New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11179 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex – NEMO

Ignore:
Timestamp:
2019-06-25T15:46:19+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Add alternate section titles to avoid useless index links in ToC

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex

    r11151 r11179  
    5555 
    5656The user has the option of extracting each tendency term on the RHS of the tracer equation for output 
    57 (\np{ln\_tra\_trd} or \np{ln\_tra\_mxl}~\forcode{= .true.}), as described in \autoref{chap:DIA}. 
     57(\np{ln\_tra\_trd} or \np{ln\_tra\_mxl}\forcode{ = .true.}), as described in \autoref{chap:DIA}. 
    5858 
    5959% ================================================================ 
    6060% Tracer Advection 
    6161% ================================================================ 
    62 \section{Tracer advection (\protect\mdl{traadv})} 
     62\section[Tracer advection (\textit{traadv.F90})] 
     63{Tracer advection (\protect\mdl{traadv})} 
    6364\label{sec:TRA_adv} 
    6465%------------------------------------------namtra_adv----------------------------------------------------- 
     
    8182Indeed, it is obtained by using the following equality: $\nabla \cdot (\vect U \, T) = \vect U \cdot \nabla T$ which 
    8283results from the use of the continuity equation, $\partial_t e_3 + e_3 \; \nabla \cdot \vect U = 0$ 
    83 (which reduces to $\nabla \cdot \vect U = 0$ in linear free surface, \ie \np{ln\_linssh}~\forcode{= .true.}). 
     84(which reduces to $\nabla \cdot \vect U = 0$ in linear free surface, \ie \np{ln\_linssh}\forcode{ = .true.}). 
    8485Therefore it is of paramount importance to design the discrete analogue of the advection tendency so that 
    8586it is consistent with the continuity equation in order to enforce the conservation properties of 
     
    119120\begin{description} 
    120121\item[linear free surface:] 
    121   (\np{ln\_linssh}~\forcode{= .true.}) 
     122  (\np{ln\_linssh}\forcode{ = .true.}) 
    122123  the first level thickness is constant in time: 
    123124  the vertical boundary condition is applied at the fixed surface $z = 0$ rather than on 
     
    127128  the first level tracer value. 
    128129\item[non-linear free surface:] 
    129   (\np{ln\_linssh}~\forcode{= .false.}) 
     130  (\np{ln\_linssh}\forcode{ = .false.}) 
    130131  convergence/divergence in the first ocean level moves the free surface up/down. 
    131132  There is no tracer advection through it so that the advective fluxes through the surface are also zero. 
     
    183184%        2nd and 4th order centred schemes 
    184185% ------------------------------------------------------------------------------------------------------------- 
    185 \subsection{CEN: Centred scheme (\protect\np{ln\_traadv\_cen}~\forcode{= .true.})} 
     186\subsection[CEN: Centred scheme (\forcode{ln_traadv_cen = .true.})] 
     187{CEN: Centred scheme (\protect\np{ln\_traadv\_cen}\forcode{ = .true.})} 
    186188\label{subsec:TRA_adv_cen} 
    187189 
    188190%        2nd order centred scheme   
    189191 
    190 The centred advection scheme (CEN) is used when \np{ln\_traadv\_cen}~\forcode{= .true.}. 
     192The centred advection scheme (CEN) is used when \np{ln\_traadv\_cen}\forcode{ = .true.}. 
    191193Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by 
    192194setting \np{nn\_cen\_h} and \np{nn\_cen\_v} to $2$ or $4$. 
     
    220222  \tau_u^{cen4} = \overline{T - \frac{1}{6} \, \delta_i \Big[ \delta_{i + 1/2}[T] \, \Big]}^{\,i + 1/2} 
    221223\end{equation} 
    222 In the vertical direction (\np{nn\_cen\_v}~\forcode{= 4}), 
     224In the vertical direction (\np{nn\_cen\_v}\forcode{ = 4}), 
    223225a $4^{th}$ COMPACT interpolation has been prefered \citep{demange_phd14}. 
    224226In the COMPACT scheme, both the field and its derivative are interpolated, which leads, after a matrix inversion, 
     
