New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11123 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex – NEMO

Ignore:
Timestamp:
2019-06-17T14:22:27+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Modification of LaTeX subfiles accordingly to new citations keys

Location:
NEMO/trunk/doc/latex/NEMO/subfiles
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles

    • Property svn:ignore deleted
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex

    r10544 r11123  
    136136Nevertheless, in the latter case, it is achieved to a good approximation since 
    137137the non-conservative term is the product of the time derivative of the tracer and the free surface height, 
    138 two quantities that are not correlated \citep{Roullet_Madec_JGR00, Griffies_al_MWR01, Campin2004}. 
    139  
    140 The velocity field that appears in (\autoref{eq:tra_adv} and \autoref{eq:tra_adv_zco}) is 
     138two quantities that are not correlated \citep{roullet.madec_JGR00, griffies.pacanowski.ea_MWR01, campin.adcroft.ea_OM04}. 
     139 
     140The velocity field that appears in (\autoref{eq:tra_adv} and \autoref{eq:tra_adv_zco?}) is 
    141141the centred (\textit{now}) \textit{effective} ocean velocity, \ie the \textit{eulerian} velocity 
    142142(see \autoref{chap:DYN}) plus the eddy induced velocity (\textit{eiv}) and/or 
     
    221221\end{equation} 
    222222In the vertical direction (\np{nn\_cen\_v}~\forcode{= 4}), 
    223 a $4^{th}$ COMPACT interpolation has been prefered \citep{Demange_PhD2014}. 
     223a $4^{th}$ COMPACT interpolation has been prefered \citep{demange_phd14}. 
    224224In the COMPACT scheme, both the field and its derivative are interpolated, which leads, after a matrix inversion, 
    225 spectral characteristics similar to schemes of higher order \citep{Lele_JCP1992}.  
     225spectral characteristics similar to schemes of higher order \citep{lele_JCP92}.  
    226226 
    227227Strictly speaking, the CEN4 scheme is not a $4^{th}$ order advection scheme but 
     
    277277(\ie it depends on the setting of \np{nn\_fct\_h} and \np{nn\_fct\_v}). 
    278278There exist many ways to define $c_u$, each corresponding to a different FCT scheme. 
    279 The one chosen in \NEMO is described in \citet{Zalesak_JCP79}. 
     279The one chosen in \NEMO is described in \citet{zalesak_JCP79}. 
    280280$c_u$ only departs from $1$ when the advective term produces a local extremum in the tracer field. 
    281281The resulting scheme is quite expensive but \textit{positive}. 
    282282It can be used on both active and passive tracers. 
    283 A comparison of FCT-2 with MUSCL and a MPDATA scheme can be found in \citet{Levy_al_GRL01}. 
     283A comparison of FCT-2 with MUSCL and a MPDATA scheme can be found in \citet{levy.estublier.ea_GRL01}. 
    284284 
    285285An additional option has been added controlled by \np{nn\_fct\_zts}. 
     
    287287a $2^{nd}$ order FCT scheme is used on both horizontal and vertical direction, but on the latter, 
    288288a split-explicit time stepping is used, with a number of sub-timestep equals to \np{nn\_fct\_zts}. 
    289 This option can be useful when the size of the timestep is limited by vertical advection \citep{Lemarie_OM2015}. 
     289This option can be useful when the size of the timestep is limited by vertical advection \citep{lemarie.debreu.ea_OM15}. 
    290290Note that in this case, a similar split-explicit time stepping should be used on vertical advection of momentum to 
    291291insure a better stability (see \autoref{subsec:DYN_zad}). 
     
    306306MUSCL implementation can be found in the \mdl{traadv\_mus} module. 
    307307 
    308 MUSCL has been first implemented in \NEMO by \citet{Levy_al_GRL01}. 
     308MUSCL has been first implemented in \NEMO by \citet{levy.estublier.ea_GRL01}. 
    309309In its formulation, the tracer at velocity points is evaluated assuming a linear tracer variation between 
    310310two $T$-points (\autoref{fig:adv_scheme}). 
     
