New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11422 for NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO/subfiles/chap_TRA.tex – NEMO

Ignore:
Timestamp:
2019-08-08T15:40:47+02:00 (5 years ago)
Author:
jchanut
Message:

#1791, merge with trunk

Location:
NEMO/branches/2019/fix_vvl_ticket1791/doc
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/fix_vvl_ticket1791/doc

    • Property svn:ignore deleted
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
        8 *.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
         1figures 
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO

    • Property svn:ignore deleted
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO/subfiles/chap_TRA.tex

    r10544 r11422  
    5555 
    5656The user has the option of extracting each tendency term on the RHS of the tracer equation for output 
    57 (\np{ln\_tra\_trd} or \np{ln\_tra\_mxl}~\forcode{= .true.}), as described in \autoref{chap:DIA}. 
     57(\np{ln\_tra\_trd} or \np{ln\_tra\_mxl}\forcode{ = .true.}), as described in \autoref{chap:DIA}. 
    5858 
    5959% ================================================================ 
    6060% Tracer Advection 
    6161% ================================================================ 
    62 \section{Tracer advection (\protect\mdl{traadv})} 
     62\section[Tracer advection (\textit{traadv.F90})] 
     63{Tracer advection (\protect\mdl{traadv})} 
    6364\label{sec:TRA_adv} 
    6465%------------------------------------------namtra_adv----------------------------------------------------- 
     
    8182Indeed, it is obtained by using the following equality: $\nabla \cdot (\vect U \, T) = \vect U \cdot \nabla T$ which 
    8283results from the use of the continuity equation, $\partial_t e_3 + e_3 \; \nabla \cdot \vect U = 0$ 
    83 (which reduces to $\nabla \cdot \vect U = 0$ in linear free surface, \ie \np{ln\_linssh}~\forcode{= .true.}). 
     84(which reduces to $\nabla \cdot \vect U = 0$ in linear free surface, \ie \np{ln\_linssh}\forcode{ = .true.}). 
    8485Therefore it is of paramount importance to design the discrete analogue of the advection tendency so that 
    8586it is consistent with the continuity equation in order to enforce the conservation properties of 
     
    9091\begin{figure}[!t] 
    9192  \begin{center} 
    92     \includegraphics[]{Fig_adv_scheme} 
     93    \includegraphics[width=\textwidth]{Fig_adv_scheme} 
    9394    \caption{ 
    9495      \protect\label{fig:adv_scheme} 
     
    119120\begin{description} 
    120121\item[linear free surface:] 
    121   (\np{ln\_linssh}~\forcode{= .true.}) 
     122  (\np{ln\_linssh}\forcode{ = .true.}) 
    122123  the first level thickness is constant in time: 
    123124  the vertical boundary condition is applied at the fixed surface $z = 0$ rather than on 
     
    127128  the first level tracer value. 
    128129\item[non-linear free surface:] 
    129   (\np{ln\_linssh}~\forcode{= .false.}) 
     130  (\np{ln\_linssh}\forcode{ = .false.}) 
    130131  convergence/divergence in the first ocean level moves the free surface up/down. 
    131132  There is no tracer advection through it so that the advective fluxes through the surface are also zero. 
     
    136137Nevertheless, in the latter case, it is achieved to a good approximation since 
    137138the non-conservative term is the product of the time derivative of the tracer and the free surface height, 
    138 two quantities that are not correlated \citep{Roullet_Madec_JGR00, Griffies_al_MWR01, Campin2004}. 
    139  
    140 The velocity field that appears in (\autoref{eq:tra_adv} and \autoref{eq:tra_adv_zco}) is 
     139two quantities that are not correlated \citep{roullet.madec_JGR00, griffies.pacanowski.ea_MWR01, campin.adcroft.ea_OM04}. 
     140 
     141The velocity field that appears in (\autoref{eq:tra_adv} and \autoref{eq:tra_adv_zco?}) is 
    141142the centred (\textit{now}) \textit{effective} ocean velocity, \ie the \textit{eulerian} velocity 
    142143(see \autoref{chap:DYN}) plus the eddy induced velocity (\textit{eiv}) and/or 
     