    250252%        FCT scheme   
    251253% ------------------------------------------------------------------------------------------------------------- 
    252 \subsection{FCT: Flux Corrected Transport scheme (\protect\np{ln\_traadv\_fct}~\forcode{= .true.})} 
     254\subsection[FCT: Flux Corrected Transport scheme (\forcode{ln_traadv_fct = .true.})] 
     255{FCT: Flux Corrected Transport scheme (\protect\np{ln\_traadv\_fct}\forcode{ = .true.})} 
    253256\label{subsec:TRA_adv_tvd} 
    254257 
    255 The Flux Corrected Transport schemes (FCT) is used when \np{ln\_traadv\_fct}~\forcode{= .true.}. 
     258The Flux Corrected Transport schemes (FCT) is used when \np{ln\_traadv\_fct}\forcode{ = .true.}. 
    256259Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by 
    257260setting \np{nn\_fct\_h} and \np{nn\_fct\_v} to $2$ or $4$. 
     
    300303%        MUSCL scheme   
    301304% ------------------------------------------------------------------------------------------------------------- 
    302 \subsection{MUSCL: Monotone Upstream Scheme for Conservative Laws (\protect\np{ln\_traadv\_mus}~\forcode{= .true.})} 
     305\subsection[MUSCL: Monotone Upstream Scheme for Conservative Laws (\forcode{ln_traadv_mus = .true.})] 
     306{MUSCL: Monotone Upstream Scheme for Conservative Laws (\protect\np{ln\_traadv\_mus}\forcode{ = .true.})} 
    303307\label{subsec:TRA_adv_mus} 
    304308 
    305 The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np{ln\_traadv\_mus}~\forcode{= .true.}. 
     309The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np{ln\_traadv\_mus}\forcode{ = .true.}. 
    306310MUSCL implementation can be found in the \mdl{traadv\_mus} module. 
    307311 
     
    331335This choice ensure the \textit{positive} character of the scheme. 
    332336In addition, fluxes round a grid-point where a runoff is applied can optionally be computed using upstream fluxes 
    333 (\np{ln\_mus\_ups}~\forcode{= .true.}). 
     337(\np{ln\_mus\_ups}\forcode{ = .true.}). 
    334338 
    335339% ------------------------------------------------------------------------------------------------------------- 
    336340%        UBS scheme   
    337341% ------------------------------------------------------------------------------------------------------------- 
    338 \subsection{UBS a.k.a. UP3: Upstream-Biased Scheme (\protect\np{ln\_traadv\_ubs}~\forcode{= .true.})} 
     342\subsection[UBS a.k.a. UP3: Upstream-Biased Scheme (\forcode{ln_traadv_ubs = .true.})] 
     343{UBS a.k.a. UP3: Upstream-Biased Scheme (\protect\np{ln\_traadv\_ubs}\forcode{ = .true.})} 
    339344\label{subsec:TRA_adv_ubs} 
    340345 
    341 The Upstream-Biased Scheme (UBS) is used when \np{ln\_traadv\_ubs}~\forcode{= .true.}. 
     346The Upstream-Biased Scheme (UBS) is used when \np{ln\_traadv\_ubs}\forcode{ = .true.}. 
    342347UBS implementation can be found in the \mdl{traadv\_mus} module. 
    343348 
     
    369374\citep{shchepetkin.mcwilliams_OM05, demange_phd14}. 
    370375Therefore the vertical flux is evaluated using either a $2^nd$ order FCT scheme or a $4^th$ order COMPACT scheme 
    371 (\np{nn\_cen\_v}~\forcode{= 2 or 4}). 
     376(\np{nn\_cen\_v}\forcode{ = 2 or 4}). 
    372377 
    373378For stability reasons (see \autoref{chap:STP}), the first term  in \autoref{eq:tra_adv_ubs} 
     
    408413%        QCK scheme   
    409414% ------------------------------------------------------------------------------------------------------------- 
    410 \subsection{QCK: QuiCKest scheme (\protect\np{ln\_traadv\_qck}~\forcode{= .true.})} 
     415\subsection[QCK: QuiCKest scheme (\forcode{ln_traadv_qck = .true.})] 
     416{QCK: QuiCKest scheme (\protect\np{ln\_traadv\_qck}\forcode{ = .true.})} 
    411417\label{subsec:TRA_adv_qck} 
    412418 
    413419The Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms (QUICKEST) scheme 
    414 proposed by \citet{leonard_CMAME79} is used when \np{ln\_traadv\_qck}~\forcode{= .true.}. 
     420proposed by \citet{leonard_CMAME79} is used when \np{ln\_traadv\_qck}\forcode{ = .true.}. 
    415421QUICKEST implementation can be found in the \mdl{traadv\_qck} module. 
    416422 
     
