New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11422 for NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO/subfiles/chap_SBC.tex – NEMO

Ignore:
Timestamp:
2019-08-08T15:40:47+02:00 (5 years ago)
Author:
jchanut
Message:

#1791, merge with trunk

Location:
NEMO/branches/2019/fix_vvl_ticket1791/doc
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/fix_vvl_ticket1791/doc

    • Property svn:ignore deleted
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
        8 *.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
         1figures 
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO

    • Property svn:ignore deleted
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO/subfiles/chap_SBC.tex

    r10614 r11422  
    22 
    33\begin{document} 
    4 % ================================================================ 
    5 % Chapter —— Surface Boundary Condition (SBC, ISF, ICB)  
    6 % ================================================================ 
    7 \chapter{Surface Boundary Condition (SBC, ISF, ICB) } 
     4 
     5% ================================================================ 
     6% Chapter —— Surface Boundary Condition (SBC, SAS, ISF, ICB)  
     7% ================================================================ 
     8\chapter{Surface Boundary Condition (SBC, SAS, ISF, ICB)} 
    89\label{chap:SBC} 
    910\minitoc 
     
    1617%-------------------------------------------------------------------------------------------------------------- 
    1718 
    18 The ocean needs six fields as surface boundary condition: 
     19The ocean needs seven fields as surface boundary condition: 
     20 
    1921\begin{itemize} 
    2022\item 
     
    2628\item 
    2729  the surface salt flux associated with freezing/melting of seawater $\left( {\textit{sfx}} \right)$ 
     30\item 
     31  the atmospheric pressure at the ocean surface $\left( p_a \right)$ 
    2832\end{itemize} 
    29 plus an optional field: 
     33 
     34Four different ways are available to provide the seven fields to the ocean. They are controlled by 
     35namelist \ngn{namsbc} variables: 
     36 
    3037\begin{itemize} 
    31    \item the atmospheric pressure at the ocean surface $\left( p_a \right)$ 
     38\item 
     39  a bulk formulation (\np{ln\_blk}\forcode{ = .true.} with four possible bulk algorithms), 
     40\item 
     41  a flux formulation (\np{ln\_flx}\forcode{ = .true.}), 
     42\item 
     43  a coupled or mixed forced/coupled formulation (exchanges with a atmospheric model via the OASIS coupler), 
     44(\np{ln\_cpl} or \np{ln\_mixcpl}\forcode{ = .true.}), 
     45\item 
     46  a user defined formulation (\np{ln\_usr}\forcode{ = .true.}). 
    3247\end{itemize} 
    3348 
    34 Four different ways to provide the first six fields to the ocean are available which are controlled by 
    35 namelist \ngn{namsbc} variables: 
    36 an analytical formulation (\np{ln\_ana}\forcode{ = .true.}), 
    37 a flux formulation (\np{ln\_flx}\forcode{ = .true.}), 
    38 a bulk formulae formulation (CORE (\np{ln\_blk\_core}\forcode{ = .true.}), 
    39 CLIO (\np{ln\_blk\_clio}\forcode{ = .true.}) bulk formulae) and 
    40 a coupled or mixed forced/coupled formulation (exchanges with a atmospheric model via the OASIS coupler) 
    41 (\np{ln\_cpl} or \np{ln\_mixcpl}\forcode{ = .true.}).  
    42 When used (\ie \np{ln\_apr\_dyn}\forcode{ = .true.}), 
    43 the atmospheric pressure forces both ocean and ice dynamics. 
    4449 
    4550The frequency at which the forcing fields have to be updated is given by the \np{nn\_fsbc} namelist parameter. 
    46 When the fields are supplied from data files (flux and bulk formulations), 
    47 the input fields need not be supplied on the model grid. 
    48 Instead a file of coordinates and weights can be supplied which maps the data from the supplied grid to 
     51 
     52When the fields are supplied from data files (bulk, flux and mixed formulations), 
     53the input fields do not need to be supplied on the model grid. 
     54Instead, a file of coordinates and weights can be supplied to map the data from the input fields grid to 
    4955the model points (so called "Interpolation on the Fly", see \autoref{subsec:SBC_iof}). 
    50 If the Interpolation on the Fly option is used, input data belonging to land points (in the native grid), 
    51 can be masked to avoid spurious results in proximity of the coasts as 
     56If the "Interpolation on the Fly" option is used, input data belonging to land points (in the native grid) 
     57should be masked or filled to avoid spurious results in proximity of the coasts, as 
    5258large sea-land gradients characterize most of the atmospheric variables. 
    5359 
    5460In addition, the resulting fields can be further modified using several namelist options. 
    55 These options control  
     61These options control: 
     62 
    5663\begin{itemize} 
    5764\item 
    5865  the rotation of vector components supplied relative to an east-north coordinate system onto 
    59   the local grid directions in the model; 
    60 \item 
    61   the addition of a surface restoring term to observed SST and/or SSS (\np{ln\_ssr}\forcode{ = .true.}); 
    62 \item 
    63   the modification of fluxes below ice-covered areas (using observed ice-cover or a sea-ice model) 
    64   (\np{nn\_ice}\forcode{ = 0..3}); 
    65 \item 
    66   the addition of river runoffs as surface freshwater fluxes or lateral inflow (\np{ln\_rnf}\forcode{ = .true.}); 
    67 \item 
    68   the addition of isf melting as lateral inflow (parameterisation) or 
    69   as fluxes applied at the land-ice ocean interface (\np{ln\_isf}) ;  
     66  the local grid directions in the model, 
     67\item 
     68  the use of a land/sea mask for input fields (\np{nn\_lsm}\forcode{ = .true.}), 
     69\item 
     70  the addition of a surface restoring term to observed SST and/or SSS (\np{ln\_ssr}\forcode{ = .true.}), 
     71\item 
     72  the modification of fluxes below ice-covered areas (using climatological ice-cover or a sea-ice model) 
     73  (\np{nn\_ice}\forcode{ = 0..3}), 
     74\item 
     75  the addition of river runoffs as surface freshwater fluxes or lateral inflow (\np{ln\_rnf}\forcode{ = .true.}), 
     76\item 
     77  the addition of ice-shelf melting as lateral inflow (parameterisation) or 
     78  as fluxes applied at the land-ice ocean interface (\np{ln\_isf}\forcode{ = .true.}), 
    7079\item 
    7180  the addition of a freshwater flux adjustment in order to avoid a mean sea-level drift 
    72   (\np{nn\_fwb}\forcode{ = 0..2}); 
    73 \item 
    74   the transformation of the solar radiation (if provided as daily mean) into a diurnal cycle 
    75   (\np{ln\_dm2dc}\forcode{ = .true.}); 
    76 \item 
    77   a neutral drag coefficient can be read from an external wave model (\np{ln\_cdgw}\forcode{ = .true.}); 
    78 \item 
    79   the Stokes drift rom an external wave model can be accounted (\np{ln\_sdw}\forcode{ = .true.});  
    80 \item 
    81   the Stokes-Coriolis term can be included (\np{ln\_stcor}\forcode{ = .true.}); 
    82 \item 
    83   the surface stress felt by the ocean can be modified by surface waves (\np{ln\_tauwoc}\forcode{ = .true.}). 
     81  (\np{nn\_fwb}\forcode{ = 0..2}), 
     82\item 
     83  the transformation of the solar radiation (if provided as daily mean) into an analytical diurnal cycle 
     84  (\np{ln\_dm2dc}\forcode{ = .true.}), 
     85\item 
     86  the activation of wave effects from an external wave model  (\np{ln\_wave}\forcode{ = .true.}), 
     87\item 
     88  a neutral drag coefficient is read from an external wave model (\np{ln\_cdgw}\forcode{ = .true.}), 
     89\item 
     90  the Stokes drift from an external wave model is accounted for (\np{ln\_sdw}\forcode{ = .true.}),  
     91\item 
     92  the choice of the Stokes drift profile parameterization (\np{nn\_sdrift}\forcode{ = 0..2}),  
     93\item 
     94  the surface stress given to the ocean is modified by surface waves (\np{ln\_tauwoc}\forcode{ = .true.}), 
     95\item 
     96  the surface stress given to the ocean is read from an external wave model (\np{ln\_tauw}\forcode{ = .true.}), 
     97\item 
     98  the Stokes-Coriolis term is included (\np{ln\_stcor}\forcode{ = .true.}), 
     99\item 
     100  the light penetration in the ocean (\np{ln\_traqsr}\forcode{ = .true.} with namelist \ngn{namtra\_qsr}), 
     101\item 
     102  the atmospheric surface pressure gradient effect on ocean and ice dynamics (\np{ln\_apr\_dyn}\forcode{ = .true.} with namelist \ngn{namsbc\_apr}), 
     103\item 
     104  the effect of sea-ice pressure on the ocean (\np{ln\_ice\_embd}\forcode{ = .true.}). 
    84105\end{itemize} 
    85106 
    86 In this chapter, we first discuss where the surface boundary condition appears in the model equations. 
    87 Then we present the five ways of providing the surface boundary condition,  
     107In this chapter, we first discuss where the surface boundary conditions appear in the model equations. 
     108Then we present the three ways of providing the surface boundary conditions,  
    88109followed by the description of the atmospheric pressure and the river runoff.  
    89 Next the scheme for interpolation on the fly is described. 
     110Next, the scheme for interpolation on the fly is described. 
    90111Finally, the different options that further modify the fluxes applied to the ocean are discussed. 
    91112One of these is modification by icebergs (see \autoref{sec:ICB_icebergs}), 
     
    95116 
    96117 
     118 
    97119% ================================================================ 
    98120% Surface boundary condition for the ocean 
    99121% ================================================================ 
    100122\section{Surface boundary condition for the ocean} 
    101 \label{sec:SBC_general} 
     123\label{sec:SBC_ocean} 
    102124 
    103125The surface ocean stress is the stress exerted by the wind and the sea-ice on the ocean. 
     