    183184%        2nd and 4th order centred schemes 
    184185% ------------------------------------------------------------------------------------------------------------- 
    185 \subsection{CEN: Centred scheme (\protect\np{ln\_traadv\_cen}~\forcode{= .true.})} 
     186\subsection[CEN: Centred scheme (\forcode{ln_traadv_cen = .true.})] 
     187{CEN: Centred scheme (\protect\np{ln\_traadv\_cen}\forcode{ = .true.})} 
    186188\label{subsec:TRA_adv_cen} 
    187189 
    188190%        2nd order centred scheme   
    189191 
    190 The centred advection scheme (CEN) is used when \np{ln\_traadv\_cen}~\forcode{= .true.}. 
     192The centred advection scheme (CEN) is used when \np{ln\_traadv\_cen}\forcode{ = .true.}. 
    191193Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by 
    192194setting \np{nn\_cen\_h} and \np{nn\_cen\_v} to $2$ or $4$. 
     
    220222  \tau_u^{cen4} = \overline{T - \frac{1}{6} \, \delta_i \Big[ \delta_{i + 1/2}[T] \, \Big]}^{\,i + 1/2} 
    221223\end{equation} 
    222 In the vertical direction (\np{nn\_cen\_v}~\forcode{= 4}), 
    223 a $4^{th}$ COMPACT interpolation has been prefered \citep{Demange_PhD2014}. 
     224In the vertical direction (\np{nn\_cen\_v}\forcode{ = 4}), 
     225a $4^{th}$ COMPACT interpolation has been prefered \citep{demange_phd14}. 
    224226In the COMPACT scheme, both the field and its derivative are interpolated, which leads, after a matrix inversion, 
    225 spectral characteristics similar to schemes of higher order \citep{Lele_JCP1992}.  
     227spectral characteristics similar to schemes of higher order \citep{lele_JCP92}.  
    226228 
    227229Strictly speaking, the CEN4 scheme is not a $4^{th}$ order advection scheme but 
     
    250252%        FCT scheme   
    251253% ------------------------------------------------------------------------------------------------------------- 
    252 \subsection{FCT: Flux Corrected Transport scheme (\protect\np{ln\_traadv\_fct}~\forcode{= .true.})} 
     254\subsection[FCT: Flux Corrected Transport scheme (\forcode{ln_traadv_fct = .true.})] 
     255{FCT: Flux Corrected Transport scheme (\protect\np{ln\_traadv\_fct}\forcode{ = .true.})} 
    253256\label{subsec:TRA_adv_tvd} 
    254257 
    255 The Flux Corrected Transport schemes (FCT) is used when \np{ln\_traadv\_fct}~\forcode{= .true.}. 
     258The Flux Corrected Transport schemes (FCT) is used when \np{ln\_traadv\_fct}\forcode{ = .true.}. 
    256259Its order ($2^{nd}$ or $4^{th}$) can be chosen independently on horizontal (iso-level) and vertical direction by 
    257260setting \np{nn\_fct\_h} and \np{nn\_fct\_v} to $2$ or $4$. 
     
    277280(\ie it depends on the setting of \np{nn\_fct\_h} and \np{nn\_fct\_v}). 
    278281There exist many ways to define $c_u$, each corresponding to a different FCT scheme. 
    279 The one chosen in \NEMO is described in \citet{Zalesak_JCP79}. 
     282The one chosen in \NEMO is described in \citet{zalesak_JCP79}. 
    280283$c_u$ only departs from $1$ when the advective term produces a local extremum in the tracer field. 
    281284The resulting scheme is quite expensive but \textit{positive}. 
    282285It can be used on both active and passive tracers. 
    283 A comparison of FCT-2 with MUSCL and a MPDATA scheme can be found in \citet{Levy_al_GRL01}. 
     286A comparison of FCT-2 with MUSCL and a MPDATA scheme can be found in \citet{levy.estublier.ea_GRL01}. 
    284287 
    285288An additional option has been added controlled by \np{nn\_fct\_zts}. 
     