    431437% Tracer Lateral Diffusion 
    432438% ================================================================ 
    433 \section{Tracer lateral diffusion (\protect\mdl{traldf})} 
     439\section[Tracer lateral diffusion (\textit{traldf.F90})] 
     440{Tracer lateral diffusion (\protect\mdl{traldf})} 
    434441\label{sec:TRA_ldf} 
    435442%-----------------------------------------nam_traldf------------------------------------------------------ 
     
    453460except for the pure vertical component that appears when a rotation tensor is used. 
    454461This latter component is solved implicitly together with the vertical diffusion term (see \autoref{chap:STP}). 
    455 When \np{ln\_traldf\_msc}~\forcode{= .true.}, a Method of Stabilizing Correction is used in which 
     462When \np{ln\_traldf\_msc}\forcode{ = .true.}, a Method of Stabilizing Correction is used in which 
    456463the pure vertical component is split into an explicit and an implicit part \citep{lemarie.debreu.ea_OM12}. 
    457464 
     
    459466%        Type of operator 
    460467% ------------------------------------------------------------------------------------------------------------- 
    461 \subsection[Type of operator (\protect\np{ln\_traldf}\{\_NONE,\_lap,\_blp\}\})]{Type of operator (\protect\np{ln\_traldf\_NONE}, \protect\np{ln\_traldf\_lap}, or \protect\np{ln\_traldf\_blp}) }  
     468\subsection[Type of operator (\texttt{ln\_traldf}\{\texttt{\_NONE,\_lap,\_blp}\})] 
     469{Type of operator (\protect\np{ln\_traldf\_NONE}, \protect\np{ln\_traldf\_lap}, or \protect\np{ln\_traldf\_blp}) }  
    462470\label{subsec:TRA_ldf_op} 
    463471 
     
    465473 
    466474\begin{description} 
    467 \item[\np{ln\_traldf\_NONE}~\forcode{= .true.}:] 
     475\item[\np{ln\_traldf\_NONE}\forcode{ = .true.}:] 
    468476  no operator selected, the lateral diffusive tendency will not be applied to the tracer equation. 
    469477  This option can be used when the selected advection scheme is diffusive enough (MUSCL scheme for example). 
    470 \item[\np{ln\_traldf\_lap}~\forcode{= .true.}:] 
     478\item[\np{ln\_traldf\_lap}\forcode{ = .true.}:] 
    471479  a laplacian operator is selected. 
    472480  This harmonic operator takes the following expression:  $\mathpzc{L}(T) = \nabla \cdot A_{ht} \; \nabla T $, 
    473481  where the gradient operates along the selected direction (see \autoref{subsec:TRA_ldf_dir}), 
    474482  and $A_{ht}$ is the eddy diffusivity coefficient expressed in $m^2/s$ (see \autoref{chap:LDF}). 
    475 \item[\np{ln\_traldf\_blp}~\forcode{= .true.}]: 
     483\item[\np{ln\_traldf\_blp}\forcode{ = .true.}]: 
    476484  a bilaplacian operator is selected. 
    477485  This biharmonic operator takes the following expression: 
     
    493501%        Direction of action 
    494502% ------------------------------------------------------------------------------------------------------------- 
    495 \subsection[Action direction (\protect\np{ln\_traldf}\{\_lev,\_hor,\_iso,\_triad\})]{Direction of action (\protect\np{ln\_traldf\_lev}, \protect\np{ln\_traldf\_hor}, \protect\np{ln\_traldf\_iso}, or \protect\np{ln\_traldf\_triad}) }  
     503\subsection[Action direction (\texttt{ln\_traldf}\{\texttt{\_lev,\_hor,\_iso,\_triad}\})] 
     504{Direction of action (\protect\np{ln\_traldf\_lev}, \protect\np{ln\_traldf\_hor}, \protect\np{ln\_traldf\_iso}, or \protect\np{ln\_traldf\_triad}) }  
    496505\label{subsec:TRA_ldf_dir} 
    497506 
    498507The choice of a direction of action determines the form of operator used. 
    499508The operator is a simple (re-entrant) laplacian acting in the (\textbf{i},\textbf{j}) plane when 
    500 iso-level option is used (\np{ln\_traldf\_lev}~\forcode{= .true.}) or 
     509iso-level option is used (\np{ln\_traldf\_lev}\forcode{ = .true.}) or 
    501510when a horizontal (\ie geopotential) operator is demanded in \textit{z}-coordinate 
    502511(\np{ln\_traldf\_hor} and \np{ln\_zco} equal \forcode{.true.}). 
     
