New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11123 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2019-06-17T14:22:27+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Modification of LaTeX subfiles accordingly to new citations keys

Location:
NEMO/trunk/doc/latex/NEMO/subfiles
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles

    • Property svn:ignore deleted
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r10442 r11123  
    8787a dependency between the vertical eddy coefficients and the local Richardson number 
    8888(\ie the ratio of stratification to vertical shear). 
    89 Following \citet{Pacanowski_Philander_JPO81}, the following formulation has been implemented: 
     89Following \citet{pacanowski.philander_JPO81}, the following formulation has been implemented: 
    9090\[ 
    9191  % \label{eq:zdfric} 
     
    124124The final $h_{e}$ is further constrained by the adjustable bounds \np{rn\_mldmin} and \np{rn\_mldmax}. 
    125125Once $h_{e}$ is computed, the vertical eddy coefficients within $h_{e}$ are set to 
    126 the empirical values \np{rn\_wtmix} and \np{rn\_wvmix} \citep{Lermusiaux2001}. 
     126the empirical values \np{rn\_wtmix} and \np{rn\_wvmix} \citep{lermusiaux_JMS01}. 
    127127 
    128128% ------------------------------------------------------------------------------------------------------------- 
     
    140140a prognostic equation for $\bar{e}$, the turbulent kinetic energy, 
    141141and a closure assumption for the turbulent length scales. 
    142 This turbulent closure model has been developed by \citet{Bougeault1989} in the atmospheric case, 
    143 adapted by \citet{Gaspar1990} for the oceanic case, and embedded in OPA, the ancestor of NEMO, 
    144 by \citet{Blanke1993} for equatorial Atlantic simulations. 
    145 Since then, significant modifications have been introduced by \citet{Madec1998} in both the implementation and 
     142This turbulent closure model has been developed by \citet{bougeault.lacarrere_MWR89} in the atmospheric case, 
     143adapted by \citet{gaspar.gregoris.ea_JGR90} for the oceanic case, and embedded in OPA, the ancestor of NEMO, 
     144by \citet{blanke.delecluse_JPO93} for equatorial Atlantic simulations. 
     145Since then, significant modifications have been introduced by \citet{madec.delecluse.ea_NPM98} in both the implementation and 
    146146the formulation of the mixing length scale. 
    147147The time evolution of $\bar{e}$ is the result of the production of $\bar{e}$ through vertical shear, 
    148 its destruction through stratification, its vertical diffusion, and its dissipation of \citet{Kolmogorov1942} type: 
     148its destruction through stratification, its vertical diffusion, and its dissipation of \citet{kolmogorov_IANS42} type: 
    149149\begin{equation} 
    150150  \label{eq:zdftke_e} 
     
    168168$P_{rt}$ is the Prandtl number, $K_m$ and $K_\rho$ are the vertical eddy viscosity and diffusivity coefficients. 
    169169The constants $C_k =  0.1$ and $C_\epsilon = \sqrt {2} /2$ $\approx 0.7$ are designed to deal with 
    170 vertical mixing at any depth \citep{Gaspar1990}.  
     170vertical mixing at any depth \citep{gaspar.gregoris.ea_JGR90}.  
    171171They are set through namelist parameters \np{nn\_ediff} and \np{nn\_ediss}. 
    172 $P_{rt}$ can be set to unity or, following \citet{Blanke1993}, be a function of the local Richardson number, $R_i$: 
     172$P_{rt}$ can be set to unity or, following \citet{blanke.delecluse_JPO93}, be a function of the local Richardson number, $R_i$: 
    173173\begin{align*} 
    174174  % \label{eq:prt} 
     
    185185At the sea surface, the value of $\bar{e}$ is prescribed from the wind stress field as 
    186186$\bar{e}_o = e_{bb} |\tau| / \rho_o$, with $e_{bb}$ the \np{rn\_ebb} namelist parameter. 
    187 The default value of $e_{bb}$ is 3.75. \citep{Gaspar1990}), however a much larger value can be used when 
     187The default value of $e_{bb}$ is 3.75. \citep{gaspar.gregoris.ea_JGR90}), however a much larger value can be used when 
    188188taking into account the surface wave breaking (see below Eq. \autoref{eq:ZDF_Esbc}). 
    189189The bottom value of TKE is assumed to be equal to the value of the level just above. 
     