    287290a $2^{nd}$ order FCT scheme is used on both horizontal and vertical direction, but on the latter, 
    288291a split-explicit time stepping is used, with a number of sub-timestep equals to \np{nn\_fct\_zts}. 
    289 This option can be useful when the size of the timestep is limited by vertical advection \citep{Lemarie_OM2015}. 
     292This option can be useful when the size of the timestep is limited by vertical advection \citep{lemarie.debreu.ea_OM15}. 
    290293Note that in this case, a similar split-explicit time stepping should be used on vertical advection of momentum to 
    291294insure a better stability (see \autoref{subsec:DYN_zad}). 
     
    300303%        MUSCL scheme   
    301304% ------------------------------------------------------------------------------------------------------------- 
    302 \subsection{MUSCL: Monotone Upstream Scheme for Conservative Laws (\protect\np{ln\_traadv\_mus}~\forcode{= .true.})} 
     305\subsection[MUSCL: Monotone Upstream Scheme for Conservative Laws (\forcode{ln_traadv_mus = .true.})] 
     306{MUSCL: Monotone Upstream Scheme for Conservative Laws (\protect\np{ln\_traadv\_mus}\forcode{ = .true.})} 
    303307\label{subsec:TRA_adv_mus} 
    304308 
    305 The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np{ln\_traadv\_mus}~\forcode{= .true.}. 
     309The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when \np{ln\_traadv\_mus}\forcode{ = .true.}. 
    306310MUSCL implementation can be found in the \mdl{traadv\_mus} module. 
    307311 
    308 MUSCL has been first implemented in \NEMO by \citet{Levy_al_GRL01}. 
     312MUSCL has been first implemented in \NEMO by \citet{levy.estublier.ea_GRL01}. 
    309313In its formulation, the tracer at velocity points is evaluated assuming a linear tracer variation between 
    310314two $T$-points (\autoref{fig:adv_scheme}). 
     
    331335This choice ensure the \textit{positive} character of the scheme. 
    332336In addition, fluxes round a grid-point where a runoff is applied can optionally be computed using upstream fluxes 
    333 (\np{ln\_mus\_ups}~\forcode{= .true.}). 
     337(\np{ln\_mus\_ups}\forcode{ = .true.}). 
    334338 
    335339% ------------------------------------------------------------------------------------------------------------- 
    336340%        UBS scheme   
    337341% ------------------------------------------------------------------------------------------------------------- 
    338 \subsection{UBS a.k.a. UP3: Upstream-Biased Scheme (\protect\np{ln\_traadv\_ubs}~\forcode{= .true.})} 
     342\subsection[UBS a.k.a. UP3: Upstream-Biased Scheme (\forcode{ln_traadv_ubs = .true.})] 
     343{UBS a.k.a. UP3: Upstream-Biased Scheme (\protect\np{ln\_traadv\_ubs}\forcode{ = .true.})} 
    339344\label{subsec:TRA_adv_ubs} 
    340345 
    341 The Upstream-Biased Scheme (UBS) is used when \np{ln\_traadv\_ubs}~\forcode{= .true.}. 
     346The Upstream-Biased Scheme (UBS) is used when \np{ln\_traadv\_ubs}\forcode{ = .true.}. 
    342347UBS implementation can be found in the \mdl{traadv\_mus} module. 
    343348 
     
    358363 
    359364This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error 
    360 \citep{Shchepetkin_McWilliams_OM05}. 
    361 The overall performance of the advection scheme is similar to that reported in \cite{Farrow1995}. 
     365\citep{shchepetkin.mcwilliams_OM05}. 
     366The overall performance of the advection scheme is similar to that reported in \cite{farrow.stevens_JPO95}. 
    362367It is a relatively good compromise between accuracy and smoothness. 
    363368Nevertheless the scheme is not \textit{positive}, meaning that false extrema are permitted, 
     