    519528%       iso-level operator 
    520529% ------------------------------------------------------------------------------------------------------------- 
    521 \subsection{Iso-level (bi -)laplacian operator ( \protect\np{ln\_traldf\_iso}) } 
     530\subsection[Iso-level (bi-)laplacian operator (\texttt{ln\_traldf\_iso})] 
     531{Iso-level (bi-)laplacian operator ( \protect\np{ln\_traldf\_iso})} 
    522532\label{subsec:TRA_ldf_lev} 
    523533 
     
    537547It is a \textit{horizontal} operator (\ie acting along geopotential surfaces) in 
    538548the $z$-coordinate with or without partial steps, but is simply an iso-level operator in the $s$-coordinate. 
    539 It is thus used when, in addition to \np{ln\_traldf\_lap} or \np{ln\_traldf\_blp}~\forcode{= .true.}, 
    540 we have \np{ln\_traldf\_lev}~\forcode{= .true.} or \np{ln\_traldf\_hor}~=~\np{ln\_zco}~\forcode{= .true.}. 
     549It is thus used when, in addition to \np{ln\_traldf\_lap} or \np{ln\_traldf\_blp}\forcode{ = .true.}, 
     550we have \np{ln\_traldf\_lev}\forcode{ = .true.} or \np{ln\_traldf\_hor}~=~\np{ln\_zco}\forcode{ = .true.}. 
    541551In both cases, it significantly contributes to diapycnal mixing. 
    542552It is therefore never recommended, even when using it in the bilaplacian case. 
    543553 
    544 Note that in the partial step $z$-coordinate (\np{ln\_zps}~\forcode{= .true.}), 
     554Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{ = .true.}), 
    545555tracers in horizontally adjacent cells are located at different depths in the vicinity of the bottom. 
    546556In this case, horizontal derivatives in (\autoref{eq:tra_ldf_lap}) at the bottom level require a specific treatment. 
     
    550560%         Rotated laplacian operator 
    551561% ------------------------------------------------------------------------------------------------------------- 
    552 \subsection{Standard and triad (bi -)laplacian operator} 
     562\subsection{Standard and triad (bi-)laplacian operator} 
    553563\label{subsec:TRA_ldf_iso_triad} 
    554564 
    555 %&&    Standard rotated (bi -)laplacian operator 
     565%&&    Standard rotated (bi-)laplacian operator 
    556566%&& ---------------------------------------------- 
    557 \subsubsection{Standard rotated (bi -)laplacian operator (\protect\mdl{traldf\_iso})} 
     567\subsubsection[Standard rotated (bi-)laplacian operator (\textit{traldf\_iso.F90})] 
     568{Standard rotated (bi-)laplacian operator (\protect\mdl{traldf\_iso})} 
    558569\label{subsec:TRA_ldf_iso} 
    559570The general form of the second order lateral tracer subgrid scale physics (\autoref{eq:PE_zdf}) 
     
    574585$r_1$ and $r_2$ are the slopes between the surface of computation ($z$- or $s$-surfaces) and 
    575586the surface along which the diffusion operator acts (\ie horizontal or iso-neutral surfaces). 
    576 It is thus used when, in addition to \np{ln\_traldf\_lap}~\forcode{= .true.}, 
    577 we have \np{ln\_traldf\_iso}~\forcode{= .true.}, 
    578 or both \np{ln\_traldf\_hor}~\forcode{= .true.} and \np{ln\_zco}~\forcode{= .true.}. 
     587It is thus used when, in addition to \np{ln\_traldf\_lap}\forcode{ = .true.}, 
     588we have \np{ln\_traldf\_iso}\forcode{ = .true.}, 
     589or both \np{ln\_traldf\_hor}\forcode{ = .true.} and \np{ln\_zco}\forcode{ = .true.}. 
    579590The way these slopes are evaluated is given in \autoref{sec:LDF_slp}. 
    580591At the surface, bottom and lateral boundaries, the turbulent fluxes of heat and salt are set to zero using 
     