    111133The former is the non penetrative part of the heat flux 
    112134(\ie the sum of sensible, latent and long wave heat fluxes plus 
    113 the heat content of the mass exchange with the atmosphere and sea-ice). 
     135the heat content of the mass exchange between the ocean and sea-ice). 
    114136It is applied in \mdl{trasbc} module as a surface boundary condition trend of 
    115137the first level temperature time evolution equation 
    116 (see \autoref{eq:tra_sbc} and \autoref{eq:tra_sbc_lin} in \autoref{subsec:TRA_sbc}).  
     138(see \autoref{eq:tra_sbc} and \autoref{eq:tra_sbc_lin} in \autoref{subsec:TRA_sbc}). 
    117139The latter is the penetrative part of the heat flux. 
    118 It is applied as a 3D trends of the temperature equation (\mdl{traqsr} module) when 
     140It is applied as a 3D trend of the temperature equation (\mdl{traqsr} module) when 
    119141\np{ln\_traqsr}\forcode{ = .true.}. 
    120142The way the light penetrates inside the water column is generally a sum of decreasing exponentials 
     
    124146It represents the mass flux exchanged with the atmosphere (evaporation minus precipitation) and 
    125147possibly with the sea-ice and ice shelves (freezing minus melting of ice). 
    126 It affects both the ocean in two different ways: 
    127 $(i)$  it changes the volume of the ocean and therefore appears in the sea surface height equation as 
     148It affects the ocean in two different ways: 
     149$(i)$  it changes the volume of the ocean, and therefore appears in the sea surface height equation as      %GS: autoref ssh equation to be added 
    128150a volume flux, and  
    129151$(ii)$ it changes the surface temperature and salinity through the heat and salt contents of 
    130 the mass exchanged with the atmosphere, the sea-ice and the ice shelves.  
     152the mass exchanged with atmosphere, sea-ice and ice shelves. 
    131153 
    132154 
     
    157179the surface currents, temperature and salinity.   
    158180These variables are averaged over \np{nn\_fsbc} time-step (\autoref{tab:ssm}), and 
    159 it is these averaged fields which are used to computes the surface fluxes at a frequency of \np{nn\_fsbc} time-step. 
     181these averaged fields are used to compute the surface fluxes at the frequency of \np{nn\_fsbc} time-steps. 
    160182 
    161183 
     
    165187    \begin{tabular}{|l|l|l|l|} 
    166188      \hline 
    167       Variable description             & Model variable  & Units  & point \\  \hline 
    168       i-component of the surface current  & ssu\_m & $m.s^{-1}$   & U \\   \hline 
    169       j-component of the surface current  & ssv\_m & $m.s^{-1}$   & V \\   \hline 
    170       Sea surface temperature          & sst\_m & \r{}$K$      & T \\   \hline 
    171       Sea surface salinty              & sss\_m & $psu$        & T \\   \hline 
     189      Variable description                         & Model variable  & Units  & point                 \\\hline 
     190      i-component of the surface current  & ssu\_m               & $m.s^{-1}$     & U     \\\hline 
     191      j-component of the surface current  & ssv\_m               & $m.s^{-1}$     & V    \\ \hline 
     192      Sea surface temperature                & sst\_m               & \r{}$K$              & T     \\\hline 
     193      Sea surface salinty                          & sss\_m               & $psu$              & T    \\   \hline 
    172194    \end{tabular} 
    173195    \caption{ 
    174196      \protect\label{tab:ssm} 
    175197      Ocean variables provided by the ocean to the surface module (SBC). 
    176       The variable are averaged over nn{\_}fsbc time step, 
     198      The variable are averaged over \np{nn\_fsbc} time-step, 
    177199      \ie the frequency of computation of surface fluxes. 
    178200    } 
     
    184206 
    185207 
     208 
    186209% ================================================================ 
    187210%       Input Data  
     
    191214 
    192215A generic interface has been introduced to manage the way input data 
    193 (2D or 3D fields, like surface forcing or ocean T and S) are specify in \NEMO. 
    194 This task is archieved by \mdl{fldread}. 
    195 The module was design with four main objectives in mind:  
     216(2D or 3D fields, like surface forcing or ocean T and S) are specified in \NEMO. 
     217This task is achieved by \mdl{fldread}. 
     218The module is designed with four main objectives in mind:  
    196219\begin{enumerate} 
    197220\item 
    198   optionally provide a time interpolation of the input data at model time-step, whatever their input frequency is, 
     221  optionally provide a time interpolation of the input data every specified model time-step, whatever their input frequency is, 
    199222  and according to the different calendars available in the model. 
    200223\item 
     
    204227\item 
    205228  provide a simple user interface and a rather simple developer interface by 
    206   limiting the number of prerequisite information.  
    207 \end{enumerate}   
    208  
    209 As a results the user have only to fill in for each variable a structure in the namelist file to 
     229  limiting the number of prerequisite informations.  
     230\end{enumerate} 
     231 
     232As a result, the user has only to fill in for each variable a structure in the namelist file to 
    210233define the input data file and variable names, the frequency of the data (in hours or months), 
    211234whether its is climatological data or not, the period covered by the input file (one year, month, week or day), 
    212 and three additional parameters for on-the-fly interpolation. 
     235and three additional parameters for the on-the-fly interpolation. 
    213236When adding a new input variable, the developer has to add the associated structure in the namelist, 
    214237read this information by mirroring the namelist read in \rou{sbc\_blk\_init} for example, 
     
    220243 
    221244Note that when an input data is archived on a disc which is accessible directly from the workspace where 
    222 the code is executed, then the use can set the \np{cn\_dir} to the pathway leading to the data. 
    223 By default, the data are assumed to have been copied so that cn\_dir='./'. 
     245the code is executed, then the user can set the \np{cn\_dir} to the pathway leading to the data. 
     246By default, the data are assumed to be in the same directory as the executable, so that cn\_dir='./'. 
     247 
    224248 
    225249% ------------------------------------------------------------------------------------------------------------- 
    226250% Input Data specification (\mdl{fldread}) 
    227251% ------------------------------------------------------------------------------------------------------------- 
    228 \subsection{Input data specification (\protect\mdl{fldread})} 
     252\subsection[Input data specification (\textit{fldread.F90})] 
     253{Input data specification (\protect\mdl{fldread})} 
    229254\label{subsec:SBC_fldread} 
    230255 
     
    237262\begin{description}   
    238263\item[File name]: 
    239   the stem name of the NetCDF file to be open. 
     264  the stem name of the NetCDF file to be opened. 
    240265  This stem will be completed automatically by the model, with the addition of a '.nc' at its end and 
    241266  by date information and possibly a prefix (when using AGRIF). 
     
    248273      \begin{tabular}{|l|c|c|c|} 
    249274        \hline 
    250         & daily or weekLLL         & monthly                   &   yearly          \\   \hline 
    251         \np{clim}\forcode{ = .false.}  & fn\_yYYYYmMMdDD.nc  &   fn\_yYYYYmMM.nc   &   fn\_yYYYY.nc  \\   \hline 
    252         \np{clim}\forcode{ = .true.}         & not possible                  &  fn\_m??.nc             &   fn                \\   \hline 
     275                                        &  daily or weekLL     &  monthly           &  yearly        \\   \hline 
     276        \np{clim}\forcode{ = .false.}  &  fn\_yYYYYmMMdDD.nc  &  fn\_yYYYYmMM.nc   &  fn\_yYYYY.nc  \\   \hline 
     277        \np{clim}\forcode{ = .true.}   &  not possible        &  fn\_m??.nc        &  fn            \\   \hline 
    253278      \end{tabular} 
    254279    \end{center} 
    255280    \caption{ 
    256281      \protect\label{tab:fldread} 
    257       naming nomenclature for climatological or interannual input file, as a function of the Open/close frequency. 
     282      naming nomenclature for climatological or interannual input file(s), as a function of the open/close frequency. 
    258283      The stem name is assumed to be 'fn'. 
    259284      For weekly files, the 'LLL' corresponds to the first three letters of the first day of the week 
     
    262287      Note that (1) in mpp, if the file is split over each subdomain, the suffix '.nc' is replaced by '\_PPPP.nc', 
    263288      where 'PPPP' is the process number coded with 4 digits; 
    264       (2) when using AGRIF, the prefix '\_N' is added to files, where 'N'  is the child grid number. 
     289      (2) when using AGRIF, the prefix '\_N' is added to files, where 'N' is the child grid number. 
    265290    } 
    266291  \end{table} 
     
    272297  Its unit is in hours if it is positive (for example 24 for daily forcing) or in months if negative 
    273298  (for example -1 for monthly forcing or -12 for annual forcing). 
    274   Note that this frequency must really be an integer and not a real. 
    275   On some computers, seting it to '24.' can be interpreted as 240! 
     299  Note that this frequency must REALLY be an integer and not a real. 
     300  On some computers, setting it to '24.' can be interpreted as 240! 
    276301 
    277302\item[Variable name]: 
     
    284309  00h00'00'' to 23h59'59". 
    285310  If set to 'true', the forcing will have a broken line shape. 
    286   Records are assumed to be dated the middle of the forcing period. 
     311  Records are assumed to be dated at the middle of the forcing period. 
    287312  For example, when using a daily forcing with time interpolation, 
    288313  linear interpolation will be performed between mid-day of two consecutive days.  
     
    291316  a logical to specify if a input file contains climatological forcing which can be cycle in time, 
    292317  or an interannual forcing which will requires additional files if 
    293   the period covered by the simulation exceed the one of the file. 
    294   See the above the file naming strategy which impacts the expected name of the file to be opened.  
     318  the period covered by the simulation exceeds the one of the file. 
     319  See the above file naming strategy which impacts the expected name of the file to be opened.  
    295320 
    296321\item[Open/close frequency]: 
     
    301326  Files are assumed to contain data from the beginning of the open/close period. 
    302327  For example, the first record of a yearly file containing daily data is Jan 1st even if 
    303   the experiment is not starting at the beginning of the year.  
     328  the experiment is not starting at the beginning of the year. 
    304329 
    305330\item[Others]: 
     
    313338The only tricky point is therefore to specify the date at which we need to do the interpolation and 
    314339the date of the records read in the input files. 
    315 Following \citet{Leclair_Madec_OM09}, the date of a time step is set at the middle of the time step. 
    316 For example, for an experiment starting at 0h00'00" with a one hour time-step, 
     340Following \citet{leclair.madec_OM09}, the date of a time step is set at the middle of the time step. 
     341For example, for an experiment starting at 0h00'00" with a one-hour time-step, 
    317342a time interpolation will be performed at the following time: 0h30'00", 1h30'00", 2h30'00", etc. 
    318343However, for forcing data related to the surface module, 
    319344values are not needed at every time-step but at every \np{nn\_fsbc} time-step. 
    320345For example with \np{nn\_fsbc}\forcode{ = 3}, the surface module will be called at time-steps 1, 4, 7, etc. 
    321 The date used for the time interpolation is thus redefined to be at the middle of \np{nn\_fsbc} time-step period. 
     346The date used for the time interpolation is thus redefined to the middle of \np{nn\_fsbc} time-step period. 
    322347In the previous example, this leads to: 1h30'00", 4h30'00", 7h30'00", etc. \\  
    323348(2) For code readablility and maintenance issues, we don't take into account the NetCDF input file calendar. 
     
    325350user in the record frequency, the open/close frequency and the type of temporal interpolation. 
    326351For example, the first record of a yearly file containing daily data that will be interpolated in time is assumed to 
    327 be start Jan 1st at 12h00'00" and end Dec 31st at 12h00'00". \\ 
     352start Jan 1st at 12h00'00" and end Dec 31st at 12h00'00". \\ 
    328353(3) If a time interpolation is requested, the code will pick up the needed data in the previous (next) file when 
    329354interpolating data with the first (last) record of the open/close period. 
     