    367372The intrinsic diffusion of UBS makes its use risky in the vertical direction where 
    368373the control of artificial diapycnal fluxes is of paramount importance 
    369 \citep{Shchepetkin_McWilliams_OM05, Demange_PhD2014}. 
     374\citep{shchepetkin.mcwilliams_OM05, demange_phd14}. 
    370375Therefore the vertical flux is evaluated using either a $2^nd$ order FCT scheme or a $4^th$ order COMPACT scheme 
    371 (\np{nn\_cen\_v}~\forcode{= 2 or 4}). 
     376(\np{nn\_cen\_v}\forcode{ = 2 or 4}). 
    372377 
    373378For stability reasons (see \autoref{chap:STP}), the first term  in \autoref{eq:tra_adv_ubs} 
     
    376381(which is the diffusive part of the scheme), 
    377382is evaluated using the \textit{before} tracer (forward in time). 
    378 This choice is discussed by \citet{Webb_al_JAOT98} in the context of the QUICK advection scheme. 
     383This choice is discussed by \citet{webb.de-cuevas.ea_JAOT98} in the context of the QUICK advection scheme. 
    379384UBS and QUICK schemes only differ by one coefficient. 
    380 Replacing 1/6 with 1/8 in \autoref{eq:tra_adv_ubs} leads to the QUICK advection scheme \citep{Webb_al_JAOT98}. 
     385Replacing 1/6 with 1/8 in \autoref{eq:tra_adv_ubs} leads to the QUICK advection scheme \citep{webb.de-cuevas.ea_JAOT98}. 
    381386This option is not available through a namelist parameter, since the 1/6 coefficient is hard coded. 
    382387Nevertheless it is quite easy to make the substitution in the \mdl{traadv\_ubs} module and obtain a QUICK scheme. 
     
    408413%        QCK scheme   
    409414% ------------------------------------------------------------------------------------------------------------- 
    410 \subsection{QCK: QuiCKest scheme (\protect\np{ln\_traadv\_qck}~\forcode{= .true.})} 
     415\subsection[QCK: QuiCKest scheme (\forcode{ln_traadv_qck = .true.})] 
     416{QCK: QuiCKest scheme (\protect\np{ln\_traadv\_qck}\forcode{ = .true.})} 
    411417\label{subsec:TRA_adv_qck} 
    412418 
    413419The Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms (QUICKEST) scheme 
    414 proposed by \citet{Leonard1979} is used when \np{ln\_traadv\_qck}~\forcode{= .true.}. 
     420proposed by \citet{leonard_CMAME79} is used when \np{ln\_traadv\_qck}\forcode{ = .true.}. 
    415421QUICKEST implementation can be found in the \mdl{traadv\_qck} module. 
    416422 
    417423QUICKEST is the third order Godunov scheme which is associated with the ULTIMATE QUICKEST limiter 
    418 \citep{Leonard1991}. 
     424\citep{leonard_CMAME91}. 
    419425It has been implemented in NEMO by G. Reffray (MERCATOR-ocean) and can be found in the \mdl{traadv\_qck} module. 
    420426The resulting scheme is quite expensive but \textit{positive}. 
     
    431437% Tracer Lateral Diffusion 
    432438% ================================================================ 
    433 \section{Tracer lateral diffusion (\protect\mdl{traldf})} 
     439\section[Tracer lateral diffusion (\textit{traldf.F90})] 
     440{Tracer lateral diffusion (\protect\mdl{traldf})} 
    434441\label{sec:TRA_ldf} 
    435442%-----------------------------------------nam_traldf------------------------------------------------------ 
     