    592603any additional background horizontal diffusion \citep{guilyardi.madec.ea_CD01}. 
    593604 
    594 Note that in the partial step $z$-coordinate (\np{ln\_zps}~\forcode{= .true.}), 
     605Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{ = .true.}), 
    595606the horizontal derivatives at the bottom level in \autoref{eq:tra_ldf_iso} require a specific treatment. 
    596607They are calculated in module zpshde, described in \autoref{sec:TRA_zpshde}. 
    597608 
    598 %&&     Triad rotated (bi -)laplacian operator 
     609%&&     Triad rotated (bi-)laplacian operator 
    599610%&&  ------------------------------------------- 
    600 \subsubsection{Triad rotated (bi -)laplacian operator (\protect\np{ln\_traldf\_triad})} 
     611\subsubsection[Triad rotated (bi-)laplacian operator (\textit{ln\_traldf\_triad})] 
     612{Triad rotated (bi-)laplacian operator (\protect\np{ln\_traldf\_triad})} 
    601613\label{subsec:TRA_ldf_triad} 
    602614 
    603 If the Griffies triad scheme is employed (\np{ln\_traldf\_triad}~\forcode{= .true.}; see \autoref{apdx:triad}) 
     615If the Griffies triad scheme is employed (\np{ln\_traldf\_triad}\forcode{ = .true.}; see \autoref{apdx:triad}) 
    604616 
    605617An alternative scheme developed by \cite{griffies.gnanadesikan.ea_JPO98} which ensures tracer variance decreases 
    606 is also available in \NEMO (\np{ln\_traldf\_grif}~\forcode{= .true.}). 
     618is also available in \NEMO (\np{ln\_traldf\_grif}\forcode{ = .true.}). 
    607619A complete description of the algorithm is given in \autoref{apdx:triad}. 
    608620 
     
    632644% Tracer Vertical Diffusion 
    633645% ================================================================ 
    634 \section{Tracer vertical diffusion (\protect\mdl{trazdf})} 
     646\section[Tracer vertical diffusion (\textit{trazdf.F90})] 
     647{Tracer vertical diffusion (\protect\mdl{trazdf})} 
    635648\label{sec:TRA_zdf} 
    636649%--------------------------------------------namzdf--------------------------------------------------------- 
     
    663676 
    664677The large eddy coefficient found in the mixed layer together with high vertical resolution implies that 
    665 in the case of explicit time stepping (\np{ln\_zdfexp}~\forcode{= .true.}) 
     678in the case of explicit time stepping (\np{ln\_zdfexp}\forcode{ = .true.}) 
    666679there would be too restrictive a constraint on the time step. 
    667680Therefore, the default implicit time stepping is preferred for the vertical diffusion since 
    668681it overcomes the stability constraint. 
    669 A forward time differencing scheme (\np{ln\_zdfexp}~\forcode{= .true.}) using 
     682A forward time differencing scheme (\np{ln\_zdfexp}\forcode{ = .true.}) using 
    670683a time splitting technique (\np{nn\_zdfexp} $> 1$) is provided as an alternative. 
    671684Namelist variables \np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both tracers and dynamics. 
     
    680693%        surface boundary condition 
    681694% ------------------------------------------------------------------------------------------------------------- 
    682 \subsection{Surface boundary condition (\protect\mdl{trasbc})} 
     695\subsection[Surface boundary condition (\textit{trasbc.F90})] 
     696{Surface boundary condition (\protect\mdl{trasbc})} 
    683697\label{subsec:TRA_sbc} 
    684698 
     
    730744Such time averaging prevents the divergence of odd and even time step (see \autoref{chap:STP}). 
    731745 
    732 In the linear free surface case (\np{ln\_linssh}~\forcode{= .true.}), an additional term has to be added on 
     746In the linear free surface case (\np{ln\_linssh}\forcode{ = .true.}), an additional term has to be added on 
    733747both temperature and salinity. 
    734748On temperature, this term remove the heat content associated with mass exchange that has been added to $Q_{ns}$. 
     