    358358 
    359359This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error 
    360 \citep{Shchepetkin_McWilliams_OM05}. 
    361 The overall performance of the advection scheme is similar to that reported in \cite{Farrow1995}. 
     360\citep{shchepetkin.mcwilliams_OM05}. 
     361The overall performance of the advection scheme is similar to that reported in \cite{farrow.stevens_JPO95}. 
    362362It is a relatively good compromise between accuracy and smoothness. 
    363363Nevertheless the scheme is not \textit{positive}, meaning that false extrema are permitted, 
     
    367367The intrinsic diffusion of UBS makes its use risky in the vertical direction where 
    368368the control of artificial diapycnal fluxes is of paramount importance 
    369 \citep{Shchepetkin_McWilliams_OM05, Demange_PhD2014}. 
     369\citep{shchepetkin.mcwilliams_OM05, demange_phd14}. 
    370370Therefore the vertical flux is evaluated using either a $2^nd$ order FCT scheme or a $4^th$ order COMPACT scheme 
    371371(\np{nn\_cen\_v}~\forcode{= 2 or 4}). 
     
    376376(which is the diffusive part of the scheme), 
    377377is evaluated using the \textit{before} tracer (forward in time). 
    378 This choice is discussed by \citet{Webb_al_JAOT98} in the context of the QUICK advection scheme. 
     378This choice is discussed by \citet{webb.de-cuevas.ea_JAOT98} in the context of the QUICK advection scheme. 
    379379UBS and QUICK schemes only differ by one coefficient. 
    380 Replacing 1/6 with 1/8 in \autoref{eq:tra_adv_ubs} leads to the QUICK advection scheme \citep{Webb_al_JAOT98}. 
     380Replacing 1/6 with 1/8 in \autoref{eq:tra_adv_ubs} leads to the QUICK advection scheme \citep{webb.de-cuevas.ea_JAOT98}. 
    381381This option is not available through a namelist parameter, since the 1/6 coefficient is hard coded. 
    382382Nevertheless it is quite easy to make the substitution in the \mdl{traadv\_ubs} module and obtain a QUICK scheme. 
     
    412412 
    413413The Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms (QUICKEST) scheme 
    414 proposed by \citet{Leonard1979} is used when \np{ln\_traadv\_qck}~\forcode{= .true.}. 
     414proposed by \citet{leonard_CMAME79} is used when \np{ln\_traadv\_qck}~\forcode{= .true.}. 
    415415QUICKEST implementation can be found in the \mdl{traadv\_qck} module. 
    416416 
    417417QUICKEST is the third order Godunov scheme which is associated with the ULTIMATE QUICKEST limiter 
    418 \citep{Leonard1991}. 
     418\citep{leonard_CMAME91}. 
    419419It has been implemented in NEMO by G. Reffray (MERCATOR-ocean) and can be found in the \mdl{traadv\_qck} module. 
    420420The resulting scheme is quite expensive but \textit{positive}. 
     
    454454This latter component is solved implicitly together with the vertical diffusion term (see \autoref{chap:STP}). 
    455455When \np{ln\_traldf\_msc}~\forcode{= .true.}, a Method of Stabilizing Correction is used in which 
    456 the pure vertical component is split into an explicit and an implicit part \citep{Lemarie_OM2012}. 
     456the pure vertical component is split into an explicit and an implicit part \citep{lemarie.debreu.ea_OM12}. 
    457457 
    458458% ------------------------------------------------------------------------------------------------------------- 
     
    590590This formulation conserves the tracer but does not ensure the decrease of the tracer variance. 
    591591Nevertheless the treatment performed on the slopes (see \autoref{chap:LDF}) allows the model to run safely without 
    592 any additional background horizontal diffusion \citep{Guilyardi_al_CD01}. 
     592any additional background horizontal diffusion \citep{guilyardi.madec.ea_CD01}. 
    593593 
    594594Note that in the partial step $z$-coordinate (\np{ln\_zps}~\forcode{= .true.}), 
     
    603603If the Griffies triad scheme is employed (\np{ln\_traldf\_triad}~\forcode{= .true.}; see \autoref{apdx:triad}) 
    604604 
    605 An alternative scheme developed by \cite{Griffies_al_JPO98} which ensures tracer variance decreases 
     605An alternative scheme developed by \cite{griffies.gnanadesikan.ea_JPO98} which ensures tracer variance decreases 
    606606is also available in \NEMO (\np{ln\_traldf\_grif}~\forcode{= .true.}). 
    607607A complete description of the algorithm is given in \autoref{apdx:triad}. 
     