    453460except for the pure vertical component that appears when a rotation tensor is used. 
    454461This latter component is solved implicitly together with the vertical diffusion term (see \autoref{chap:STP}). 
    455 When \np{ln\_traldf\_msc}~\forcode{= .true.}, a Method of Stabilizing Correction is used in which 
    456 the pure vertical component is split into an explicit and an implicit part \citep{Lemarie_OM2012}. 
     462When \np{ln\_traldf\_msc}\forcode{ = .true.}, a Method of Stabilizing Correction is used in which 
     463the pure vertical component is split into an explicit and an implicit part \citep{lemarie.debreu.ea_OM12}. 
    457464 
    458465% ------------------------------------------------------------------------------------------------------------- 
    459466%        Type of operator 
    460467% ------------------------------------------------------------------------------------------------------------- 
    461 \subsection[Type of operator (\protect\np{ln\_traldf}\{\_NONE,\_lap,\_blp\}\})]{Type of operator (\protect\np{ln\_traldf\_NONE}, \protect\np{ln\_traldf\_lap}, or \protect\np{ln\_traldf\_blp}) }  
     468\subsection[Type of operator (\texttt{ln\_traldf}\{\texttt{\_NONE,\_lap,\_blp}\})] 
     469{Type of operator (\protect\np{ln\_traldf\_NONE}, \protect\np{ln\_traldf\_lap}, or \protect\np{ln\_traldf\_blp}) }  
    462470\label{subsec:TRA_ldf_op} 
    463471 
     
    465473 
    466474\begin{description} 
    467 \item[\np{ln\_traldf\_NONE}~\forcode{= .true.}:] 
     475\item[\np{ln\_traldf\_NONE}\forcode{ = .true.}:] 
    468476  no operator selected, the lateral diffusive tendency will not be applied to the tracer equation. 
    469477  This option can be used when the selected advection scheme is diffusive enough (MUSCL scheme for example). 
    470 \item[\np{ln\_traldf\_lap}~\forcode{= .true.}:] 
     478\item[\np{ln\_traldf\_lap}\forcode{ = .true.}:] 
    471479  a laplacian operator is selected. 
    472480  This harmonic operator takes the following expression:  $\mathpzc{L}(T) = \nabla \cdot A_{ht} \; \nabla T $, 
    473481  where the gradient operates along the selected direction (see \autoref{subsec:TRA_ldf_dir}), 
    474482  and $A_{ht}$ is the eddy diffusivity coefficient expressed in $m^2/s$ (see \autoref{chap:LDF}). 
    475 \item[\np{ln\_traldf\_blp}~\forcode{= .true.}]: 
     483\item[\np{ln\_traldf\_blp}\forcode{ = .true.}]: 
    476484  a bilaplacian operator is selected. 
    477485  This biharmonic operator takes the following expression: 
     
    493501%        Direction of action 
    494502% ------------------------------------------------------------------------------------------------------------- 
    495 \subsection[Action direction (\protect\np{ln\_traldf}\{\_lev,\_hor,\_iso,\_triad\})]{Direction of action (\protect\np{ln\_traldf\_lev}, \protect\np{ln\_traldf\_hor}, \protect\np{ln\_traldf\_iso}, or \protect\np{ln\_traldf\_triad}) }  
     503\subsection[Action direction (\texttt{ln\_traldf}\{\texttt{\_lev,\_hor,\_iso,\_triad}\})] 
     504{Direction of action (\protect\np{ln\_traldf\_lev}, \protect\np{ln\_traldf\_hor}, \protect\np{ln\_traldf\_iso}, or \protect\np{ln\_traldf\_triad}) }  
    496505\label{subsec:TRA_ldf_dir} 
    497506 
    498507The choice of a direction of action determines the form of operator used. 
    499508The operator is a simple (re-entrant) laplacian acting in the (\textbf{i},\textbf{j}) plane when 
    500 iso-level option is used (\np{ln\_traldf\_lev}~\forcode{= .true.}) or 
     509iso-level option is used (\np{ln\_traldf\_lev}\forcode{ = .true.}) or 
    501510when a horizontal (\ie geopotential) operator is demanded in \textit{z}-coordinate 
    502511(\np{ln\_traldf\_hor} and \np{ln\_zco} equal \forcode{.true.}). 
     