    333358If the forcing is climatological, Dec and Jan will be keep-up from the same year. 
    334359However, if the forcing is not climatological, at the end of 
    335 the open/close period the code will automatically close the current file and open the next one. 
     360the open/close period, the code will automatically close the current file and open the next one. 
    336361Note that, if the experiment is starting (ending) at the beginning (end) of 
    337 an open/close period we do accept that the previous (next) file is not existing. 
     362an open/close period, we do accept that the previous (next) file is not existing. 
    338363In this case, the time interpolation will be performed between two identical values. 
    339364For example, when starting an experiment on Jan 1st of year Y with yearly files and daily data to be interpolated, 
     
    353378Interpolation on the Fly allows the user to supply input files required for the surface forcing on 
    354379grids other than the model grid. 
    355 To do this he or she must supply, in addition to the source data file, a file of weights to be used to 
     380To do this, he or she must supply, in addition to the source data file(s), a file of weights to be used to 
    356381interpolate from the data grid to the model grid. 
    357382The original development of this code used the SCRIP package 
    358383(freely available \href{http://climate.lanl.gov/Software/SCRIP}{here} under a copyright agreement). 
    359 In principle, any package can be used to generate the weights, but the variables in 
     384In principle, any package such as CDO can be used to generate the weights, but the variables in 
    360385the input weights file must have the same names and meanings as assumed by the model. 
    361 Two methods are currently available: bilinear and bicubic interpolation. 
     386Two methods are currently available: bilinear and bicubic interpolations. 
    362387Prior to the interpolation, providing a land/sea mask file, the user can decide to remove land points from 
    363388the input file and substitute the corresponding values with the average of the 8 neighbouring points in 
     
    365390Only "sea points" are considered for the averaging. 
    366391The land/sea mask file must be provided in the structure associated with the input variable. 
    367 The netcdf land/sea mask variable name must be 'LSM' it must have the same horizontal and vertical dimensions of 
    368 the associated variable and should be equal to 1 over land and 0 elsewhere. 
    369 The procedure can be recursively applied setting nn\_lsm > 1 in namsbc namelist. 
    370 Note that nn\_lsm=0 forces the code to not apply the procedure even if a file for land/sea mask is supplied. 
    371  
     392The netcdf land/sea mask variable name must be 'LSM' and must have the same horizontal and vertical dimensions as 
     393the associated variables and should be equal to 1 over land and 0 elsewhere. 
     394The procedure can be recursively applied by setting nn\_lsm > 1 in namsbc namelist. 
     395Note that nn\_lsm=0 forces the code to not apply the procedure, even if a land/sea mask file is supplied. 
     396 
     397 
     398% ------------------------------------------------------------------------------------------------------------- 
     399% Bilinear interpolation 
     400% ------------------------------------------------------------------------------------------------------------- 
    372401\subsubsection{Bilinear interpolation} 
    373402\label{subsec:SBC_iof_bilinear} 
     
    375404The input weights file in this case has two sets of variables: 
    376405src01, src02, src03, src04 and wgt01, wgt02, wgt03, wgt04. 
    377 The "src" variables correspond to the point in the input grid to which the weight "wgt" is to be applied. 
     406The "src" variables correspond to the point in the input grid to which the weight "wgt" is applied. 
    378407Each src value is an integer corresponding to the index of a point in the input grid when 
    379408written as a one dimensional array. 
     
    391420and wgt(1) corresponds to variable "wgt01" for example. 
    392421 
     422 
     423% ------------------------------------------------------------------------------------------------------------- 
     424% Bicubic interpolation 
     425% ------------------------------------------------------------------------------------------------------------- 
    393426\subsubsection{Bicubic interpolation} 
    394427\label{subsec:SBC_iof_bicubic} 
    395428 
    396 Again there are two sets of variables: "src" and "wgt". 
    397 But in this case there are 16 of each. 
     429Again, there are two sets of variables: "src" and "wgt". 
     430But in this case, there are 16 of each. 
    398431The symbolic algorithm used to calculate values on the model grid is now: 
    399432 
     
    401434  \begin{split} 
    402435    f_{m}(i,j) =  f_{m}(i,j) +& \sum_{k=1}^{4} {wgt(k)f(idx(src(k)))} 
    403     +   \sum_{k=5}^{8} {wgt(k)\left.\frac{\partial f}{\partial i}\right| _{idx(src(k))} }    \\ 
    404     +& \sum_{k=9}^{12} {wgt(k)\left.\frac{\partial f}{\partial j}\right| _{idx(src(k))} } 
    405     +   \sum_{k=13}^{16} {wgt(k)\left.\frac{\partial ^2 f}{\partial i \partial j}\right| _{idx(src(k))} } 
     436    +  \sum_{k=5 }^{8 } {wgt(k)\left.\frac{\partial f}{\partial i}\right| _{idx(src(k))} }    \\ 
     437    +& \sum_{k=9 }^{12} {wgt(k)\left.\frac{\partial f}{\partial j}\right| _{idx(src(k))} } 
     438    +  \sum_{k=13}^{16} {wgt(k)\left.\frac{\partial ^2 f}{\partial i \partial j}\right| _{idx(src(k))} } 
    406439  \end{split} 
    407440\] 
    408441The gradients here are taken with respect to the horizontal indices and not distances since 
    409 the spatial dependency has been absorbed into the weights. 
    410  
     442the spatial dependency has been included into the weights. 
     443 
     444 
     445% ------------------------------------------------------------------------------------------------------------- 
     446% Implementation 
     447% ------------------------------------------------------------------------------------------------------------- 
    411448\subsubsection{Implementation} 
    412449\label{subsec:SBC_iof_imp} 
     
    420457inspecting a global attribute stored in the weights input file. 
    421458This attribute must be called "ew\_wrap" and be of integer type. 
    422 If it is negative, the input non-model grid is assumed not to be cyclic. 
     459If it is negative, the input non-model grid is assumed to be not cyclic. 
    423460If zero or greater, then the value represents the number of columns that overlap. 
    424461$E.g.$ if the input grid has columns at longitudes 0, 1, 2, .... , 359, then ew\_wrap should be set to 0; 
    425462if longitudes are 0.5, 2.5, .... , 358.5, 360.5, 362.5, ew\_wrap should be 2. 
    426463If the model does not find attribute ew\_wrap, then a value of -999 is assumed. 
    427 In this case the \rou{fld\_read} routine defaults ew\_wrap to value 0 and 
     464In this case, the \rou{fld\_read} routine defaults ew\_wrap to value 0 and 
    428465therefore the grid is assumed to be cyclic with no overlapping columns. 
    429 (In fact this only matters when bicubic interpolation is required.) 
     466(In fact, this only matters when bicubic interpolation is required.) 
    430467Note that no testing is done to check the validity in the model, 
    431468since there is no way of knowing the name used for the longitude variable, 
     
    444481or is a copy of one from the first few columns on the opposite side of the grid (cyclical case). 
    445482 
     483 
     484% ------------------------------------------------------------------------------------------------------------- 
     485% Limitations 
     486% ------------------------------------------------------------------------------------------------------------- 
    446487\subsubsection{Limitations} 
    447488\label{subsec:SBC_iof_lim} 
     
    449490\begin{enumerate}   
    450491\item 
    451   The case where input data grids are not logically rectangular has not been tested. 
     492  The case where input data grids are not logically rectangular (irregular grid case) has not been tested. 
    452493\item 
    453494  This code is not guaranteed to produce positive definite answers from positive definite inputs when 
     
    470511(see the directory NEMOGCM/TOOLS/WEIGHTS). 
    471512 
     513 
    472514% ------------------------------------------------------------------------------------------------------------- 
    473515% Standalone Surface Boundary Condition Scheme 
    474516% ------------------------------------------------------------------------------------------------------------- 
    475 \subsection{Standalone surface boundary condition scheme} 
    476 \label{subsec:SAS_iof} 
    477  
    478 %---------------------------------------namsbc_ana-------------------------------------------------- 
     517\subsection{Standalone surface boundary condition scheme (SAS)} 
     518\label{subsec:SAS} 
     519 
     520%---------------------------------------namsbc_sas-------------------------------------------------- 
    479521 
    480522\nlst{namsbc_sas} 
    481523%-------------------------------------------------------------------------------------------------------------- 
    482524 
    483 In some circumstances it may be useful to avoid calculating the 3D temperature, 
     525In some circumstances, it may be useful to avoid calculating the 3D temperature, 
    484526salinity and velocity fields and simply read them in from a previous run or receive them from OASIS.   
    485527For example: 
     
    496538  Spinup of the iceberg floats 
    497539\item 
    498   Ocean/sea-ice simulation with both media running in parallel (\np{ln\_mixcpl}\forcode{ = .true.}) 
     540  Ocean/sea-ice simulation with both models running in parallel (\np{ln\_mixcpl}\forcode{ = .true.}) 
    499541\end{itemize} 
    500542 
    501 The StandAlone Surface scheme provides this utility. 
     543The Standalone Surface scheme provides this capacity. 
    502544Its options are defined through the \ngn{namsbc\_sas} namelist variables. 
    503545A new copy of the model has to be compiled with a configuration based on ORCA2\_SAS\_LIM. 
    504 However no namelist parameters need be changed from the settings of the previous run (except perhaps nn{\_}date0). 
     546However, no namelist parameters need be changed from the settings of the previous run (except perhaps nn{\_}date0). 
    505547In this configuration, a few routines in the standard model are overriden by new versions. 
    506548Routines replaced are: 
     
    524566  so calls to restart functions have been removed. 
    525567  This also means that the calendar cannot be controlled by time in a restart file, 
    526   so the user must make sure that nn{\_}date0 in the model namelist is correct for his or her purposes. 
     568  so the user must check that nn{\_}date0 in the model namelist is correct for his or her purposes. 
    527569\item 
    528570  \mdl{stpctl}: 
     
    543585  velocity arrays at the surface. 
    544586  These filenames are supplied in namelist namsbc{\_}sas. 
    545   Unfortunately because of limitations with the \mdl{iom} module, 
     587  Unfortunately, because of limitations with the \mdl{iom} module, 
    546588  the full 3D fields from the mean files have to be read in and interpolated in time, 
    547589  before using just the top level. 
     
