is $2h'$ after rafting, and is distributed between $2h'$ and $2 \sqrt{H^*h'}$ after ridging, where $H^* = 25$ m \citep{lipscomb_2007}. Newly ridged ice is highly porous, effectively trapping seawater. To represent this, a prescribed volume fraction (30\%) of newly ridged ice \citep{lepp_ranta_1995} incorporates mass, salt and heat are extracted from the ocean. Hence, in contrast with other models, the net thermodynamic ice production during convergence is not zero in LIM, since mass is added to sea ice during ridging. Consequently, simulated new ridges have high temperature and salinity as observed \citep{h_yland_2002}. A fraction of snow (50 \%) falls into the ocean during deformation. 
     315The dissipation of energy associated with plastic failure under convergence and shear is accomplished by rafting (overriding of two ice plates) and ridging (breaking of an ice plate and subsequent piling of the broken ice blocks into pressure ridges). Thin ice preferentially rafts whereas thick ice preferentially ridges \citep{tuhkuri_2002}. Because observations of these processes are limited, their representation in LIM is rather heuristic. The amount of ice that rafts/ridges depends on the strain rate tensor invariants (shear and divergence) as in \citep{flato_1995}, while the ice categories involved are determined by a participation function favouring thin ice \citep{lipscomb_2007}. The thickness of ice being deformed ($h'$) determines whether ice rafts ($h'<$ 0.75 m) or ridges ($h'>$ 0.75 m), following \cite{haapala_2000}. The deformed ice thickness is $2h'$ after rafting, and is distributed between $2h'$ and $2 \sqrt{H^*h'}$ after ridging, where $H^* = 25$ m \citep{lipscomb_2007}. Newly ridged ice is highly porous, effectively trapping seawater. To represent this, a prescribed volume fraction (30\%) of newly ridged ice \citep{lepparanta_1995} incorporates mass, salt and heat are extracted from the ocean. Hence, in contrast with other models, the net thermodynamic ice production during convergence is not zero in LIM, since mass is added to sea ice during ridging. Consequently, simulated new ridges have high temperature and salinity as observed \citep{hoyland_2002}. A fraction of snow (50 \%) falls into the ocean during deformation. 
    316316 
    317317\section{Ice thermodynamics} 
Note: See TracChangeset for help on using the changeset viewer.