    519528%       iso-level operator 
    520529% ------------------------------------------------------------------------------------------------------------- 
    521 \subsection{Iso-level (bi -)laplacian operator ( \protect\np{ln\_traldf\_iso}) } 
     530\subsection[Iso-level (bi-)laplacian operator (\texttt{ln\_traldf\_iso})] 
     531{Iso-level (bi-)laplacian operator ( \protect\np{ln\_traldf\_iso})} 
    522532\label{subsec:TRA_ldf_lev} 
    523533 
     
    537547It is a \textit{horizontal} operator (\ie acting along geopotential surfaces) in 
    538548the $z$-coordinate with or without partial steps, but is simply an iso-level operator in the $s$-coordinate. 
    539 It is thus used when, in addition to \np{ln\_traldf\_lap} or \np{ln\_traldf\_blp}~\forcode{= .true.}, 
    540 we have \np{ln\_traldf\_lev}~\forcode{= .true.} or \np{ln\_traldf\_hor}~=~\np{ln\_zco}~\forcode{= .true.}. 
     549It is thus used when, in addition to \np{ln\_traldf\_lap} or \np{ln\_traldf\_blp}\forcode{ = .true.}, 
     550we have \np{ln\_traldf\_lev}\forcode{ = .true.} or \np{ln\_traldf\_hor}~=~\np{ln\_zco}\forcode{ = .true.}. 
    541551In both cases, it significantly contributes to diapycnal mixing. 
    542552It is therefore never recommended, even when using it in the bilaplacian case. 
    543553 
    544 Note that in the partial step $z$-coordinate (\np{ln\_zps}~\forcode{= .true.}), 
     554Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{ = .true.}), 
    545555tracers in horizontally adjacent cells are located at different depths in the vicinity of the bottom. 
    546556In this case, horizontal derivatives in (\autoref{eq:tra_ldf_lap}) at the bottom level require a specific treatment. 
     
    550560%         Rotated laplacian operator 
    551561% ------------------------------------------------------------------------------------------------------------- 
    552 \subsection{Standard and triad (bi -)laplacian operator} 
     562\subsection{Standard and triad (bi-)laplacian operator} 
    553563\label{subsec:TRA_ldf_iso_triad} 
    554564 
    555 %&&    Standard rotated (bi -)laplacian operator 
     565%&&    Standard rotated (bi-)laplacian operator 
    556566%&& ---------------------------------------------- 
    557 \subsubsection{Standard rotated (bi -)laplacian operator (\protect\mdl{traldf\_iso})} 
     567\subsubsection[Standard rotated (bi-)laplacian operator (\textit{traldf\_iso.F90})] 
     568{Standard rotated (bi-)laplacian operator (\protect\mdl{traldf\_iso})} 
    558569\label{subsec:TRA_ldf_iso} 
    559570The general form of the second order lateral tracer subgrid scale physics (\autoref{eq:PE_zdf}) 
     
    574585$r_1$ and $r_2$ are the slopes between the surface of computation ($z$- or $s$-surfaces) and 
    575586the surface along which the diffusion operator acts (\ie horizontal or iso-neutral surfaces). 
    576 It is thus used when, in addition to \np{ln\_traldf\_lap}~\forcode{= .true.}, 
    577 we have \np{ln\_traldf\_iso}~\forcode{= .true.}, 
    578 or both \np{ln\_traldf\_hor}~\forcode{= .true.} and \np{ln\_zco}~\forcode{= .true.}. 
     587It is thus used when, in addition to \np{ln\_traldf\_lap}\forcode{ = .true.}, 
     588we have \np{ln\_traldf\_iso}\forcode{ = .true.}, 
     589or both \np{ln\_traldf\_hor}\forcode{ = .true.} and \np{ln\_zco}\forcode{ = .true.}. 
    579590The way these slopes are evaluated is given in \autoref{sec:LDF_slp}. 
    580591At the surface, bottom and lateral boundaries, the turbulent fluxes of heat and salt are set to zero using 
     