    550592 
    551593 
    552 % Missing the description of the 2 following variables: 
    553 %   ln_3d_uve   = .true.    !  specify whether we are supplying a 3D u,v and e3 field 
    554 %   ln_read_frq = .false.    !  specify whether we must read frq or not 
    555  
    556  
    557  
    558 % ================================================================ 
    559 % Analytical formulation (sbcana module)  
    560 % ================================================================ 
    561 \section{Analytical formulation (\protect\mdl{sbcana})} 
    562 \label{sec:SBC_ana} 
    563  
    564 %---------------------------------------namsbc_ana-------------------------------------------------- 
    565 % 
    566 %\nlst{namsbc_ana} 
    567 %-------------------------------------------------------------------------------------------------------------- 
    568  
    569 The analytical formulation of the surface boundary condition is the default scheme. 
    570 In this case, all the six fluxes needed by the ocean are assumed to be uniform in space. 
    571 They take constant values given in the namelist \ngn{namsbc{\_}ana} by 
    572 the variables \np{rn\_utau0}, \np{rn\_vtau0}, \np{rn\_qns0}, \np{rn\_qsr0}, and \np{rn\_emp0} 
    573 ($\textit{emp}=\textit{emp}_S$). 
    574 The runoff is set to zero. 
    575 In addition, the wind is allowed to reach its nominal value within a given number of time steps (\np{nn\_tau000}). 
    576  
    577 If a user wants to apply a different analytical forcing, 
    578 the \mdl{sbcana} module can be modified to use another scheme. 
    579 As an example, the \mdl{sbc\_ana\_gyre} routine provides the analytical forcing for the GYRE configuration 
    580 (see GYRE configuration manual, in preparation). 
     594The user can also choose in the \ngn{namsbc\_sas} namelist to read the mean (nn\_fsbc time-step) fraction of solar net radiation absorbed in the 1st T level using 
     595 (\np{ln\_flx}\forcode{ = .true.}) and to provide 3D oceanic velocities instead of 2D ones (\np{ln\_flx}\forcode{ = .true.}). In that last case, only the 1st level will be read in. 
     596 
    581597 
    582598 
     
    584600% Flux formulation  
    585601% ================================================================ 
    586 \section{Flux formulation (\protect\mdl{sbcflx})} 
     602\section[Flux formulation (\textit{sbcflx.F90})] 
     603{Flux formulation (\protect\mdl{sbcflx})} 
    587604\label{sec:SBC_flx} 
    588605%------------------------------------------namsbc_flx---------------------------------------------------- 
     
    602619 
    603620 
     621 
    604622% ================================================================ 
    605623% Bulk formulation 
    606624% ================================================================ 
    607 \section[Bulk formulation {(\textit{sbcblk\{\_core,\_clio\}.F90})}] 
    608                         {Bulk formulation {(\protect\mdl{sbcblk\_core}, \protect\mdl{sbcblk\_clio})}} 
     625\section[Bulk formulation (\textit{sbcblk.F90})] 
     626{Bulk formulation (\protect\mdl{sbcblk})} 
    609627\label{sec:SBC_blk} 
    610  
    611 In the bulk formulation, the surface boundary condition fields are computed using bulk formulae and atmospheric fields and ocean (and ice) variables. 
     628%---------------------------------------namsbc_blk-------------------------------------------------- 
     629 
     630\nlst{namsbc_blk} 
     631%-------------------------------------------------------------------------------------------------------------- 
     632 
     633In the bulk formulation, the surface boundary condition fields are computed with bulk formulae using atmospheric fields  
     634and ocean (and sea-ice) variables averaged over \np{nn\_fsbc} time-step. 
    612635 
    613636The atmospheric fields used depend on the bulk formulae used. 
    614 Two bulk formulations are available: 
    615 the CORE and the CLIO bulk formulea. 
     637In forced mode, when a sea-ice model is used, a specific bulk formulation is used. 
     638Therefore, different bulk formulae are used for the turbulent fluxes computation 
     639over the ocean and over sea-ice surface.  
     640For the ocean, four bulk formulations are available thanks to the \href{https://brodeau.github.io/aerobulk/}{Aerobulk} package (\citet{brodeau.barnier.ea_JPO16}):  
     641the NCAR (formerly named CORE), COARE 3.0, COARE 3.5 and ECMWF bulk formulae. 
    616642The choice is made by setting to true one of the following namelist variable: 
    617 \np{ln\_core} or \np{ln\_clio}. 
    618  
    619 Note: 
    620 in forced mode, when a sea-ice model is used, a bulk formulation (CLIO or CORE) have to be used. 
    621 Therefore the two bulk (CLIO and CORE) formulea include the computation of the fluxes over 
    622 both an ocean and an ice surface.  
    623  
    624 % ------------------------------------------------------------------------------------------------------------- 
    625 %        CORE Bulk formulea 
    626 % ------------------------------------------------------------------------------------------------------------- 
    627 \subsection{CORE formulea (\protect\mdl{sbcblk\_core}, \protect\np{ln\_core}\forcode{ = .true.})} 
    628 \label{subsec:SBC_blk_core} 
    629 %------------------------------------------namsbc_core---------------------------------------------------- 
    630 % 
    631 %\nlst{namsbc_core} 
    632 %------------------------------------------------------------------------------------------------------------- 
    633  
    634 The CORE bulk formulae have been developed by \citet{Large_Yeager_Rep04}. 
    635 They have been designed to handle the CORE forcing, a mixture of NCEP reanalysis and satellite data. 
    636 They use an inertial dissipative method to compute the turbulent transfer coefficients 
    637 (momentum, sensible heat and evaporation) from the 10 metre wind speed, air temperature and specific humidity. 
    638 This \citet{Large_Yeager_Rep04} dataset is available through 
    639 the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html}{GFDL web site}. 
    640  
    641 Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
    642 This is the so-called DRAKKAR Forcing Set (DFS) \citep{Brodeau_al_OM09}. 
    643  
    644 Options are defined through the  \ngn{namsbc\_core} namelist variables. 
    645 The required 8 input fields are: 
     643 \np{ln\_NCAR}, \np{ln\_COARE\_3p0},  \np{ln\_COARE\_3p5} and  \np{ln\_ECMWF}. 
     644For sea-ice, three possibilities can be selected: 
     645a constant transfer coefficient (1.4e-3; default value), \citet{lupkes.gryanik.ea_JGR12} (\np{ln\_Cd\_L12}), and \citet{lupkes.gryanik_JGR15} (\np{ln\_Cd\_L15}) parameterizations 
     646 
     647Common options are defined through the \ngn{namsbc\_blk} namelist variables. 
     648The required 9 input fields are: 
    646649 
    647650%--------------------------------------------------TABLE-------------------------------------------------- 
    648651\begin{table}[htbp] 
    649   \label{tab:CORE} 
     652  \label{tab:BULK} 
    650653  \begin{center} 
    651654    \begin{tabular}{|l|c|c|c|} 
    652655      \hline 
    653       Variable desciption              & Model variable  & Units   & point \\    \hline 
    654       i-component of the 10m air velocity & utau      & $m.s^{-1}$         & T  \\  \hline 
    655       j-component of the 10m air velocity & vtau      & $m.s^{-1}$         & T  \\  \hline 
    656       10m air temperature              & tair      & \r{}$K$            & T   \\ \hline 
    657       Specific humidity             & humi      & \%              & T \\      \hline 
    658       Incoming long wave radiation     & qlw    & $W.m^{-2}$         & T \\      \hline 
    659       Incoming short wave radiation    & qsr    & $W.m^{-2}$         & T \\      \hline 
    660       Total precipitation (liquid + solid)   & precip & $Kg.m^{-2}.s^{-1}$ & T \\   \hline 
    661       Solid precipitation              & snow      & $Kg.m^{-2}.s^{-1}$ & T \\   \hline 
     656      Variable description                           & Model variable   & Units                         & point \\   \hline 
     657      i-component of the 10m air velocity   & utau                   & $m.s^{-1}$                   & T         \\   \hline 
     658      j-component of the 10m air velocity   & vtau                & $m.s^{-1}$                   & T         \\   \hline 
     659      10m air temperature                      & tair                & \r{}$K$                        & T       \\   \hline 
     660      Specific humidity                        & humi           & \%                             & T      \\   \hline 
     661      Incoming long wave radiation          & qlw                & $W.m^{-2}$            & T        \\   \hline 
     662      Incoming short wave radiation          & qsr               & $W.m^{-2}$            & T        \\   \hline 
     663      Total precipitation (liquid + solid)         & precip            & $Kg.m^{-2}.s^{-1}$      & T      \\   \hline 
     664      Solid precipitation                           & snow               & $Kg.m^{-2}.s^{-1}$       & T      \\   \hline 
     665      Mean sea-level pressure                     & slp                     & $hPa$                          & T       \\ \hline 
    662666    \end{tabular} 
    663667  \end{center} 
     