    753767%        Solar Radiation Penetration  
    754768% ------------------------------------------------------------------------------------------------------------- 
    755 \subsection{Solar radiation penetration (\protect\mdl{traqsr})} 
     769\subsection[Solar radiation penetration (\textit{traqsr.F90})] 
     770{Solar radiation penetration (\protect\mdl{traqsr})} 
    756771\label{subsec:TRA_qsr} 
    757772%--------------------------------------------namqsr-------------------------------------------------------- 
     
    761776 
    762777Options are defined through the \ngn{namtra\_qsr} namelist variables. 
    763 When the penetrative solar radiation option is used (\np{ln\_flxqsr}~\forcode{= .true.}), 
     778When the penetrative solar radiation option is used (\np{ln\_flxqsr}\forcode{ = .true.}), 
    764779the solar radiation penetrates the top few tens of meters of the ocean. 
    765 If it is not used (\np{ln\_flxqsr}~\forcode{= .false.}) all the heat flux is absorbed in the first ocean level. 
     780If it is not used (\np{ln\_flxqsr}\forcode{ = .false.}) all the heat flux is absorbed in the first ocean level. 
    766781Thus, in the former case a term is added to the time evolution equation of temperature \autoref{eq:PE_tra_T} and 
    767782the surface boundary condition is modified to take into account only the non-penetrative part of the surface  
     
    792807larger depths where it contributes to local heating. 
    793808The way this second part of the solar energy penetrates into the ocean depends on which formulation is chosen. 
    794 In the simple 2-waveband light penetration scheme (\np{ln\_qsr\_2bd}~\forcode{= .true.}) 
     809In the simple 2-waveband light penetration scheme (\np{ln\_qsr\_2bd}\forcode{ = .true.}) 
    795810a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths, 
    796811leading to the following expression \citep{paulson.simpson_JPO77}: 
     
    820835The 2-bands formulation does not reproduce the full model very well. 
    821836 
    822 The RGB formulation is used when \np{ln\_qsr\_rgb}~\forcode{= .true.}. 
     837The RGB formulation is used when \np{ln\_qsr\_rgb}\forcode{ = .true.}. 
    823838The RGB attenuation coefficients (\ie the inverses of the extinction length scales) are tabulated over 
    82483961 nonuniform chlorophyll classes ranging from 0.01 to 10 g.Chl/L 
     
    827842 
    828843\begin{description} 
    829 \item[\np{nn\_chdta}~\forcode{= 0}] 
     844\item[\np{nn\_chdta}\forcode{ = 0}] 
    830845  a constant 0.05 g.Chl/L value everywhere ;  
    831 \item[\np{nn\_chdta}~\forcode{= 1}] 
     846\item[\np{nn\_chdta}\forcode{ = 1}] 
    832847  an observed time varying chlorophyll deduced from satellite surface ocean color measurement spread uniformly in 
    833848  the vertical direction; 
    834 \item[\np{nn\_chdta}~\forcode{= 2}] 
     849\item[\np{nn\_chdta}\forcode{ = 2}] 
    835850  same as previous case except that a vertical profile of chlorophyl is used. 
    836851  Following \cite{morel.berthon_LO89}, the profile is computed from the local surface chlorophyll value; 
    837 \item[\np{ln\_qsr\_bio}~\forcode{= .true.}] 
     852\item[\np{ln\_qsr\_bio}\forcode{ = .true.}] 
    838853  simulated time varying chlorophyll by TOP biogeochemical model. 
    839854  In this case, the RGB formulation is used to calculate both the phytoplankton light limitation in 
     
    874889%        Bottom Boundary Condition 
    875890% ------------------------------------------------------------------------------------------------------------- 
    876 \subsection{Bottom boundary condition (\protect\mdl{trabbc})} 
     891\subsection[Bottom boundary condition (\textit{trabbc.F90})] 
     892{Bottom boundary condition (\protect\mdl{trabbc})} 
    877893\label{subsec:TRA_bbc} 
    878894%--------------------------------------------nambbc-------------------------------------------------------- 
     
    912928% Bottom Boundary Layer 
    913929% ================================================================ 
    914 \section{Bottom boundary layer (\protect\mdl{trabbl} - \protect\key{trabbl})} 
     930\section[Bottom boundary layer (\textit{trabbl.F90} - \texttt{\textbf{key\_trabbl}})] 
     931{Bottom boundary layer (\protect\mdl{trabbl} - \protect\key{trabbl})} 
    915932\label{sec:TRA_bbl} 
    916933%--------------------------------------------nambbl--------------------------------------------------------- 
     
    944961%        Diffusive BBL 
    945962% ------------------------------------------------------------------------------------------------------------- 
    946 \subsection{Diffusive bottom boundary layer (\protect\np{nn\_bbl\_ldf}~\forcode{= 1})} 
     963\subsection[Diffusive bottom boundary layer (\forcode{nn_bbl_ldf = 1})] 
     964{Diffusive bottom boundary layer (\protect\np{nn\_bbl\_ldf}\forcode{ = 1})} 
    947965\label{subsec:TRA_bbl_diff} 
    948966 
     