    747747Note that an exact conservation of heat and salt content is only achieved with non-linear free surface. 
    748748In the linear free surface case, there is a small imbalance. 
    749 The imbalance is larger than the imbalance associated with the Asselin time filter \citep{Leclair_Madec_OM09}. 
     749The imbalance is larger than the imbalance associated with the Asselin time filter \citep{leclair.madec_OM09}. 
    750750This is the reason why the modified filter is not applied in the linear free surface case (see \autoref{chap:STP}). 
    751751 
     
    794794In the simple 2-waveband light penetration scheme (\np{ln\_qsr\_2bd}~\forcode{= .true.}) 
    795795a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths, 
    796 leading to the following expression \citep{Paulson1977}: 
     796leading to the following expression \citep{paulson.simpson_JPO77}: 
    797797\[ 
    798798  % \label{eq:traqsr_iradiance} 
     
    805805 
    806806Such assumptions have been shown to provide a very crude and simplistic representation of 
    807 observed light penetration profiles (\cite{Morel_JGR88}, see also \autoref{fig:traqsr_irradiance}). 
     807observed light penetration profiles (\cite{morel_JGR88}, see also \autoref{fig:traqsr_irradiance}). 
    808808Light absorption in the ocean depends on particle concentration and is spectrally selective. 
    809 \cite{Morel_JGR88} has shown that an accurate representation of light penetration can be provided by 
     809\cite{morel_JGR88} has shown that an accurate representation of light penetration can be provided by 
    810810a 61 waveband formulation. 
    811811Unfortunately, such a model is very computationally expensive. 
    812 Thus, \cite{Lengaigne_al_CD07} have constructed a simplified version of this formulation in which 
     812Thus, \cite{lengaigne.menkes.ea_CD07} have constructed a simplified version of this formulation in which 
    813813visible light is split into three wavebands: blue (400-500 nm), green (500-600 nm) and red (600-700nm). 
    814814For each wave-band, the chlorophyll-dependent attenuation coefficient is fitted to the coefficients computed from 
    815 the full spectral model of \cite{Morel_JGR88} (as modified by \cite{Morel_Maritorena_JGR01}), 
     815the full spectral model of \cite{morel_JGR88} (as modified by \cite{morel.maritorena_JGR01}), 
    816816assuming the same power-law relationship. 
    817817As shown in \autoref{fig:traqsr_irradiance}, this formulation, called RGB (Red-Green-Blue), 
     
    834834\item[\np{nn\_chdta}~\forcode{= 2}] 
    835835  same as previous case except that a vertical profile of chlorophyl is used. 
    836   Following \cite{Morel_Berthon_LO89}, the profile is computed from the local surface chlorophyll value; 
     836  Following \cite{morel.berthon_LO89}, the profile is computed from the local surface chlorophyll value; 
    837837\item[\np{ln\_qsr\_bio}~\forcode{= .true.}] 
    838838  simulated time varying chlorophyll by TOP biogeochemical model. 
     
    865865      61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of 
    866866      (a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. 
    867       From \citet{Lengaigne_al_CD07}. 
     867      From \citet{lengaigne.menkes.ea_CD07}. 
    868868    } 
    869869  \end{center} 
     
    886886    \caption{ 
    887887      \protect\label{fig:geothermal} 
    888       Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{Emile-Geay_Madec_OS09}. 
    889       It is inferred from the age of the sea floor and the formulae of \citet{Stein_Stein_Nat92}. 
     888      Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{emile-geay.madec_OS09}. 
     889      It is inferred from the age of the sea floor and the formulae of \citet{stein.stein_N92}. 
    890890    } 
    891891  \end{center} 
     