    191191the numerical scheme does not ensure its positivity. 
    192192To overcome this problem, a cut-off in the minimum value of $\bar{e}$ is used (\np{rn\_emin} namelist parameter). 
    193 Following \citet{Gaspar1990}, the cut-off value is set to $\sqrt{2}/2~10^{-6}~m^2.s^{-2}$. 
    194 This allows the subsequent formulations to match that of \citet{Gargett1984} for the diffusion in 
     193Following \citet{gaspar.gregoris.ea_JGR90}, the cut-off value is set to $\sqrt{2}/2~10^{-6}~m^2.s^{-2}$. 
     194This allows the subsequent formulations to match that of \citet{gargett_JMR84} for the diffusion in 
    195195the thermocline and deep ocean :  $K_\rho = 10^{-3} / N$. 
    196196In addition, a cut-off is applied on $K_m$ and $K_\rho$ to avoid numerical instabilities associated with 
     
    202202 
    203203For computational efficiency, the original formulation of the turbulent length scales proposed by 
    204 \citet{Gaspar1990} has been simplified. 
     204\citet{gaspar.gregoris.ea_JGR90} has been simplified. 
    205205Four formulations are proposed, the choice of which is controlled by the \np{nn\_mxl} namelist parameter. 
    206 The first two are based on the following first order approximation \citep{Blanke1993}: 
     206The first two are based on the following first order approximation \citep{blanke.delecluse_JPO93}: 
    207207\begin{equation} 
    208208  \label{eq:tke_mxl0_1} 
     
    212212The resulting length scale is bounded by the distance to the surface or to the bottom 
    213213(\np{nn\_mxl}\forcode{ = 0}) or by the local vertical scale factor (\np{nn\_mxl}\forcode{ = 1}). 
    214 \citet{Blanke1993} notice that this simplification has two major drawbacks: 
     214\citet{blanke.delecluse_JPO93} notice that this simplification has two major drawbacks: 
    215215it makes no sense for locally unstable stratification and the computation no longer uses all 
    216216the information contained in the vertical density profile. 
    217 To overcome these drawbacks, \citet{Madec1998} introduces the \np{nn\_mxl}\forcode{ = 2..3} cases, 
     217To overcome these drawbacks, \citet{madec.delecluse.ea_NPM98} introduces the \np{nn\_mxl}\forcode{ = 2..3} cases, 
    218218which add an extra assumption concerning the vertical gradient of the computed length scale. 
    219219So, the length scales are first evaluated as in \autoref{eq:tke_mxl0_1} and then bounded such that: 
     
    225225\autoref{eq:tke_mxl_constraint} means that the vertical variations of the length scale cannot be larger than 
    226226the variations of depth. 
    227 It provides a better approximation of the \citet{Gaspar1990} formulation while being much less  
     227It provides a better approximation of the \citet{gaspar.gregoris.ea_JGR90} formulation while being much less  
    228228time consuming. 
    229229In particular, it allows the length scale to be limited not only by the distance to the surface or 
     
    258258In the \np{nn\_mxl}\forcode{ = 2} case, the dissipation and mixing length scales take the same value: 
    259259$ l_k=  l_\epsilon = \min \left(\ l_{up} \;,\;  l_{dwn}\ \right)$, while in the \np{nn\_mxl}\forcode{ = 3} case, 
    260 the dissipation and mixing turbulent length scales are give as in \citet{Gaspar1990}: 
     260the dissipation and mixing turbulent length scales are give as in \citet{gaspar.gregoris.ea_JGR90}: 
    261261\[ 
    262262  % \label{eq:tke_mxl_gaspar} 
     
    270270Usually the surface scale is given by $l_o = \kappa \,z_o$ where $\kappa = 0.4$ is von Karman's constant and 
    271271$z_o$ the roughness parameter of the surface. 
    272 Assuming $z_o=0.1$~m \citep{Craig_Banner_JPO94} leads to a 0.04~m, the default value of \np{rn\_mxl0}. 
     272Assuming $z_o=0.1$~m \citep{craig.banner_JPO94} leads to a 0.04~m, the default value of \np{rn\_mxl0}. 
    273273In the ocean interior a minimum length scale is set to recover the molecular viscosity when 
    274274$\bar{e}$ reach its minimum value ($1.10^{-6}= C_k\, l_{min} \,\sqrt{\bar{e}_{min}}$ ). 
     