    678682\np{rn\_zu}: is the height of wind measurements (m) 
    679683 
    680 Three multiplicative factors are availables:  
    681 \np{rn\_pfac} and \np{rn\_efac} allows to adjust (if necessary) the global freshwater budget by 
     684Three multiplicative factors are available:  
     685\np{rn\_pfac} and \np{rn\_efac} allow to adjust (if necessary) the global freshwater budget by 
    682686increasing/reducing the precipitations (total and snow) and or evaporation, respectively. 
    683687The third one,\np{rn\_vfac}, control to which extend the ice/ocean velocities are taken into account in 
    684688the calculation of surface wind stress. 
    685 Its range should be between zero and one, and it is recommended to set it to 0. 
    686  
    687 % ------------------------------------------------------------------------------------------------------------- 
    688 %        CLIO Bulk formulea 
    689 % ------------------------------------------------------------------------------------------------------------- 
    690 \subsection{CLIO formulea (\protect\mdl{sbcblk\_clio}, \protect\np{ln\_clio}\forcode{ = .true.})} 
    691 \label{subsec:SBC_blk_clio} 
    692 %------------------------------------------namsbc_clio---------------------------------------------------- 
    693 % 
    694 %\nlst{namsbc_clio} 
    695 %------------------------------------------------------------------------------------------------------------- 
    696  
    697 The CLIO bulk formulae were developed several years ago for the Louvain-la-neuve coupled ice-ocean model 
    698 (CLIO, \cite{Goosse_al_JGR99}).  
    699 They are simpler bulk formulae. 
    700 They assume the stress to be known and compute the radiative fluxes from a climatological cloud cover.  
    701  
    702 Options are defined through the  \ngn{namsbc\_clio} namelist variables. 
    703 The required 7 input fields are: 
    704  
    705 %--------------------------------------------------TABLE-------------------------------------------------- 
    706 \begin{table}[htbp] 
    707   \label{tab:CLIO} 
    708   \begin{center} 
    709     \begin{tabular}{|l|l|l|l|} 
    710       \hline 
    711       Variable desciption           & Model variable  & Units           & point \\  \hline 
    712       i-component of the ocean stress     & utau         & $N.m^{-2}$         & U \\   \hline 
    713       j-component of the ocean stress     & vtau         & $N.m^{-2}$         & V \\   \hline 
    714       Wind speed module             & vatm         & $m.s^{-1}$         & T \\   \hline 
    715       10m air temperature              & tair         & \r{}$K$            & T \\   \hline 
    716       Specific humidity                & humi         & \%              & T \\   \hline 
    717       Cloud cover                   &           & \%              & T \\   \hline 
    718       Total precipitation (liquid + solid)   & precip    & $Kg.m^{-2}.s^{-1}$ & T \\   \hline 
    719       Solid precipitation              & snow         & $Kg.m^{-2}.s^{-1}$ & T \\   \hline 
    720     \end{tabular} 
    721   \end{center} 
    722 \end{table} 
    723 %-------------------------------------------------------------------------------------------------------------- 
     689Its range must be between zero and one, and it is recommended to set it to 0 at low-resolution (ORCA2 configuration). 
    724690 
    725691As for the flux formulation, information about the input data required by the model is provided in 
    726 the namsbc\_blk\_core or namsbc\_blk\_clio namelist (see \autoref{subsec:SBC_fldread}).  
     692the namsbc\_blk namelist (see \autoref{subsec:SBC_fldread}).  
     693 
     694 
     695% ------------------------------------------------------------------------------------------------------------- 
     696%        Ocean-Atmosphere Bulk formulae 
     697% ------------------------------------------------------------------------------------------------------------- 
     698\subsection{Ocean-Atmosphere Bulk formulae} 
     699%\subsection[Ocean-Atmosphere Bulk formulae (\textit{sbcblk_algo\{\_ncar,\_coare,\_coare3p5,\_ecmwf}.F90})] 
     700\label{subsec:SBC_blk_ocean} 
     701 
     702Four different bulk algorithms are available to compute surface turbulent momentum and heat fluxes over the ocean. 
     703COARE 3.0, COARE 3.5 and ECMWF schemes mainly differ by their roughness lenghts computation and consequently  
     704their neutral transfer coefficients relationships with neutral wind. 
     705\begin{itemize} 
     706\item 
     707  NCAR (\np{ln\_NCAR}\forcode{ = .true.}): 
     708  The NCAR bulk formulae have been developed by \citet{large.yeager_rpt04}. 
     709  They have been designed to handle the NCAR forcing, a mixture of NCEP reanalysis and satellite data. 
     710  They use an inertial dissipative method to compute the turbulent transfer coefficients 
     711  (momentum, sensible heat and evaporation) from the 10m wind speed, air temperature and specific humidity. 
     712  This \citet{large.yeager_rpt04} dataset is available through 
     713  the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/NCAR.html}{GFDL web site}. 
     714  Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
     715  This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 
     716\item 
     717  COARE 3.0 (\np{ln\_COARE\_3p0}\forcode{ = .true.}):  
     718  See \citet{fairall.bradley.ea_JC03} for more details 
     719\item 
     720  COARE 3.5 (\np{ln\_COARE\_3p5}\forcode{ = .true.}):  
     721  See \citet{edson.jampana.ea_JPO13} for more details 
     722\item 
     723  ECMWF (\np{ln\_ECMWF}\forcode{ = .true.}):  
     724  Based on \href{https://www.ecmwf.int/node/9221}{IFS (Cy31)} implementation and documentation. 
     725  Surface roughness lengths needed for the Obukhov length are computed following \citet{beljaars_QJRMS95}. 
     726\end{itemize} 
     727 
     728 
     729% ------------------------------------------------------------------------------------------------------------- 
     730%        Ice-Atmosphere Bulk formulae 
     731% ------------------------------------------------------------------------------------------------------------- 
     732\subsection{ Ice-Atmosphere Bulk formulae } 
     733\label{subsec:SBC_blk_ice} 
     734 
     735Surface turbulent fluxes between sea-ice and the atmosphere can be computed in three different ways: 
     736 
     737\begin{itemize} 
     738\item 
     739  Constant value (\np{constant\ value}\forcode{ Cd_ice = 1.4e-3 }): 
     740  default constant value used for momentum and heat neutral transfer coefficients 
     741\item 
     742  \citet{lupkes.gryanik.ea_JGR12} (\np{ln\_Cd\_L12}\forcode{ = .true.}): 
     743  This scheme adds a dependency on edges at leads, melt ponds and flows 
     744  of the constant neutral air-ice drag. After some approximations,  
     745  this can be resumed to a dependency on ice concentration (A). 
     746  This drag coefficient has a parabolic shape (as a function of ice concentration) 
     747  starting at 1.5e-3 for A=0, reaching 1.97e-3 for A=0.5 and going down 1.4e-3 for A=1. 
     748  It is theoretically applicable to all ice conditions (not only MIZ). 
     749\item 
     750  \citet{lupkes.gryanik_JGR15} (\np{ln\_Cd\_L15}\forcode{ = .true.}): 
     751  Alternative turbulent transfer coefficients formulation between sea-ice  
     752  and atmosphere with distinct momentum and heat coefficients depending  
     753  on sea-ice concentration and atmospheric stability (no melt-ponds effect for now). 
     754  The parameterization is adapted from ECHAM6 atmospheric model. 
     755  Compared to Lupkes2012 scheme, it considers specific skin and form drags 
     756  to compute neutral transfer coefficients for both heat and momentum fluxes. 
     757  Atmospheric stability effect on transfer coefficient is also taken into account. 
     758\end{itemize} 
     759 
     760 
    727761 
    728762% ================================================================ 
    729763% Coupled formulation 
    730764% ================================================================ 
    731 \section{Coupled formulation (\protect\mdl{sbccpl})} 
     765\section[Coupled formulation (\textit{sbccpl.F90})] 
     766{Coupled formulation (\protect\mdl{sbccpl})} 
    732767\label{sec:SBC_cpl} 
    733768%------------------------------------------namsbc_cpl---------------------------------------------------- 
     
    737772 
    738773In the coupled formulation of the surface boundary condition, 
    739 the fluxes are provided by the OASIS coupler at a frequency which is defined in the OASIS coupler, 
     774the fluxes are provided by the OASIS coupler at a frequency which is defined in the OASIS coupler namelist, 
    740775while sea and ice surface temperature, ocean and ice albedo, and ocean currents are sent to 
    741776the atmospheric component. 
    742777 
    743778A generalised coupled interface has been developed. 
    744 It is currently interfaced with OASIS-3-MCT (\key{oasis3}). 
     779It is currently interfaced with OASIS-3-MCT versions 1 to 4 (\key{oasis3}). 
     780An additional specific CPP key (\key{oa3mct\_v1v2}) is needed for OASIS-3-MCT versions 1 and 2. 
    745781It has been successfully used to interface \NEMO to most of the European atmospheric GCM 
    746782(ARPEGE, ECHAM, ECMWF, HadAM, HadGAM, LMDz), as well as to \href{http://wrf-model.org/}{WRF} 
    747783(Weather Research and Forecasting Model). 
    748784 
    749 Note that in addition to the setting of \np{ln\_cpl} to true, the \key{coupled} have to be defined. 
    750 The CPP key is mainly used in sea-ice to ensure that the atmospheric fluxes are actually received by 
    751 the ice-ocean system (no calculation of ice sublimation in coupled mode). 
    752 When PISCES biogeochemical model (\key{top} and \key{pisces}) is also used in the coupled system,  
    753 the whole carbon cycle is computed by defining \key{cpl\_carbon\_cycle}. 
     785When PISCES biogeochemical model (\key{top}) is also used in the coupled system,  
     786the whole carbon cycle is computed. 
    754787In this case, CO$_2$ fluxes will be exchanged between the atmosphere and the ice-ocean system 
    755788(and need to be activated in \ngn{namsbc{\_}cpl} ). 
     
    757790The namelist above allows control of various aspects of the coupling fields (particularly for vectors) and 
    758791now allows for any coupling fields to have multiple sea ice categories (as required by LIM3 and CICE). 
    759 When indicating a multi-category coupling field in namsbc{\_}cpl the number of categories will be determined by 
     792When indicating a multi-category coupling field in \ngn{namsbc{\_}cpl}, the number of categories will be determined by 
    760793the number used in the sea ice model. 
    761 In some limited cases it may be possible to specify single category coupling fields even when 
     794In some limited cases, it may be possible to specify single category coupling fields even when 
    762795the sea ice model is running with multiple categories - 
    763 in this case the user should examine the code to be sure the assumptions made are satisfactory. 
    764 In cases where this is definitely not possible the model should abort with an error message. 
    765 The new code has been tested using ECHAM with LIM2, and HadGAM3 with CICE but 
    766 although it will compile with \key{lim3} additional minor code changes may be required to run using LIM3. 
     796in this case, the user should examine the code to be sure the assumptions made are satisfactory. 
     797In cases where this is definitely not possible, the model should abort with an error message. 
     798 
    767799 
    768800 
     
    770802%        Atmospheric pressure 
    771803% ================================================================ 
    772 \section{Atmospheric pressure (\protect\mdl{sbcapr})} 
     804\section[Atmospheric pressure (\textit{sbcapr.F90})] 
     805{Atmospheric pressure (\protect\mdl{sbcapr})} 
    773806\label{sec:SBC_apr} 
    774807%------------------------------------------namsbc_apr---------------------------------------------------- 
     
    778811 
    779812The optional atmospheric pressure can be used to force ocean and ice dynamics 
    780 (\np{ln\_apr\_dyn}\forcode{ = .true.}, \textit{\ngn{namsbc}} namelist). 
    781 The input atmospheric forcing defined via \np{sn\_apr} structure (\textit{namsbc\_apr} namelist) 
     813(\np{ln\_apr\_dyn}\forcode{ = .true.}, \ngn{namsbc} namelist). 
     814The input atmospheric forcing defined via \np{sn\_apr} structure (\ngn{namsbc\_apr} namelist) 
    782815can be interpolated in time to the model time step, and even in space when the interpolation on-the-fly is used. 
    783816When used to force the dynamics, the atmospheric pressure is further transformed into 
     
    789822where $P_{atm}$ is the atmospheric pressure and $P_o$ a reference atmospheric pressure. 
    790823A value of $101,000~N/m^2$ is used unless \np{ln\_ref\_apr} is set to true. 
    791 In this case $P_o$ is set to the value of $P_{atm}$ averaged over the ocean domain, 
    792 \ie the mean value of $\eta_{ib}$ is kept to zero at all time step. 
     824In this case, $P_o$ is set to the value of $P_{atm}$ averaged over the ocean domain, 
     825\ie the mean value of $\eta_{ib}$ is kept to zero at all time steps. 
    793826 
    794827The gradient of $\eta_{ib}$ is added to the RHS of the ocean momentum equation (see \mdl{dynspg} for the ocean). 
    795828For sea-ice, the sea surface height, $\eta_m$, which is provided to the sea ice model is set to $\eta - \eta_{ib}$ 
    796829(see \mdl{sbcssr} module). 
    797 $\eta_{ib}$ can be set in the output. 
     830$\eta_{ib}$ can be written in the output. 
    798831This can simplify altimetry data and model comparison as 
    799832inverse barometer sea surface height is usually removed from these date prior to their distribution. 
     