    590601This formulation conserves the tracer but does not ensure the decrease of the tracer variance. 
    591602Nevertheless the treatment performed on the slopes (see \autoref{chap:LDF}) allows the model to run safely without 
    592 any additional background horizontal diffusion \citep{Guilyardi_al_CD01}. 
    593  
    594 Note that in the partial step $z$-coordinate (\np{ln\_zps}~\forcode{= .true.}), 
     603any additional background horizontal diffusion \citep{guilyardi.madec.ea_CD01}. 
     604 
     605Note that in the partial step $z$-coordinate (\np{ln\_zps}\forcode{ = .true.}), 
    595606the horizontal derivatives at the bottom level in \autoref{eq:tra_ldf_iso} require a specific treatment. 
    596607They are calculated in module zpshde, described in \autoref{sec:TRA_zpshde}. 
    597608 
    598 %&&     Triad rotated (bi -)laplacian operator 
     609%&&     Triad rotated (bi-)laplacian operator 
    599610%&&  ------------------------------------------- 
    600 \subsubsection{Triad rotated (bi -)laplacian operator (\protect\np{ln\_traldf\_triad})} 
     611\subsubsection[Triad rotated (bi-)laplacian operator (\textit{ln\_traldf\_triad})] 
     612{Triad rotated (bi-)laplacian operator (\protect\np{ln\_traldf\_triad})} 
    601613\label{subsec:TRA_ldf_triad} 
    602614 
    603 If the Griffies triad scheme is employed (\np{ln\_traldf\_triad}~\forcode{= .true.}; see \autoref{apdx:triad}) 
    604  
    605 An alternative scheme developed by \cite{Griffies_al_JPO98} which ensures tracer variance decreases 
    606 is also available in \NEMO (\np{ln\_traldf\_grif}~\forcode{= .true.}). 
     615If the Griffies triad scheme is employed (\np{ln\_traldf\_triad}\forcode{ = .true.}; see \autoref{apdx:triad}) 
     616 
     617An alternative scheme developed by \cite{griffies.gnanadesikan.ea_JPO98} which ensures tracer variance decreases 
     618is also available in \NEMO (\np{ln\_traldf\_grif}\forcode{ = .true.}). 
    607619A complete description of the algorithm is given in \autoref{apdx:triad}. 
    608620 
     
    632644% Tracer Vertical Diffusion 
    633645% ================================================================ 
    634 \section{Tracer vertical diffusion (\protect\mdl{trazdf})} 
     646\section[Tracer vertical diffusion (\textit{trazdf.F90})] 
     647{Tracer vertical diffusion (\protect\mdl{trazdf})} 
    635648\label{sec:TRA_zdf} 
    636649%--------------------------------------------namzdf--------------------------------------------------------- 
     
    663676 
    664677The large eddy coefficient found in the mixed layer together with high vertical resolution implies that 
    665 in the case of explicit time stepping (\np{ln\_zdfexp}~\forcode{= .true.}) 
     678in the case of explicit time stepping (\np{ln\_zdfexp}\forcode{ = .true.}) 
    666679there would be too restrictive a constraint on the time step. 
    667680Therefore, the default implicit time stepping is preferred for the vertical diffusion since 
    668681it overcomes the stability constraint. 
    669 A forward time differencing scheme (\np{ln\_zdfexp}~\forcode{= .true.}) using 
     682A forward time differencing scheme (\np{ln\_zdfexp}\forcode{ = .true.}) using 
    670683a time splitting technique (\np{nn\_zdfexp} $> 1$) is provided as an alternative. 
    671684Namelist variables \np{ln\_zdfexp} and \np{nn\_zdfexp} apply to both tracers and dynamics. 
     
    680693%        surface boundary condition 
    681694% ------------------------------------------------------------------------------------------------------------- 
    682 \subsection{Surface boundary condition (\protect\mdl{trasbc})} 
     695\subsection[Surface boundary condition (\textit{trasbc.F90})] 
     696{Surface boundary condition (\protect\mdl{trasbc})} 
    683697\label{subsec:TRA_sbc} 
    684698 
     
    730744Such time averaging prevents the divergence of odd and even time step (see \autoref{chap:STP}). 
    731745 
    732 In the linear free surface case (\np{ln\_linssh}~\forcode{= .true.}), an additional term has to be added on 
     746In the linear free surface case (\np{ln\_linssh}\forcode{ = .true.}), an additional term has to be added on 
    733747both temperature and salinity. 
    734748On temperature, this term remove the heat content associated with mass exchange that has been added to $Q_{ns}$. 
     