    277277%-----------------------------------------------------------------------% 
    278278 
    279 Following \citet{Mellor_Blumberg_JPO04}, the TKE turbulence closure model has been modified to 
     279Following \citet{mellor.blumberg_JPO04}, the TKE turbulence closure model has been modified to 
    280280include the effect of surface wave breaking energetics. 
    281281This results in a reduction of summertime surface temperature when the mixed layer is relatively shallow. 
    282 The \citet{Mellor_Blumberg_JPO04} modifications acts on surface length scale and TKE values and 
     282The \citet{mellor.blumberg_JPO04} modifications acts on surface length scale and TKE values and 
    283283air-sea drag coefficient.  
    284284The latter concerns the bulk formulea and is not discussed here.  
    285285 
    286 Following \citet{Craig_Banner_JPO94}, the boundary condition on surface TKE value is : 
     286Following \citet{craig.banner_JPO94}, the boundary condition on surface TKE value is : 
    287287\begin{equation} 
    288288  \label{eq:ZDF_Esbc} 
    289289  \bar{e}_o = \frac{1}{2}\,\left(  15.8\,\alpha_{CB} \right)^{2/3} \,\frac{|\tau|}{\rho_o} 
    290290\end{equation} 
    291 where $\alpha_{CB}$ is the \citet{Craig_Banner_JPO94} constant of proportionality which depends on the ''wave age'', 
    292 ranging from 57 for mature waves to 146 for younger waves \citep{Mellor_Blumberg_JPO04}.  
     291where $\alpha_{CB}$ is the \citet{craig.banner_JPO94} constant of proportionality which depends on the ''wave age'', 
     292ranging from 57 for mature waves to 146 for younger waves \citep{mellor.blumberg_JPO04}.  
    293293The boundary condition on the turbulent length scale follows the Charnock's relation: 
    294294\begin{equation} 
     
    297297\end{equation} 
    298298where $\kappa=0.40$ is the von Karman constant, and $\beta$ is the Charnock's constant. 
    299 \citet{Mellor_Blumberg_JPO04} suggest $\beta = 2.10^{5}$ the value chosen by 
    300 \citet{Stacey_JPO99} citing observation evidence, and 
     299\citet{mellor.blumberg_JPO04} suggest $\beta = 2.10^{5}$ the value chosen by 
     300\citet{stacey_JPO99} citing observation evidence, and 
    301301$\alpha_{CB} = 100$ the Craig and Banner's value. 
    302302As the surface boundary condition on TKE is prescribed through $\bar{e}_o = e_{bb} |\tau| / \rho_o$, 
     
    315315Although LC have nothing to do with convection, the circulation pattern is rather similar to 
    316316so-called convective rolls in the atmospheric boundary layer. 
    317 The detailed physics behind LC is described in, for example, \citet{Craik_Leibovich_JFM76}. 
     317The detailed physics behind LC is described in, for example, \citet{craik.leibovich_JFM76}. 
    318318The prevailing explanation is that LC arise from a nonlinear interaction between the Stokes drift and 
    319319wind drift currents.  
    320320 
    321321Here we introduced in the TKE turbulent closure the simple parameterization of Langmuir circulations proposed by 
    322 \citep{Axell_JGR02} for a $k-\epsilon$ turbulent closure. 
     322\citep{axell_JGR02} for a $k-\epsilon$ turbulent closure. 
    323323The parameterization, tuned against large-eddy simulation, includes the whole effect of LC in 
    324324an extra source terms of TKE, $P_{LC}$. 
     
    326326\forcode{.true.} in the namtke namelist. 
    327327  
    328 By making an analogy with the characteristic convective velocity scale (\eg, \citet{D'Alessio_al_JPO98}), 
     328By making an analogy with the characteristic convective velocity scale (\eg, \citet{dalessio.abdella.ea_JPO98}), 
    329329$P_{LC}$ is assumed to be :  
    330330\[ 
     