    9831001%        Advective BBL 
    9841002% ------------------------------------------------------------------------------------------------------------- 
    985 \subsection{Advective bottom boundary layer  (\protect\np{nn\_bbl\_adv}~\forcode{= 1..2})} 
     1003\subsection[Advective bottom boundary layer (\forcode{nn_bbl_adv = [12]})] 
     1004{Advective bottom boundary layer (\protect\np{nn\_bbl\_adv}\forcode{ = [12]})} 
    9861005\label{subsec:TRA_bbl_adv} 
    9871006 
     
    10141033%%%gmcomment   :  this section has to be really written 
    10151034 
    1016 When applying an advective BBL (\np{nn\_bbl\_adv}~\forcode{= 1..2}), an overturning circulation is added which 
     1035When applying an advective BBL (\np{nn\_bbl\_adv}\forcode{ = 1..2}), an overturning circulation is added which 
    10171036connects two adjacent bottom grid-points only if dense water overlies less dense water on the slope. 
    10181037The density difference causes dense water to move down the slope. 
    10191038 
    1020 \np{nn\_bbl\_adv}~\forcode{= 1}: 
     1039\np{nn\_bbl\_adv}\forcode{ = 1}: 
    10211040the downslope velocity is chosen to be the Eulerian ocean velocity just above the topographic step 
    10221041(see black arrow in \autoref{fig:bbl}) \citep{beckmann.doscher_JPO97}. 
     
    10251044if the velocity is directed towards greater depth (\ie $\vect U \cdot \nabla H > 0$). 
    10261045 
    1027 \np{nn\_bbl\_adv}~\forcode{= 2}: 
     1046\np{nn\_bbl\_adv}\forcode{ = 2}: 
    10281047the downslope velocity is chosen to be proportional to $\Delta \rho$, 
    10291048the density difference between the higher cell and lower cell densities \citep{campin.goosse_T99}. 
     
    10741093% Tracer damping 
    10751094% ================================================================ 
    1076 \section{Tracer damping (\protect\mdl{tradmp})} 
     1095\section[Tracer damping (\textit{tradmp.F90})] 
     1096{Tracer damping (\protect\mdl{tradmp})} 
    10771097\label{sec:TRA_dmp} 
    10781098%--------------------------------------------namtra_dmp------------------------------------------------- 
     
    11291149% Tracer time evolution 
    11301150% ================================================================ 
    1131 \section{Tracer time evolution (\protect\mdl{tranxt})} 
     1151\section[Tracer time evolution (\textit{tranxt.F90})] 
     1152{Tracer time evolution (\protect\mdl{tranxt})} 
    11321153\label{sec:TRA_nxt} 
    11331154%--------------------------------------------namdom----------------------------------------------------- 
     
    11511172(\ie fluxes plus content in mass exchanges). 
    11521173$\gamma$ is initialized as \np{rn\_atfp} (\textbf{namelist} parameter). 
    1153 Its default value is \np{rn\_atfp}~\forcode{= 10.e-3}. 
     1174Its default value is \np{rn\_atfp}\forcode{ = 10.e-3}. 
    11541175Note that the forcing correction term in the filter is not applied in linear free surface 
    1155 (\jp{lk\_vvl}~\forcode{= .false.}) (see \autoref{subsec:TRA_sbc}). 
     1176(\jp{lk\_vvl}\forcode{ = .false.}) (see \autoref{subsec:TRA_sbc}). 
    11561177Not also that in constant volume case, the time stepping is performed on $T$, not on its content, $e_{3t}T$. 
    11571178 
     
    11661187% Equation of State (eosbn2)  
    11671188% ================================================================ 
    1168 \section{Equation of state (\protect\mdl{eosbn2}) } 
     1189\section[Equation of state (\textit{eosbn2.F90})] 
     1190{Equation of state (\protect\mdl{eosbn2})} 
    11691191\label{sec:TRA_eosbn2} 
    11701192%--------------------------------------------nameos----------------------------------------------------- 
     
    11761198%        Equation of State 
    11771199% ------------------------------------------------------------------------------------------------------------- 
    1178 \subsection{Equation of seawater (\protect\np{nn\_eos}~\forcode{= -1..1})} 
     1200\subsection[Equation of seawater (\forcode{nn_eos = {-1,1}})] 
     1201{Equation of seawater (\protect\np{nn\_eos}\forcode{ = {-1,1}})} 
    11791202\label{subsec:TRA_eos} 
    11801203 
     