    897897This is the default option in \NEMO, and it is implemented using the masking technique. 
    898898However, there is a non-zero heat flux across the seafloor that is associated with solid earth cooling. 
    899 This flux is weak compared to surface fluxes (a mean global value of $\sim 0.1 \, W/m^2$ \citep{Stein_Stein_Nat92}), 
     899This flux is weak compared to surface fluxes (a mean global value of $\sim 0.1 \, W/m^2$ \citep{stein.stein_N92}), 
    900900but it warms systematically the ocean and acts on the densest water masses. 
    901901Taking this flux into account in a global ocean model increases the deepest overturning cell 
    902 (\ie the one associated with the Antarctic Bottom Water) by a few Sverdrups \citep{Emile-Geay_Madec_OS09}. 
     902(\ie the one associated with the Antarctic Bottom Water) by a few Sverdrups \citep{emile-geay.madec_OS09}. 
    903903 
    904904Options are defined through the  \ngn{namtra\_bbc} namelist variables. 
     
    907907the \np{nn\_geoflx\_cst}, which is also a namelist parameter. 
    908908When \np{nn\_geoflx} is set to 2, a spatially varying geothermal heat flux is introduced which is provided in 
    909 the \ifile{geothermal\_heating} NetCDF file (\autoref{fig:geothermal}) \citep{Emile-Geay_Madec_OS09}. 
     909the \ifile{geothermal\_heating} NetCDF file (\autoref{fig:geothermal}) \citep{emile-geay.madec_OS09}. 
    910910 
    911911% ================================================================ 
     
    931931sometimes over a thickness much larger than the thickness of the observed gravity plume. 
    932932A similar problem occurs in the $s$-coordinate when the thickness of the bottom level varies rapidly downstream of 
    933 a sill \citep{Willebrand_al_PO01}, and the thickness of the plume is not resolved. 
    934  
    935 The idea of the bottom boundary layer (BBL) parameterisation, first introduced by \citet{Beckmann_Doscher1997}, 
     933a sill \citep{willebrand.barnier.ea_PO01}, and the thickness of the plume is not resolved. 
     934 
     935The idea of the bottom boundary layer (BBL) parameterisation, first introduced by \citet{beckmann.doscher_JPO97}, 
    936936is to allow a direct communication between two adjacent bottom cells at different levels, 
    937937whenever the densest water is located above the less dense water. 
     
    939939In the current implementation of the BBL, only the tracers are modified, not the velocities. 
    940940Furthermore, it only connects ocean bottom cells, and therefore does not include all the improvements introduced by 
    941 \citet{Campin_Goosse_Tel99}. 
     941\citet{campin.goosse_T99}. 
    942942 
    943943% ------------------------------------------------------------------------------------------------------------- 
     
    955955with $\nabla_\sigma$ the lateral gradient operator taken between bottom cells, and 
    956956$A_l^\sigma$ the lateral diffusivity in the BBL. 
    957 Following \citet{Beckmann_Doscher1997}, the latter is prescribed with a spatial dependence, 
     957Following \citet{beckmann.doscher_JPO97}, the latter is prescribed with a spatial dependence, 
    958958\ie in the conditional form 
    959959\begin{equation} 
     
    10201020\np{nn\_bbl\_adv}~\forcode{= 1}: 
    10211021the downslope velocity is chosen to be the Eulerian ocean velocity just above the topographic step 
    1022 (see black arrow in \autoref{fig:bbl}) \citep{Beckmann_Doscher1997}. 
     1022(see black arrow in \autoref{fig:bbl}) \citep{beckmann.doscher_JPO97}. 
    10231023It is a \textit{conditional advection}, that is, advection is allowed only 
    10241024if dense water overlies less dense water on the slope (\ie $\nabla_\sigma \rho \cdot \nabla H < 0$) and 
     
    10271027\np{nn\_bbl\_adv}~\forcode{= 2}: 
    10281028the downslope velocity is chosen to be proportional to $\Delta \rho$, 
    1029 the density difference between the higher cell and lower cell densities \citep{Campin_Goosse_Tel99}. 
     1029the density difference between the higher cell and lower cell densities \citep{campin.goosse_T99}. 
    10301030The advection is allowed only  if dense water overlies less dense water on the slope 
    10311031(\ie $\nabla_\sigma \rho \cdot \nabla H < 0$). 
     