    334334With no information about the wave field, $w_{LC}$ is assumed to be proportional to  
    335335the Stokes drift $u_s = 0.377\,\,|\tau|^{1/2}$, where $|\tau|$ is the surface wind stress module  
    336 \footnote{Following \citet{Li_Garrett_JMR93}, the surface Stoke drift velocity may be expressed as 
     336\footnote{Following \citet{li.garrett_JMR93}, the surface Stoke drift velocity may be expressed as 
    337337  $u_s =  0.016 \,|U_{10m}|$. 
    338338  Assuming an air density of $\rho_a=1.22 \,Kg/m^3$ and a drag coefficient of 
     
    350350  \end{cases} 
    351351\] 
    352 where $c_{LC} = 0.15$ has been chosen by \citep{Axell_JGR02} as a good compromise to fit LES data. 
     352where $c_{LC} = 0.15$ has been chosen by \citep{axell_JGR02} as a good compromise to fit LES data. 
    353353The chosen value yields maximum vertical velocities $w_{LC}$ of the order of a few centimeters per second. 
    354354The value of $c_{LC}$ is set through the \np{rn\_lc} namelist parameter, 
    355 having in mind that it should stay between 0.15 and 0.54 \citep{Axell_JGR02}.  
     355having in mind that it should stay between 0.15 and 0.54 \citep{axell_JGR02}.  
    356356 
    357357The $H_{LC}$ is estimated in a similar way as the turbulent length scale of TKE equations: 
     
    368368produce mixed-layer depths that are too shallow during summer months and windy conditions. 
    369369This bias is particularly acute over the Southern Ocean. 
    370 To overcome this systematic bias, an ad hoc parameterization is introduced into the TKE scheme \cite{Rodgers_2014}.  
     370To overcome this systematic bias, an ad hoc parameterization is introduced into the TKE scheme \cite{rodgers.aumont.ea_B14}.  
    371371The parameterization is an empirical one, \ie not derived from theoretical considerations, 
    372372but rather is meant to account for observed processes that affect the density structure of  
     
    427427(first line in \autoref{eq:PE_zdf}). 
    428428To do so a special care have to be taken for both the time and space discretization of 
    429 the TKE equation \citep{Burchard_OM02,Marsaleix_al_OM08}. 
     429the TKE equation \citep{burchard_OM02,marsaleix.auclair.ea_OM08}. 
    430430 
    431431Let us first address the time stepping issue. \autoref{fig:TKE_time_scheme} shows how 
     
    524524The Generic Length Scale (GLS) scheme is a turbulent closure scheme based on two prognostic equations: 
    525525one for the turbulent kinetic energy $\bar {e}$, and another for the generic length scale, 
    526 $\psi$ \citep{Umlauf_Burchard_JMS03, Umlauf_Burchard_CSR05}. 
     526$\psi$ \citep{umlauf.burchard_JMR03, umlauf.burchard_CSR05}. 
    527527This later variable is defined as: $\psi = {C_{0\mu}}^{p} \ {\bar{e}}^{m} \ l^{n}$,  
    528528where the triplet $(p, m, n)$ value given in Tab.\autoref{tab:GLS} allows to recover a number of 
    529 well-known turbulent closures ($k$-$kl$ \citep{Mellor_Yamada_1982}, $k$-$\epsilon$ \citep{Rodi_1987}, 
    530 $k$-$\omega$ \citep{Wilcox_1988} among others \citep{Umlauf_Burchard_JMS03,Kantha_Carniel_CSR05}).  
     529well-known turbulent closures ($k$-$kl$ \citep{mellor.yamada_RG82}, $k$-$\epsilon$ \citep{rodi_JGR87}, 
     530$k$-$\omega$ \citep{wilcox_AJ88} among others \citep{umlauf.burchard_JMR03,kantha.carniel_JMR03}).  
    531531The GLS scheme is given by the following set of equations: 
    532532\begin{equation} 
     
    577577    \begin{tabular}{ccccc} 
    578578      &   $k-kl$   & $k-\epsilon$ & $k-\omega$ &   generic   \\ 
    579       % & \citep{Mellor_Yamada_1982} &  \citep{Rodi_1987}       & \citep{Wilcox_1988} &                 \\ 
     579      % & \citep{mellor.yamada_RG82} &  \citep{rodi_JGR87}       & \citep{wilcox_AJ88} &                 \\ 
    580580      \hline 
    581581      \hline 
     