    12101233 
    12111234\begin{description} 
    1212 \item[\np{nn\_eos}~\forcode{= -1}] 
     1235\item[\np{nn\_eos}\forcode{ = -1}] 
    12131236  the polyTEOS10-bsq equation of seawater \citep{roquet.madec.ea_OM15} is used. 
    12141237  The accuracy of this approximation is comparable to the TEOS-10 rational function approximation, 
     
    12291252  either computing the air-sea and ice-sea fluxes (forced mode) or 
    12301253  sending the SST field to the atmosphere (coupled mode). 
    1231 \item[\np{nn\_eos}~\forcode{= 0}] 
     1254\item[\np{nn\_eos}\forcode{ = 0}] 
    12321255  the polyEOS80-bsq equation of seawater is used. 
    12331256  It takes the same polynomial form as the polyTEOS10, but the coefficients have been optimized to 
     
    12411264  Nevertheless, a severe assumption is made in order to have a heat content ($C_p T_p$) which 
    12421265  is conserved by the model: $C_p$ is set to a constant value, the TEOS10 value. 
    1243 \item[\np{nn\_eos}~\forcode{= 1}] 
     1266\item[\np{nn\_eos}\forcode{ = 1}] 
    12441267  a simplified EOS (S-EOS) inspired by \citet{vallis_bk06} is chosen, 
    12451268  the coefficients of which has been optimized to fit the behavior of TEOS10 
     
    13031326%        Brunt-V\"{a}is\"{a}l\"{a} Frequency 
    13041327% ------------------------------------------------------------------------------------------------------------- 
    1305 \subsection{Brunt-V\"{a}is\"{a}l\"{a} frequency (\protect\np{nn\_eos}~\forcode{= 0..2})} 
     1328\subsection[Brunt-V\"{a}is\"{a}l\"{a} frequency (\forcode{nn_eos = [0-2]})] 
     1329{Brunt-V\"{a}is\"{a}l\"{a} frequency (\protect\np{nn\_eos}\forcode{ = [0-2]})} 
    13061330\label{subsec:TRA_bn2} 
    13071331 
     
    13571381% Horizontal Derivative in zps-coordinate  
    13581382% ================================================================ 
    1359 \section{Horizontal derivative in \textit{zps}-coordinate (\protect\mdl{zpshde})} 
     1383\section[Horizontal derivative in \textit{zps}-coordinate (\textit{zpshde.F90})] 
     1384{Horizontal derivative in \textit{zps}-coordinate (\protect\mdl{zpshde})} 
    13601385\label{sec:TRA_zpshde} 
    13611386 
     
    13631388I've changed "derivative" to "difference" and "mean" to "average"} 
    13641389 
    1365 With partial cells (\np{ln\_zps}~\forcode{= .true.}) at bottom and top (\np{ln\_isfcav}~\forcode{= .true.}), 
     1390With partial cells (\np{ln\_zps}\forcode{ = .true.}) at bottom and top (\np{ln\_isfcav}\forcode{ = .true.}), 
    13661391in general, tracers in horizontally adjacent cells live at different depths. 
    13671392Horizontal gradients of tracers are needed for horizontal diffusion (\mdl{traldf} module) and 
    13681393the hydrostatic pressure gradient calculations (\mdl{dynhpg} module). 
    1369 The partial cell properties at the top (\np{ln\_isfcav}~\forcode{= .true.}) are computed in the same way as 
     1394The partial cell properties at the top (\np{ln\_isfcav}\forcode{ = .true.}) are computed in the same way as 
    13701395for the bottom. 
    13711396So, only the bottom interpolation is explained below. 
     
    13831408      \protect\label{fig:Partial_step_scheme} 
    13841409      Discretisation of the horizontal difference and average of tracers in the $z$-partial step coordinate 
    1385       (\protect\np{ln\_zps}~\forcode{= .true.}) in the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 
     1410      (\protect\np{ln\_zps}\forcode{ = .true.}) in the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 
    13861411      A linear interpolation is used to estimate $\widetilde T_k^{i + 1}$, 
    13871412      the tracer value at the depth of the shallower tracer point of the two adjacent bottom $T$-points. 
Note: See TracChangeset for help on using the changeset viewer.