    803836\np{ln\_apr\_obc}  might be set to true. 
    804837 
     838 
     839 
    805840% ================================================================ 
    806841%        Surface Tides Forcing 
    807842% ================================================================ 
    808 \section{Surface tides (\protect\mdl{sbctide})} 
     843\section[Surface tides (\textit{sbctide.F90})] 
     844{Surface tides (\protect\mdl{sbctide})} 
    809845\label{sec:SBC_tide} 
    810846 
     
    819855\[ 
    820856  % \label{eq:PE_dyn_tides} 
    821   \frac{\partial {\rm {\bf U}}_h }{\partial t}= ... 
     857  \frac{\partial {\mathrm {\mathbf U}}_h }{\partial t}= ... 
    822858  +g\nabla (\Pi_{eq} + \Pi_{sal}) 
    823859\] 
     
    827863The equilibrium tidal forcing is expressed as a sum over a subset of 
    828864constituents chosen from the set of available tidal constituents 
    829 defined in file \rou{SBC/tide.h90} (this comprises the tidal 
     865defined in file \textit{SBC/tide.h90} (this comprises the tidal 
    830866constituents \textit{M2, N2, 2N2, S2, K2, K1, O1, Q1, P1, M4, Mf, Mm, 
    831867  Msqm, Mtm, S1, MU2, NU2, L2}, and \textit{T2}). Individual 
     
    839875 
    840876The SAL term should in principle be computed online as it depends on 
    841 the model tidal prediction itself (see \citet{Arbic2004} for a 
     877the model tidal prediction itself (see \citet{arbic.garner.ea_DSR04} for a 
    842878discussion about the practical implementation of this term). 
    843879Nevertheless, the complex calculations involved would make this 
    844 computationally too expensive.  Here, two options are available: 
     880computationally too expensive. Here, two options are available: 
    845881$\Pi_{sal}$ generated by an external model can be read in 
    846882(\np{ln\_read\_load=.true.}), or a ``scalar approximation'' can be 
     
    854890\forcode{.false.} removes the SAL contribution. 
    855891 
     892 
     893 
    856894% ================================================================ 
    857895%        River runoffs 
    858896% ================================================================ 
    859 \section{River runoffs (\protect\mdl{sbcrnf})} 
     897\section[River runoffs (\textit{sbcrnf.F90})] 
     898{River runoffs (\protect\mdl{sbcrnf})} 
    860899\label{sec:SBC_rnf} 
    861900%------------------------------------------namsbc_rnf---------------------------------------------------- 
     
    871910%coastal modelling and becomes more and more often open ocean and climate modelling  
    872911%\footnote{At least a top cells thickness of 1~meter and a 3 hours forcing frequency are 
    873 %required to properly represent the diurnal cycle \citep{Bernie_al_JC05}. see also \autoref{fig:SBC_dcy}.}. 
     912%required to properly represent the diurnal cycle \citep{bernie.woolnough.ea_JC05}. see also \autoref{fig:SBC_dcy}.}. 
    874913 
    875914 
     
    892931\footnote{ 
    893932  At least a top cells thickness of 1~meter and a 3 hours forcing frequency are required to 
    894   properly represent the diurnal cycle \citep{Bernie_al_JC05}. 
     933  properly represent the diurnal cycle \citep{bernie.woolnough.ea_JC05}. 
    895934  see also \autoref{fig:SBC_dcy}.}. 
    896935 
     
    935974As such the volume of water does not change, but the water is diluted. 
    936975 
    937 For the non-linear free surface case (\key{vvl}), no flux is allowed through the surface. 
     976For the non-linear free surface case, no flux is allowed through the surface. 
    938977Instead in the surface box (as well as water moving up from the boxes below) a volume of runoff water is added with 
    939978no corresponding heat and salt addition and so as happens in the lower boxes there is a dilution effect. 
     
    9781017%To do this we need to treat evaporation/precipitation fluxes and river runoff differently in the tra_sbc module.  We decided to separate them throughout the code, so that the variable emp represented solely evaporation minus precipitation fluxes, and a new 2d variable rnf was added which represents the volume flux of river runoff (in kg/m2s to remain consistent with emp).  This meant many uses of emp and emps needed to be changed, a list of all modules which use emp or emps and the changes made are below: 
    9791018 
    980 %} 
     1019 
     1020 
    9811021% ================================================================ 
    9821022%        Ice shelf melting 
    9831023% ================================================================ 
    984 \section{Ice shelf melting (\protect\mdl{sbcisf})} 
     1024\section[Ice shelf melting (\textit{sbcisf.F90})] 
     1025{Ice shelf melting (\protect\mdl{sbcisf})} 
    9851026\label{sec:SBC_isf} 
    9861027%------------------------------------------namsbc_isf---------------------------------------------------- 
     
    9881029\nlst{namsbc_isf} 
    9891030%-------------------------------------------------------------------------------------------------------- 
     1031 
    9901032The namelist variable in \ngn{namsbc}, \np{nn\_isf}, controls the ice shelf representation. 
    991 Description and result of sensitivity test to \np{nn\_isf} are presented in \citet{Mathiot2017}.  
     1033Description and result of sensitivity test to \np{nn\_isf} are presented in \citet{mathiot.jenkins.ea_GMD17}.  
    9921034The different options are illustrated in \autoref{fig:SBC_isf}. 
    9931035 
    9941036\begin{description} 
    995 \item[\np{nn\_isf}\forcode{ = 1}]: 
     1037 
     1038  \item[\np{nn\_isf}\forcode{ = 1}]: 
    9961039  The ice shelf cavity is represented (\np{ln\_isfcav}\forcode{ = .true.} needed). 
    9971040  The fwf and heat flux are depending of the local water properties. 
     1041   
    9981042  Two different bulk formulae are available: 
    9991043 
     
    10011045   \item[\np{nn\_isfblk}\forcode{ = 1}]: 
    10021046     The melt rate is based on a balance between the upward ocean heat flux and 
    1003      the latent heat flux at the ice shelf base. A complete description is available in \citet{Hunter2006}. 
     1047     the latent heat flux at the ice shelf base. A complete description is available in \citet{hunter_rpt06}. 
    10041048   \item[\np{nn\_isfblk}\forcode{ = 2}]: 
    10051049     The melt rate and the heat flux are based on a 3 equations formulation 
    10061050     (a heat flux budget at the ice base, a salt flux budget at the ice base and a linearised freezing point temperature equation).  
    1007      A complete description is available in \citet{Jenkins1991}. 
     1051     A complete description is available in \citet{jenkins_JGR91}. 
    10081052   \end{description} 
    10091053 
    1010      Temperature and salinity used to compute the melt are the average temperature in the top boundary layer \citet{Losch2008}.  
     1054     Temperature and salinity used to compute the melt are the average temperature in the top boundary layer \citet{losch_JGR08}.  
    10111055     Its thickness is defined by \np{rn\_hisf\_tbl}. 
    10121056     The fluxes and friction velocity are computed using the mean temperature, salinity and velocity in the the first \np{rn\_hisf\_tbl} m. 
     
    10381082\] 
    10391083     where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn\_hisf\_tbl} meters). 
    1040      See \citet{Jenkins2010} for all the details on this formulation. It is the recommended formulation for realistic application. 
     1084     See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application. 
    10411085   \item[\np{nn\_gammablk}\forcode{ = 2}]: 
    10421086     The salt and heat exchange coefficients are velocity and stability dependent and defined as: 
     
    10471091     $\Gamma_{Turb}$ the contribution of the ocean stability and 
    10481092     $\Gamma^{T,S}_{Mole}$ the contribution of the molecular diffusion. 
    1049      See \citet{Holland1999} for all the details on this formulation.  
     1093     See \citet{holland.jenkins_JPO99} for all the details on this formulation.  
    10501094     This formulation has not been extensively tested in NEMO (not recommended). 
    10511095   \end{description} 
    1052  \item[\np{nn\_isf}\forcode{ = 2}]: 
     1096  \item[\np{nn\_isf}\forcode{ = 2}]: 
    10531097   The ice shelf cavity is not represented. 
    1054    The fwf and heat flux are computed using the \citet{Beckmann2003} parameterisation of isf melting. 
     1098   The fwf and heat flux are computed using the \citet{beckmann.goosse_OM03} parameterisation of isf melting. 
    10551099   The fluxes are distributed along the ice shelf edge between the depth of the average grounding line (GL) 
    10561100   (\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front 
    10571101   (\np{sn\_depmin\_isf}) as in (\np{nn\_isf}\forcode{ = 3}). 
    10581102   The effective melting length (\np{sn\_Leff\_isf}) is read from a file. 
    1059  \item[\np{nn\_isf}\forcode{ = 3}]: 
     1103  \item[\np{nn\_isf}\forcode{ = 3}]: 
    10601104   The ice shelf cavity is not represented. 
    10611105   The fwf (\np{sn\_rnfisf}) is prescribed and distributed along the ice shelf edge between 
     
    10631107   the base of the ice shelf along the calving front (\np{sn\_depmin\_isf}). 
    10641108   The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 
    1065  \item[\np{nn\_isf}\forcode{ = 4}]: 
     1109  \item[\np{nn\_isf}\forcode{ = 4}]: 
    10661110   The ice shelf cavity is opened (\np{ln\_isfcav}\forcode{ = .true.} needed). 
    10671111   However, the fwf is not computed but specified from file \np{sn\_fwfisf}). 
     
    10891133\begin{figure}[!t] 
    10901134  \begin{center} 
    1091     \includegraphics[width=0.8\textwidth]{Fig_SBC_isf} 
     1135    \includegraphics[width=\textwidth]{Fig_SBC_isf} 
    10921136    \caption{ 
    10931137      \protect\label{fig:SBC_isf} 
     
    10981142%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    10991143 
     1144 
     1145 
     1146% ================================================================ 
     1147%        Ice sheet coupling 
     1148% ================================================================ 
    11001149\section{Ice sheet coupling} 
    11011150\label{sec:SBC_iscpl} 
     
    11041153\nlst{namsbc_iscpl} 
    11051154%-------------------------------------------------------------------------------------------------------- 
     1155 
    11061156Ice sheet/ocean coupling is done through file exchange at the restart step. 
    11071157At each restart step: 
     1158 
    11081159\begin{description} 
    11091160\item[Step 1]: the ice sheet model send a new bathymetry and ice shelf draft netcdf file. 
     
    11171168potentially some new wet/dry cells due to the ice sheet dynamics/thermodynamics. 
    11181169The wetting and drying scheme applied on the restart is very simple and described below for the 6 different possible cases: 
     1170 
    11191171\begin{description} 
    11201172\item[Thin a cell down]: 
     
    11551207The corrective increment is apply into the cell itself (if it is a wet cell), the neigbouring cells or the closest wet cell (if the cell is now dry). 
    11561208 
    1157 % 
     1209 
     1210 
    11581211% ================================================================ 
    11591212%        Handling of icebergs 
     
    11661219%------------------------------------------------------------------------------------------------------------- 
    11671220 
    1168 Icebergs are modelled as lagrangian particles in NEMO \citep{Marsh_GMD2015}. 
    1169 Their physical behaviour is controlled by equations as described in \citet{Martin_Adcroft_OM10} ). 
     1221Icebergs are modelled as lagrangian particles in NEMO \citep{marsh.ivchenko.ea_GMD15}. 
     1222Their physical behaviour is controlled by equations as described in \citet{martin.adcroft_OM10} ). 
    11701223(Note that the authors kindly provided a copy of their code to act as a basis for implementation in NEMO). 
    11711224Icebergs are initially spawned into one of ten classes which have specific mass and thickness as 
     
    11861239  the geographical box: lonmin,lonmax,latmin,latmax 
    11871240\item[\np{nn\_test\_icebergs}\forcode{ = -1}] 
    1188   In this scheme the model reads a calving file supplied in the \np{sn\_icb} parameter. 
     1241  In this scheme, the model reads a calving file supplied in the \np{sn\_icb} parameter. 
    11891242  This should be a file with a field on the configuration grid (typically ORCA) 
    11901243  representing ice accumulation rate at each model point. 
     