    604604the mixing length towards $K z_b$ ($K$: Kappa and $z_b$: rugosity length) value near physical boundaries 
    605605(logarithmic boundary layer law). 
    606 $C_{\mu}$ and $C_{\mu'}$ are calculated from stability function proposed by \citet{Galperin_al_JAS88}, 
    607 or by \citet{Kantha_Clayson_1994} or one of the two functions suggested by \citet{Canuto_2001} 
     606$C_{\mu}$ and $C_{\mu'}$ are calculated from stability function proposed by \citet{galperin.kantha.ea_JAS88}, 
     607or by \citet{kantha.clayson_JGR94} or one of the two functions suggested by \citet{canuto.howard.ea_JPO01} 
    608608(\np{nn\_stab\_func}\forcode{ = 0..3}, resp.).  
    609609The value of $C_{0\mu}$ depends of the choice of the stability function. 
     
    612612Neumann condition through \np{nn\_tkebc\_surf} and \np{nn\_tkebc\_bot}, resp. 
    613613As for TKE closure, the wave effect on the mixing is considered when 
    614 \np{ln\_crban}\forcode{ = .true.} \citep{Craig_Banner_JPO94, Mellor_Blumberg_JPO04}. 
     614\np{ln\_crban}\forcode{ = .true.} \citep{craig.banner_JPO94, mellor.blumberg_JPO04}. 
    615615The \np{rn\_crban} namelist parameter is $\alpha_{CB}$ in \autoref{eq:ZDF_Esbc} and 
    616616\np{rn\_charn} provides the value of $\beta$ in \autoref{eq:ZDF_Lsbc}.  
     
    619619almost all authors apply a clipping of the length scale as an \textit{ad hoc} remedy. 
    620620With this clipping, the maximum permissible length scale is determined by $l_{max} = c_{lim} \sqrt{2\bar{e}}/ N$. 
    621 A value of $c_{lim} = 0.53$ is often used \citep{Galperin_al_JAS88}. 
    622 \cite{Umlauf_Burchard_CSR05} show that the value of the clipping factor is of crucial importance for 
     621A value of $c_{lim} = 0.53$ is often used \citep{galperin.kantha.ea_JAS88}. 
     622\cite{umlauf.burchard_CSR05} show that the value of the clipping factor is of crucial importance for 
    623623the entrainment depth predicted in stably stratified situations, 
    624624and that its value has to be chosen in accordance with the algebraic model for the turbulent fluxes. 
     
    627627 
    628628The time and space discretization of the GLS equations follows the same energetic consideration as for 
    629 the TKE case described in \autoref{subsec:ZDF_tke_ene} \citep{Burchard_OM02}. 
    630 Examples of performance of the 4 turbulent closure scheme can be found in \citet{Warner_al_OM05}. 
     629the TKE case described in \autoref{subsec:ZDF_tke_ene} \citep{burchard_OM02}. 
     630Examples of performance of the 4 turbulent closure scheme can be found in \citet{warner.sherwood.ea_OM05}. 
    631631 
    632632% ------------------------------------------------------------------------------------------------------------- 
     
    700700the water column, but only until the density structure becomes neutrally stable 
    701701(\ie until the mixed portion of the water column has \textit{exactly} the density of the water just below) 
    702 \citep{Madec_al_JPO91}. 
     702\citep{madec.delecluse.ea_JPO91}. 
    703703The associated algorithm is an iterative process used in the following way (\autoref{fig:npc}): 
    704704starting from the top of the ocean, the first instability is found. 
     
    718718the algorithm used in \NEMO converges for any profile in a number of iterations which is less than 
    719719the number of vertical levels. 
    720 This property is of paramount importance as pointed out by \citet{Killworth1989}: 
     720This property is of paramount importance as pointed out by \citet{killworth_iprc89}: 
    721721it avoids the existence of permanent and unrealistic static instabilities at the sea surface. 
    722722This non-penetrative convective algorithm has been proved successful in studies of the deep water formation in 
    723 the north-western Mediterranean Sea \citep{Madec_al_JPO91, Madec_al_DAO91, Madec_Crepon_Bk91}. 
     723the north-western Mediterranean Sea \citep{madec.delecluse.ea_JPO91, madec.chartier.ea_DAO91, madec.crepon_iprc91}. 
    724724 
    725725The current implementation has been modified in order to deal with any non linear equation of seawater 
     