    10411041The parameter $\gamma$ should take a different value for each bathymetric step, but for simplicity, 
    10421042and because no direct estimation of this parameter is available, a uniform value has been assumed. 
    1043 The possible values for $\gamma$ range between 1 and $10~s$ \citep{Campin_Goosse_Tel99}. 
     1043The possible values for $\gamma$ range between 1 and $10~s$ \citep{campin.goosse_T99}. 
    10441044 
    10451045Scalar properties are advected by this additional transport $(u^{tr}_{bbl},v^{tr}_{bbl})$ using the upwind scheme. 
     
    11091109In the vicinity of these walls, $\gamma$ takes large values (equivalent to a time scale of a few days) whereas 
    11101110it is zero in the interior of the model domain. 
    1111 The second case corresponds to the use of the robust diagnostic method \citep{Sarmiento1982}. 
     1111The second case corresponds to the use of the robust diagnostic method \citep{sarmiento.bryan_JGR82}. 
    11121112It allows us to find the velocity field consistent with the model dynamics whilst 
    11131113having a $T$, $S$ field close to a given climatological field ($T_o$, $S_o$). 
     
    11211121only below the mixed layer (defined either on a density or $S_o$ criterion). 
    11221122It is common to set the damping to zero in the mixed layer as the adjustment time scale is short here 
    1123 \citep{Madec_al_JPO96}. 
     1123\citep{madec.delecluse.ea_JPO96}. 
    11241124 
    11251125For generating \ifile{resto}, see the documentation for the DMP tool provided with the source code under 
     
    11371137 
    11381138Options are defined through the \ngn{namdom} namelist variables. 
    1139 The general framework for tracer time stepping is a modified leap-frog scheme \citep{Leclair_Madec_OM09}, 
     1139The general framework for tracer time stepping is a modified leap-frog scheme \citep{leclair.madec_OM09}, 
    11401140\ie a three level centred time scheme associated with a Asselin time filter (cf. \autoref{sec:STP_mLF}): 
    11411141\begin{equation} 
     
    11861186Nonlinearities of the EOS are of major importance, in particular influencing the circulation through 
    11871187determination of the static stability below the mixed layer, 
    1188 thus controlling rates of exchange between the atmosphere and the ocean interior \citep{Roquet_JPO2015}. 
    1189 Therefore an accurate EOS based on either the 1980 equation of state (EOS-80, \cite{UNESCO1983}) or 
    1190 TEOS-10 \citep{TEOS10} standards should be used anytime a simulation of the real ocean circulation is attempted 
    1191 \citep{Roquet_JPO2015}. 
     1188thus controlling rates of exchange between the atmosphere and the ocean interior \citep{roquet.madec.ea_JPO15}. 
     1189Therefore an accurate EOS based on either the 1980 equation of state (EOS-80, \cite{fofonoff.millard_bk83}) or 
     1190TEOS-10 \citep{ioc.iapso_bk10} standards should be used anytime a simulation of the real ocean circulation is attempted 
     1191\citep{roquet.madec.ea_JPO15}. 
    11921192The use of TEOS-10 is highly recommended because 
    11931193\textit{(i)}   it is the new official EOS, 
     
    11951195\textit{(iii)} it uses Conservative Temperature and Absolute Salinity (instead of potential temperature and 
    11961196practical salinity for EOS-980, both variables being more suitable for use as model variables 
    1197 \citep{TEOS10, Graham_McDougall_JPO13}. 
     1197\citep{ioc.iapso_bk10, graham.mcdougall_JPO13}. 
    11981198EOS-80 is an obsolescent feature of the NEMO system, kept only for backward compatibility. 
    11991199For process studies, it is often convenient to use an approximation of the EOS. 
    1200 To that purposed, a simplified EOS (S-EOS) inspired by \citet{Vallis06} is also available. 
     1200To that purposed, a simplified EOS (S-EOS) inspired by \citet{vallis_bk06} is also available. 
    12011201 
    12021202In the computer code, a density anomaly, $d_a = \rho / \rho_o - 1$, is computed, with $\rho_o$ a reference density. 
     