    12241277since its trajectory data may be spread across multiple files. 
    12251278 
    1226 % ------------------------------------------------------------------------------------------------------------- 
     1279 
     1280 
     1281% ============================================================================================================= 
    12271282%        Interactions with waves (sbcwave.F90, ln_wave) 
    1228 % ------------------------------------------------------------------------------------------------------------- 
    1229 \section{Interactions with waves (\protect\mdl{sbcwave}, \protect\np{ln\_wave})} 
     1283% ============================================================================================================= 
     1284\section[Interactions with waves (\textit{sbcwave.F90}, \texttt{ln\_wave})] 
     1285{Interactions with waves (\protect\mdl{sbcwave}, \protect\np{ln\_wave})} 
    12301286\label{sec:SBC_wave} 
    12311287%------------------------------------------namsbc_wave-------------------------------------------------------- 
     
    12411297 
    12421298Physical processes related to ocean surface waves can be accounted by setting the logical variable  
    1243 \np{ln\_wave}\forcode{= .true.} in \ngn{namsbc} namelist. In addition, specific flags accounting for  
    1244 different porcesses should be activated as explained in the following sections. 
     1299\np{ln\_wave} \forcode{= .true.} in \ngn{namsbc} namelist. In addition, specific flags accounting for  
     1300different processes should be activated as explained in the following sections. 
    12451301 
    12461302Wave fields can be provided either in forced or coupled mode: 
     
    12541310 
    12551311 
    1256 % ================================================================ 
     1312% ---------------------------------------------------------------- 
    12571313% Neutral drag coefficient from wave model (ln_cdgw) 
    12581314 
    1259 % ================================================================ 
    1260 \subsection{Neutral drag coefficient from wave model (\protect\np{ln\_cdgw})} 
     1315% ---------------------------------------------------------------- 
     1316\subsection[Neutral drag coefficient from wave model (\texttt{ln\_cdgw})] 
     1317{Neutral drag coefficient from wave model (\protect\np{ln\_cdgw})} 
    12611318\label{subsec:SBC_wave_cdgw} 
    12621319 
    12631320The neutral surface drag coefficient provided from an external data source (\ie a wave model),  
    12641321can be used by setting the logical variable \np{ln\_cdgw} \forcode{= .true.} in \ngn{namsbc} namelist.  
    1265 Then using the routine \rou{turb\_ncar} and starting from the neutral drag coefficent provided,  
     1322Then using the routine \rou{sbcblk\_algo\_ncar} and starting from the neutral drag coefficent provided,  
    12661323the drag coefficient is computed according to the stable/unstable conditions of the  
    1267 air-sea interface following \citet{Large_Yeager_Rep04}.  
    1268  
    1269  
    1270 % ================================================================ 
     1324air-sea interface following \citet{large.yeager_rpt04}.  
     1325 
     1326 
     1327% ---------------------------------------------------------------- 
    12711328% 3D Stokes Drift (ln_sdw, nn_sdrift) 
    1272 % ================================================================ 
    1273 \subsection{3D Stokes Drift (\protect\np{ln\_sdw, nn\_sdrift})} 
     1329% ---------------------------------------------------------------- 
     1330\subsection[3D Stokes Drift (\texttt{ln\_sdw}, \texttt{nn\_sdrift})] 
     1331{3D Stokes Drift (\protect\np{ln\_sdw, nn\_sdrift})} 
    12741332\label{subsec:SBC_wave_sdw} 
    12751333 
    1276 The Stokes drift is a wave driven mechanism of mass and momentum transport \citep{Stokes_1847}.  
     1334The Stokes drift is a wave driven mechanism of mass and momentum transport \citep{stokes_ibk09}.  
    12771335It is defined as the difference between the average velocity of a fluid parcel (Lagrangian velocity)  
    12781336and the current measured at a fixed point (Eulerian velocity).  
    12791337As waves travel, the water particles that make up the waves travel in orbital motions but  
    12801338without a closed path. Their movement is enhanced at the top of the orbit and slowed slightly  
    1281 at the bottom so the result is a net forward motion of water particles, referred to as the Stokes drift.  
     1339at the bottom, so the result is a net forward motion of water particles, referred to as the Stokes drift.  
    12821340An accurate evaluation of the Stokes drift and the inclusion of related processes may lead to improved  
    1283 representation of surface physics in ocean general circulation models. 
     1341representation of surface physics in ocean general circulation models. %GS: reference needed 
    12841342The Stokes drift velocity $\mathbf{U}_{st}$ in deep water can be computed from the wave spectrum and may be written as:  
    12851343 
     
    12961354$k=\frac{2\pi}{\lambda}$ (being $\lambda$ the wavelength). \\ 
    12971355 
    1298 In order to evaluate the Stokes drift in a realistic ocean wave field the wave spectral shape is required  
     1356In order to evaluate the Stokes drift in a realistic ocean wave field, the wave spectral shape is required  
    12991357and its computation quickly becomes expensive as the 2D spectrum must be integrated for each vertical level.  
    13001358To simplify, it is customary to use approximations to the full Stokes profile. 
     
    13071365\begin{description} 
    13081366\item[\np{nn\_sdrift} = 0]: exponential integral profile parameterization proposed by  
    1309 \citet{Breivik_al_JPO2014}: 
     1367\citet{breivik.janssen.ea_JPO14}: 
    13101368 
    13111369\[ 
     
    13261384 
    13271385\item[\np{nn\_sdrift} = 1]: velocity profile based on the Phillips spectrum which is considered to be a  
    1328 reasonable estimate of the part of the spectrum most contributing to the Stokes drift velocity near the surface 
    1329 \citep{Breivik_al_OM2016}: 
     1386reasonable estimate of the part of the spectrum mostly contributing to the Stokes drift velocity near the surface 
     1387\citep{breivik.bidlot.ea_OM16}: 
    13301388 
    13311389\[ 
     
    13641422 
    13651423 
    1366 % ================================================================ 
     1424% ---------------------------------------------------------------- 
    13671425% Stokes-Coriolis term (ln_stcor) 
    1368 % ================================================================ 
    1369 \subsection{Stokes-Coriolis term (\protect\np{ln\_stcor})} 
     1426% ---------------------------------------------------------------- 
     1427\subsection[Stokes-Coriolis term (\texttt{ln\_stcor})] 
     1428{Stokes-Coriolis term (\protect\np{ln\_stcor})} 
    13701429\label{subsec:SBC_wave_stcor} 
    13711430 
     
    13781437 
    13791438 
    1380 % ================================================================ 
     1439% ---------------------------------------------------------------- 
    13811440% Waves modified stress (ln_tauwoc, ln_tauw) 
    1382 % ================================================================ 
    1383 \subsection{Wave modified sress (\protect\np{ln\_tauwoc, ln\_tauw})}  
     1441% ---------------------------------------------------------------- 
     1442\subsection[Wave modified stress (\texttt{ln\_tauwoc}, \texttt{ln\_tauw})] 
     1443{Wave modified sress (\protect\np{ln\_tauwoc, ln\_tauw})} 
    13841444\label{subsec:SBC_wave_tauw} 
    13851445 
    13861446The surface stress felt by the ocean is the atmospheric stress minus the net stress going  
    1387 into the waves \citep{Janssen_al_TM13}. Therefore, when waves are growing, momentum and energy is spent and is not  
     1447into the waves \citep{janssen.breivik.ea_rpt13}. Therefore, when waves are growing, momentum and energy is spent and is not  
    13881448available for forcing the mean circulation, while in the opposite case of a decaying sea  
    1389 state more momentum is available for forcing the ocean.  
    1390 Only when the sea state is in equilibrium the ocean is forced by the atmospheric stress,  
    1391 but in practice an equilibrium sea state is a fairly rare event.  
     1449state, more momentum is available for forcing the ocean.  
     1450Only when the sea state is in equilibrium, the ocean is forced by the atmospheric stress,  
     1451but in practice, an equilibrium sea state is a fairly rare event.  
    13921452So the atmospheric stress felt by the ocean circulation $\tau_{oc,a}$ can be expressed as:  
    13931453 
     
    14191479 
    14201480 
     1481 
    14211482% ================================================================ 
    14221483% Miscellanea options 
     
    14251486\label{sec:SBC_misc} 
    14261487 
     1488 
    14271489% ------------------------------------------------------------------------------------------------------------- 
    14281490%        Diurnal cycle 
    14291491% ------------------------------------------------------------------------------------------------------------- 
    1430 \subsection{Diurnal cycle (\protect\mdl{sbcdcy})} 
     1492\subsection[Diurnal cycle (\textit{sbcdcy.F90})] 
     1493{Diurnal cycle (\protect\mdl{sbcdcy})} 
    14311494\label{subsec:SBC_dcy} 
    1432 %------------------------------------------namsbc_rnf---------------------------------------------------- 
     1495%------------------------------------------namsbc------------------------------------------------------------- 
    14331496% 
    14341497\nlst{namsbc}  
     
    14381501\begin{figure}[!t] 
    14391502  \begin{center} 
    1440     \includegraphics[width=0.8\textwidth]{Fig_SBC_diurnal} 
     1503    \includegraphics[width=\textwidth]{Fig_SBC_diurnal} 
    14411504    \caption{ 
    14421505      \protect\label{fig:SBC_diurnal} 
     
    14451508      the mean value of the analytical cycle (blue line) over a time step, 
    14461509      not as the mid time step value of the analytically cycle (red square). 
    1447       From \citet{Bernie_al_CD07}. 
     1510      From \citet{bernie.guilyardi.ea_CD07}. 
    14481511    } 
    14491512  \end{center} 
     
    14511514%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    14521515 
    1453 \cite{Bernie_al_JC05} have shown that to capture 90$\%$ of the diurnal variability of SST requires a vertical resolution in upper ocean of 1~m or better and a temporal resolution of the surface fluxes of 3~h or less. 
    1454 Unfortunately high frequency forcing fields are rare, not to say inexistent. 
    1455 Nevertheless, it is possible to obtain a reasonable diurnal cycle of the SST knowning only short wave flux (SWF) at 
    1456 high frequency \citep{Bernie_al_CD07}. 
     1516\cite{bernie.woolnough.ea_JC05} have shown that to capture 90$\%$ of the diurnal variability of SST requires a vertical resolution in upper ocean of 1~m or better and a temporal resolution of the surface fluxes of 3~h or less. 
     1517%Unfortunately high frequency forcing fields are rare, not to say inexistent. GS: not true anymore ! 
     1518Nevertheless, it is possible to obtain a reasonable diurnal cycle of the SST knowning only short wave flux (SWF) at high frequency \citep{bernie.guilyardi.ea_CD07}. 
    14571519Furthermore, only the knowledge of daily mean value of SWF is needed, 
    14581520as higher frequency variations can be reconstructed from them, 
    14591521assuming that the diurnal cycle of SWF is a scaling of the top of the atmosphere diurnal cycle of incident SWF. 
    1460 The \cite{Bernie_al_CD07} reconstruction algorithm is available in \NEMO by 
     1522The \cite{bernie.guilyardi.ea_CD07} reconstruction algorithm is available in \NEMO by 
    14611523setting \np{ln\_dm2dc}\forcode{ = .true.} (a \textit{\ngn{namsbc}} namelist variable) when 
    1462 using CORE bulk formulea (\np{ln\_blk\_core}\forcode{ = .true.}) or 
     1524using a bulk formulation (\np{ln\_blk}\forcode{ = .true.}) or 
    14631525the flux formulation (\np{ln\_flx}\forcode{ = .true.}). 
    14641526The reconstruction is performed in the \mdl{sbcdcy} module. 
    1465 The detail of the algoritm used can be found in the appendix~A of \cite{Bernie_al_CD07}. 
    1466 The algorithm preserve the daily mean incoming SWF as the reconstructed SWF at 
     1527The detail of the algoritm used can be found in the appendix~A of \cite{bernie.guilyardi.ea_CD07}. 
     1528The algorithm preserves the daily mean incoming SWF as the reconstructed SWF at 
    14671529a given time step is the mean value of the analytical cycle over this time step (\autoref{fig:SBC_diurnal}). 
    14681530The use of diurnal cycle reconstruction requires the input SWF to be daily 
    1469 (\ie a frequency of 24 and a time interpolation set to true in \np{sn\_qsr} namelist parameter). 
    1470 Furthermore, it is recommended to have a least 8 surface module time step per day, 
     1531(\ie a frequency of 24 hours and a time interpolation set to true in \np{sn\_qsr} namelist parameter). 
     1532Furthermore, it is recommended to have a least 8 surface module time steps per day, 
    14711533that is  $\rdt \ nn\_fsbc < 10,800~s = 3~h$. 
    14721534An example of recontructed SWF is given in \autoref{fig:SBC_dcy} for a 12 reconstructed diurnal cycle, 
     