    748748In this case, the vertical eddy mixing coefficients are assigned very large values 
    749749(a typical value is $10\;m^2s^{-1})$ in regions where the stratification is unstable 
    750 (\ie when $N^2$ the Brunt-Vais\"{a}l\"{a} frequency is negative) \citep{Lazar_PhD97, Lazar_al_JPO99}. 
     750(\ie when $N^2$ the Brunt-Vais\"{a}l\"{a} frequency is negative) \citep{lazar_phd97, lazar.madec.ea_JPO99}. 
    751751This is done either on tracers only (\np{nn\_evdm}\forcode{ = 0}) or 
    752752on both momentum and tracers (\np{nn\_evdm}\forcode{ = 1}). 
     
    764764Note that the stability test is performed on both \textit{before} and \textit{now} values of $N^2$. 
    765765This removes a potential source of divergence of odd and even time step in 
    766 a leapfrog environment \citep{Leclair_PhD2010} (see \autoref{sec:STP_mLF}). 
     766a leapfrog environment \citep{leclair_phd10} (see \autoref{sec:STP_mLF}). 
    767767 
    768768% ------------------------------------------------------------------------------------------------------------- 
     
    807807The former condition leads to salt fingering and the latter to diffusive convection. 
    808808Double-diffusive phenomena contribute to diapycnal mixing in extensive regions of the ocean. 
    809 \citet{Merryfield1999} include a parameterisation of such phenomena in a global ocean model and show that  
     809\citet{merryfield.holloway.ea_JPO99} include a parameterisation of such phenomena in a global ocean model and show that  
    810810it leads to relatively minor changes in circulation but exerts significant regional influences on 
    811811temperature and salinity. 
     
    842842    \caption{ 
    843843      \protect\label{fig:zdfddm} 
    844       From \citet{Merryfield1999} : 
     844      From \citet{merryfield.holloway.ea_JPO99} : 
    845845      (a) Diapycnal diffusivities $A_f^{vT}$ and $A_f^{vS}$ for temperature and salt in regions of salt fingering. 
    846846      Heavy curves denote $A^{\ast v} = 10^{-3}~m^2.s^{-1}$ and thin curves $A^{\ast v} = 10^{-4}~m^2.s^{-1}$; 
     
    855855 
    856856The factor 0.7 in \autoref{eq:zdfddm_f_T} reflects the measured ratio $\alpha F_T /\beta F_S \approx  0.7$ of 
    857 buoyancy flux of heat to buoyancy flux of salt (\eg, \citet{McDougall_Taylor_JMR84}). 
    858 Following  \citet{Merryfield1999}, we adopt $R_c = 1.6$, $n = 6$, and $A^{\ast v} = 10^{-4}~m^2.s^{-1}$. 
     857buoyancy flux of heat to buoyancy flux of salt (\eg, \citet{mcdougall.taylor_JMR84}). 
     858Following  \citet{merryfield.holloway.ea_JPO99}, we adopt $R_c = 1.6$, $n = 6$, and $A^{\ast v} = 10^{-4}~m^2.s^{-1}$. 
    859859 
    860860To represent mixing of S and T by diffusive layering,  the diapycnal diffusivities suggested by 
     
    963963This coefficient is generally estimated by setting a typical decay time $\tau$ in the deep ocean,  
    964964and setting $r = H / \tau$, where $H$ is the ocean depth. 
    965 Commonly accepted values of $\tau$ are of the order of 100 to 200 days \citep{Weatherly_JMR84}. 
     965Commonly accepted values of $\tau$ are of the order of 100 to 200 days \citep{weatherly_JMR84}. 
    966966A value $\tau^{-1} = 10^{-7}$~s$^{-1}$ equivalent to 115 days, is usually used in quasi-geostrophic models. 
    967967One may consider the linear friction as an approximation of quadratic friction, $r \approx 2\;C_D\;U_{av}$ 
    968 (\citet{Gill1982}, Eq. 9.6.6). 
     968(\citet{gill_bk82}, Eq. 9.6.6). 
    969969For example, with a drag coefficient $C_D = 0.002$, a typical speed of tidal currents of $U_{av} =0.1$~m\;s$^{-1}$, 
    970970and assuming an ocean depth $H = 4000$~m, the resulting friction coefficient is $r = 4\;10^{-4}$~m\;s$^{-1}$. 
     