    12041204This is a sensible choice for the reference density used in a Boussinesq ocean climate model, as, 
    12051205with the exception of only a small percentage of the ocean, 
    1206 density in the World Ocean varies by no more than 2$\%$ from that value \citep{Gill1982}. 
     1206density in the World Ocean varies by no more than 2$\%$ from that value \citep{gill_bk82}. 
    12071207 
    12081208Options are defined through the \ngn{nameos} namelist variables, and in particular \np{nn\_eos} which 
     
    12111211\begin{description} 
    12121212\item[\np{nn\_eos}~\forcode{= -1}] 
    1213   the polyTEOS10-bsq equation of seawater \citep{Roquet_OM2015} is used. 
     1213  the polyTEOS10-bsq equation of seawater \citep{roquet.madec.ea_OM15} is used. 
    12141214  The accuracy of this approximation is comparable to the TEOS-10 rational function approximation, 
    12151215  but it is optimized for a boussinesq fluid and the polynomial expressions have simpler and 
     
    12171217  use in ocean models. 
    12181218  Note that a slightly higher precision polynomial form is now used replacement of 
    1219   the TEOS-10 rational function approximation for hydrographic data analysis \citep{TEOS10}. 
     1219  the TEOS-10 rational function approximation for hydrographic data analysis \citep{ioc.iapso_bk10}. 
    12201220  A key point is that conservative state variables are used: 
    12211221  Absolute Salinity (unit: g/kg, notation: $S_A$) and Conservative Temperature (unit: \deg{C}, notation: $\Theta$). 
    12221222  The pressure in decibars is approximated by the depth in meters. 
    12231223  With TEOS10, the specific heat capacity of sea water, $C_p$, is a constant. 
    1224   It is set to $C_p = 3991.86795711963~J\,Kg^{-1}\,^{\circ}K^{-1}$, according to \citet{TEOS10}. 
     1224  It is set to $C_p = 3991.86795711963~J\,Kg^{-1}\,^{\circ}K^{-1}$, according to \citet{ioc.iapso_bk10}. 
    12251225  Choosing polyTEOS10-bsq implies that the state variables used by the model are $\Theta$ and $S_A$. 
    12261226  In particular, the initial state deined by the user have to be given as \textit{Conservative} Temperature and 
     
    12381238  The pressure in decibars is approximated by the depth in meters. 
    12391239  With thsi EOS, the specific heat capacity of sea water, $C_p$, is a function of temperature, salinity and 
    1240   pressure \citep{UNESCO1983}. 
     1240  pressure \citep{fofonoff.millard_bk83}. 
    12411241  Nevertheless, a severe assumption is made in order to have a heat content ($C_p T_p$) which 
    12421242  is conserved by the model: $C_p$ is set to a constant value, the TEOS10 value. 
    12431243\item[\np{nn\_eos}~\forcode{= 1}] 
    1244   a simplified EOS (S-EOS) inspired by \citet{Vallis06} is chosen, 
     1244  a simplified EOS (S-EOS) inspired by \citet{vallis_bk06} is chosen, 
    12451245  the coefficients of which has been optimized to fit the behavior of TEOS10 
    1246   (Roquet, personal comm.) (see also \citet{Roquet_JPO2015}). 
     1246  (Roquet, personal comm.) (see also \citet{roquet.madec.ea_JPO15}). 
    12471247  It provides a simplistic linear representation of both cabbeling and thermobaricity effects which 
    1248   is enough for a proper treatment of the EOS in theoretical studies \citep{Roquet_JPO2015}. 
     1248  is enough for a proper treatment of the EOS in theoretical studies \citep{roquet.madec.ea_JPO15}. 
    12491249  With such an equation of state there is no longer a distinction between 
    12501250  \textit{conservative} and \textit{potential} temperature, 
     
    13291329\label{subsec:TRA_fzp} 
    13301330 
    1331 The freezing point of seawater is a function of salinity and pressure \citep{UNESCO1983}: 
     1331The freezing point of seawater is a function of salinity and pressure \citep{fofonoff.millard_bk83}: 
    13321332\begin{equation} 
    13331333  \label{eq:tra_eos_fzp} 
Note: See TracChangeset for help on using the changeset viewer.