    14761538\begin{figure}[!t] 
    14771539  \begin{center} 
    1478     \includegraphics[width=0.7\textwidth]{Fig_SBC_dcy} 
     1540    \includegraphics[width=\textwidth]{Fig_SBC_dcy} 
    14791541    \caption{ 
    14801542      \protect\label{fig:SBC_dcy} 
     
    14911553an inconsistency between the scale of the vertical resolution and the forcing acting on that scale. 
    14921554 
     1555 
    14931556% ------------------------------------------------------------------------------------------------------------- 
    14941557%        Rotation of vector pairs onto the model grid directions 
     
    14971560\label{subsec:SBC_rotation} 
    14981561 
    1499 When using a flux (\np{ln\_flx}\forcode{ = .true.}) or 
    1500 bulk (\np{ln\_clio}\forcode{ = .true.} or \np{ln\_core}\forcode{ = .true.}) formulation, 
     1562When using a flux (\np{ln\_flx}\forcode{ = .true.}) or bulk (\np{ln\_blk}\forcode{ = .true.}) formulation, 
    15011563pairs of vector components can be rotated from east-north directions onto the local grid directions. 
    15021564This is particularly useful when interpolation on the fly is used since here any vectors are likely to 
    15031565be defined relative to a rectilinear grid. 
    1504 To activate this option a non-empty string is supplied in the rotation pair column of the relevant namelist. 
     1566To activate this option, a non-empty string is supplied in the rotation pair column of the relevant namelist. 
    15051567The eastward component must start with "U" and the northward component with "V".   
    15061568The remaining characters in the strings are used to identify which pair of components go together. 
     
    15111573The rot\_rep routine from the \mdl{geo2ocean} module is used to perform the rotation. 
    15121574 
     1575 
    15131576% ------------------------------------------------------------------------------------------------------------- 
    15141577%        Surface restoring to observed SST and/or SSS 
    15151578% ------------------------------------------------------------------------------------------------------------- 
    1516 \subsection{Surface restoring to observed SST and/or SSS (\protect\mdl{sbcssr})} 
     1579\subsection[Surface restoring to observed SST and/or SSS (\textit{sbcssr.F90})] 
     1580{Surface restoring to observed SST and/or SSS (\protect\mdl{sbcssr})} 
    15171581\label{subsec:SBC_ssr} 
    15181582%------------------------------------------namsbc_ssr---------------------------------------------------- 
     
    15211585%------------------------------------------------------------------------------------------------------------- 
    15221586 
    1523 IOptions are defined through the \ngn{namsbc\_ssr} namelist variables. 
     1587Options are defined through the \ngn{namsbc\_ssr} namelist variables. 
    15241588On forced mode using a flux formulation (\np{ln\_flx}\forcode{ = .true.}), 
    15251589a feedback term \emph{must} be added to the surface heat flux $Q_{ns}^o$: 
     
    15461610(observed, climatological or an atmospheric model product), 
    15471611\textit{SSS}$_{Obs}$ is a sea surface salinity 
    1548 (usually a time interpolation of the monthly mean Polar Hydrographic Climatology \citep{Steele2001}), 
     1612(usually a time interpolation of the monthly mean Polar Hydrographic Climatology \citep{steele.morley.ea_JC01}), 
    15491613$\left.S\right|_{k=1}$ is the model surface layer salinity and 
    15501614$\gamma_s$ is a negative feedback coefficient which is provided as a namelist parameter. 
    15511615Unlike heat flux, there is no physical justification for the feedback term in \autoref{eq:sbc_dmp_emp} as 
    1552 the atmosphere does not care about ocean surface salinity \citep{Madec1997}. 
     1616the atmosphere does not care about ocean surface salinity \citep{madec.delecluse_IWN97}. 
    15531617The SSS restoring term should be viewed as a flux correction on freshwater fluxes to 
    15541618reduce the uncertainties we have on the observed freshwater budget. 
     1619 
    15551620 
    15561621% ------------------------------------------------------------------------------------------------------------- 
     
    15781643  This prevents deep convection to occur when trying to reach the freezing point 
    15791644  (and so ice covered area condition) while the SSS is too large. 
    1580   This manner of managing sea-ice area, just by using si IF case, 
     1645  This manner of managing sea-ice area, just by using a IF case, 
    15811646  is usually referred as the \textit{ice-if} model. 
    15821647  It can be found in the \mdl{sbcice{\_}if} module. 
     
    15851650  This model computes the ice-ocean fluxes, 
    15861651  that are combined with the air-sea fluxes using the ice fraction of each model cell to 
    1587   provide the surface ocean fluxes. 
    1588   Note that the activation of a sea-ice model is is done by defining a CPP key (\key{lim3} or \key{cice}). 
     1652  provide the surface averaged ocean fluxes. 
     1653  Note that the activation of a sea-ice model is done by defining a CPP key (\key{si3} or \key{cice}). 
    15891654  The activation automatically overwrites the read value of nn{\_}ice to its appropriate value 
    1590   (\ie $2$ for LIM-3 or $3$ for CICE). 
     1655  (\ie $2$ for SI3 or $3$ for CICE). 
    15911656\end{description} 
    15921657 
    15931658% {Description of Ice-ocean interface to be added here or in LIM 2 and 3 doc ?} 
    1594  
    1595 \subsection{Interface to CICE (\protect\mdl{sbcice\_cice})} 
     1659%GS: ocean-ice (SI3) interface is not located in SBC directory anymore, so it should be included in SI3 doc 
     1660 
     1661 
     1662% ------------------------------------------------------------------------------------------------------------- 
     1663%        CICE-ocean Interface 
     1664% ------------------------------------------------------------------------------------------------------------- 
     1665\subsection[Interface to CICE (\textit{sbcice\_cice.F90})] 
     1666{Interface to CICE (\protect\mdl{sbcice\_cice})} 
    15961667\label{subsec:SBC_cice} 
    15971668 
    1598 It is now possible to couple a regional or global NEMO configuration (without AGRIF) 
     1669It is possible to couple a regional or global NEMO configuration (without AGRIF) 
    15991670to the CICE sea-ice model by using \key{cice}. 
    16001671The CICE code can be obtained from \href{http://oceans11.lanl.gov/trac/CICE/}{LANL} and 
     
    16031674and CICE CPP keys \textbf{ORCA\_GRID}, \textbf{CICE\_IN\_NEMO} and \textbf{coupled} should be used 
    16041675(seek advice from UKMO if necessary). 
    1605 Currently the code is only designed to work when using the CORE forcing option for NEMO 
     1676Currently, the code is only designed to work when using the NCAR forcing option for NEMO %GS: still true ? 
    16061677(with \textit{calc\_strair}\forcode{ = .true.} and \textit{calc\_Tsfc}\forcode{ = .true.} in the CICE name-list), 
    16071678or alternatively when NEMO is coupled to the HadGAM3 atmosphere model 
     
    16231694there is no sea ice. 
    16241695 
     1696 
    16251697% ------------------------------------------------------------------------------------------------------------- 
    16261698%        Freshwater budget control  
    16271699% ------------------------------------------------------------------------------------------------------------- 
    1628 \subsection{Freshwater budget control (\protect\mdl{sbcfwb})} 
     1700\subsection[Freshwater budget control (\textit{sbcfwb.F90})] 
     1701{Freshwater budget control (\protect\mdl{sbcfwb})} 
    16291702\label{subsec:SBC_fwb} 
    16301703 
    1631 For global ocean simulation it can be useful to introduce a control of the mean sea level in order to 
     1704For global ocean simulation, it can be useful to introduce a control of the mean sea level in order to 
    16321705prevent unrealistic drift of the sea surface height due to inaccuracy in the freshwater fluxes. 
    1633 In \NEMO, two way of controlling the the freshwater budget.  
     1706In \NEMO, two way of controlling the freshwater budget are proposed: 
     1707  
    16341708\begin{description} 
    16351709\item[\np{nn\_fwb}\forcode{ = 0}] 
     
    16381712\item[\np{nn\_fwb}\forcode{ = 1}] 
    16391713  global mean \textit{emp} set to zero at each model time step.  
    1640 %Note that with a sea-ice model, this technique only control the mean sea level with linear free surface (\key{vvl} not defined) and no mass flux between ocean and ice (as it is implemented in the current ice-ocean coupling).  
     1714  %GS: comment below still relevant ? 
     1715  %Note that with a sea-ice model, this technique only controls the mean sea level with linear free surface and no mass flux between ocean and ice (as it is implemented in the current ice-ocean coupling).  
    16411716\item[\np{nn\_fwb}\forcode{ = 2}] 
    16421717  freshwater budget is adjusted from the previous year annual mean budget which 
     
    16451720  the change in the mean sea level at January the first and saved in the \textit{EMPav.dat} file.  
    16461721\end{description} 
    1647  
    1648  
    16491722 
    16501723% Griffies doc: 
     
    16551728% The result of the normalization should be a global integrated zero net water input to the ocean-ice system over  
    16561729% a chosen time scale.  
    1657 %How often the normalization is done is a matter of choice. In mom4p1, we choose to do so at each model time step,  
     1730% How often the normalization is done is a matter of choice. In mom4p1, we choose to do so at each model time step,  
    16581731% so that there is always a zero net input of water to the ocean-ice system.  
    16591732% Others choose to normalize over an annual cycle, in which case the net imbalance over an annual cycle is used  
     
    16701743% in ocean-ice models.  
    16711744 
     1745 
    16721746\biblio 
    16731747 
Note: See TracChangeset for help on using the changeset viewer.