    10051005internal waves breaking and other short time scale currents. 
    10061006A typical value of the drag coefficient is $C_D = 10^{-3} $. 
    1007 As an example, the CME experiment \citep{Treguier_JGR92} uses $C_D = 10^{-3}$ and 
    1008 $e_b = 2.5\;10^{-3}$m$^2$\;s$^{-2}$, while the FRAM experiment \citep{Killworth1992} uses $C_D = 1.4\;10^{-3}$ and 
     1007As an example, the CME experiment \citep{treguier_JGR92} uses $C_D = 10^{-3}$ and 
     1008$e_b = 2.5\;10^{-3}$m$^2$\;s$^{-2}$, while the FRAM experiment \citep{killworth_JPO92} uses $C_D = 1.4\;10^{-3}$ and 
    10091009$e_b =2.5\;\;10^{-3}$m$^2$\;s$^{-2}$. 
    10101010The CME choices have been set as default values (\np{rn\_bfri2} and \np{rn\_bfeb2} namelist parameters). 
     
    12351235Options are defined through the  \ngn{namzdf\_tmx} namelist variables. 
    12361236The parameterization of tidal mixing follows the general formulation for the vertical eddy diffusivity proposed by 
    1237 \citet{St_Laurent_al_GRL02} and first introduced in an OGCM by \citep{Simmons_al_OM04}.  
     1237\citet{st-laurent.simmons.ea_GRL02} and first introduced in an OGCM by \citep{simmons.jayne.ea_OM04}.  
    12381238In this formulation an additional vertical diffusivity resulting from internal tide breaking, 
    12391239$A^{vT}_{tides}$ is expressed as a function of $E(x,y)$, 
     
    12521252with the remaining $1-q$ radiating away as low mode internal waves and 
    12531253contributing to the background internal wave field. 
    1254 A value of $q=1/3$ is typically used \citet{St_Laurent_al_GRL02}. 
     1254A value of $q=1/3$ is typically used \citet{st-laurent.simmons.ea_GRL02}. 
    12551255The vertical structure function $F(z)$ models the distribution of the turbulent mixing in the vertical. 
    12561256It is implemented as a simple exponential decaying upward away from the bottom, 
    12571257with a vertical scale of $h_o$ (\np{rn\_htmx} namelist parameter, 
    1258 with a typical value of $500\,m$) \citep{St_Laurent_Nash_DSR04},  
     1258with a typical value of $500\,m$) \citep{st-laurent.nash_DSR04},  
    12591259\[ 
    12601260  % \label{eq:Fz} 
     
    12741274the unrepresented internal waves induced by the tidal flow over rough topography in a stratified ocean. 
    12751275In the current version of \NEMO, the map is built from the output of 
    1276 the barotropic global ocean tide model MOG2D-G \citep{Carrere_Lyard_GRL03}. 
     1276the barotropic global ocean tide model MOG2D-G \citep{carrere.lyard_GRL03}. 
    12771277This model provides the dissipation associated with internal wave energy for the M2 and K1 tides component 
    12781278(\autoref{fig:ZDF_M2_K1_tmx}). 
     
    12801280The internal wave energy is thus : $E(x, y) = 1.25 E_{M2} + E_{K1}$. 
    12811281Its global mean value is $1.1$ TW, 
    1282 in agreement with independent estimates \citep{Egbert_Ray_Nat00, Egbert_Ray_JGR01}.  
     1282in agreement with independent estimates \citep{egbert.ray_N00, egbert.ray_JGR01}.  
    12831283 
    12841284%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    12881288    \caption{ 
    12891289      \protect\label{fig:ZDF_M2_K1_tmx} 
    1290       (a) M2 and (b) K1 internal wave drag energy from \citet{Carrere_Lyard_GRL03} ($W/m^2$). 
     1290      (a) M2 and (b) K1 internal wave drag energy from \citet{carrere.lyard_GRL03} ($W/m^2$). 
    12911291    } 
    12921292  \end{center} 
     
    13061306 
    13071307When \np{ln\_tmx\_itf}\forcode{ = .true.}, the two key parameters $q$ and $F(z)$ are adjusted following 
    1308 the parameterisation developed by \citet{Koch-Larrouy_al_GRL07}: 
     1308the parameterisation developed by \citet{koch-larrouy.madec.ea_GRL07}: 
    13091309 
    13101310First, the Indonesian archipelago is a complex geographic region with a series of 
     
    13181318Second, the vertical structure function, $F(z)$, is no more associated with a bottom intensification of the mixing, 
    13191319but with a maximum of energy available within the thermocline. 
    1320 \citet{Koch-Larrouy_al_GRL07} have suggested that the vertical distribution of 
     1320\citet{koch-larrouy.madec.ea_GRL07} have suggested that the vertical distribution of 
    13211321the energy dissipation proportional to $N^2$ below the core of the thermocline and to $N$ above.  
    13221322The resulting $F(z)$ is: 
     
    13351335Introduced in a regional OGCM, the parameterization improves the water mass characteristics in 
    13361336the different Indonesian seas, suggesting that the horizontal and vertical distributions of 
    1337 the mixing are adequately prescribed \citep{Koch-Larrouy_al_GRL07, Koch-Larrouy_al_OD08a, Koch-Larrouy_al_OD08b}. 
     1337the mixing are adequately prescribed \citep{koch-larrouy.madec.ea_GRL07, koch-larrouy.madec.ea_OD08*a, koch-larrouy.madec.ea_OD08*b}. 
    13381338Note also that such a parameterisation has a significant impact on the behaviour of 
    1339 global coupled GCMs \citep{Koch-Larrouy_al_CD10}. 
     1339global coupled GCMs \citep{koch-larrouy.lengaigne.ea_CD10}. 
    13401340 
    13411341% ================================================================ 
     
    13511351 
    13521352The parameterization of mixing induced by breaking internal waves is a generalization of 
    1353 the approach originally proposed by \citet{St_Laurent_al_GRL02}. 
     1353the approach originally proposed by \citet{st-laurent.simmons.ea_GRL02}. 
    13541354A three-dimensional field of internal wave energy dissipation $\epsilon(x,y,z)$ is first constructed, 
    13551355and the resulting diffusivity is obtained as  
     
    13611361the energy available for mixing. 
    13621362If the \np{ln\_mevar} namelist parameter is set to false, the mixing efficiency is taken as constant and 
    1363 equal to 1/6 \citep{Osborn_JPO80}. 
     1363equal to 1/6 \citep{osborn_JPO80}. 
    13641364In the opposite (recommended) case, $R_f$ is instead a function of 
    13651365the turbulence intensity parameter $Re_b = \frac{ \epsilon}{\nu \, N^2}$, 
    1366 with $\nu$ the molecular viscosity of seawater, following the model of \cite{Bouffard_Boegman_DAO2013} and 
    1367 the implementation of \cite{de_lavergne_JPO2016_efficiency}. 
     1366with $\nu$ the molecular viscosity of seawater, following the model of \cite{bouffard.boegman_DAO13} and 
     1367the implementation of \cite{de-lavergne.madec.ea_JPO16}. 
    13681368Note that $A^{vT}_{wave}$ is bounded by $10^{-2}\,m^2/s$, a limit that is often reached when 
    13691369the mixing efficiency is constant. 
     
    13711371In addition to the mixing efficiency, the ratio of salt to heat diffusivities can chosen to vary  
    13721372as a function of $Re_b$ by setting the \np{ln\_tsdiff} parameter to true, a recommended choice.  
    1373 This parameterization of differential mixing, due to \cite{Jackson_Rehmann_JPO2014}, 
    1374 is implemented as in \cite{de_lavergne_JPO2016_efficiency}. 
     1373This parameterization of differential mixing, due to \cite{jackson.rehmann_JPO14}, 
     1374is implemented as in \cite{de-lavergne.madec.ea_JPO16}. 
    13751375 
    13761376The three-dimensional distribution of the energy available for mixing, $\epsilon(i,j,k)$, 
     
    13951395$h_{cri}$ is related to the large-scale topography of the ocean (etopo2) and 
    13961396$h_{bot}$ is a function of the energy flux $E_{bot}$, the characteristic horizontal scale of 
    1397 the abyssal hill topography \citep{Goff_JGR2010} and the latitude. 
     1397the abyssal hill topography \citep{goff_JGR10} and the latitude. 
    13981398 
    13991399% ================================================================ 
Note: See TracChangeset for help on using the changeset viewer.