    747761Note that an exact conservation of heat and salt content is only achieved with non-linear free surface. 
    748762In the linear free surface case, there is a small imbalance. 
    749 The imbalance is larger than the imbalance associated with the Asselin time filter \citep{Leclair_Madec_OM09}. 
     763The imbalance is larger than the imbalance associated with the Asselin time filter \citep{leclair.madec_OM09}. 
    750764This is the reason why the modified filter is not applied in the linear free surface case (see \autoref{chap:STP}). 
    751765 
     
    753767%        Solar Radiation Penetration  
    754768% ------------------------------------------------------------------------------------------------------------- 
    755 \subsection{Solar radiation penetration (\protect\mdl{traqsr})} 
     769\subsection[Solar radiation penetration (\textit{traqsr.F90})] 
     770{Solar radiation penetration (\protect\mdl{traqsr})} 
    756771\label{subsec:TRA_qsr} 
    757772%--------------------------------------------namqsr-------------------------------------------------------- 
     
    761776 
    762777Options are defined through the \ngn{namtra\_qsr} namelist variables. 
    763 When the penetrative solar radiation option is used (\np{ln\_flxqsr}~\forcode{= .true.}), 
     778When the penetrative solar radiation option is used (\np{ln\_flxqsr}\forcode{ = .true.}), 
    764779the solar radiation penetrates the top few tens of meters of the ocean. 
    765 If it is not used (\np{ln\_flxqsr}~\forcode{= .false.}) all the heat flux is absorbed in the first ocean level. 
     780If it is not used (\np{ln\_flxqsr}\forcode{ = .false.}) all the heat flux is absorbed in the first ocean level. 
    766781Thus, in the former case a term is added to the time evolution equation of temperature \autoref{eq:PE_tra_T} and 
    767782the surface boundary condition is modified to take into account only the non-penetrative part of the surface  
     
    792807larger depths where it contributes to local heating. 
    793808The way this second part of the solar energy penetrates into the ocean depends on which formulation is chosen. 
    794 In the simple 2-waveband light penetration scheme (\np{ln\_qsr\_2bd}~\forcode{= .true.}) 
     809In the simple 2-waveband light penetration scheme (\np{ln\_qsr\_2bd}\forcode{ = .true.}) 
    795810a chlorophyll-independent monochromatic formulation is chosen for the shorter wavelengths, 
    796 leading to the following expression \citep{Paulson1977}: 
     811leading to the following expression \citep{paulson.simpson_JPO77}: 
    797812\[ 
    798813  % \label{eq:traqsr_iradiance} 
     
    805820 
    806821Such assumptions have been shown to provide a very crude and simplistic representation of 
    807 observed light penetration profiles (\cite{Morel_JGR88}, see also \autoref{fig:traqsr_irradiance}). 
     822observed light penetration profiles (\cite{morel_JGR88}, see also \autoref{fig:traqsr_irradiance}). 
    808823Light absorption in the ocean depends on particle concentration and is spectrally selective. 
    809 \cite{Morel_JGR88} has shown that an accurate representation of light penetration can be provided by 
     824\cite{morel_JGR88} has shown that an accurate representation of light penetration can be provided by 
    810825a 61 waveband formulation. 
    811826Unfortunately, such a model is very computationally expensive. 
    812 Thus, \cite{Lengaigne_al_CD07} have constructed a simplified version of this formulation in which 
     827Thus, \cite{lengaigne.menkes.ea_CD07} have constructed a simplified version of this formulation in which 
    813828visible light is split into three wavebands: blue (400-500 nm), green (500-600 nm) and red (600-700nm). 
    814829For each wave-band, the chlorophyll-dependent attenuation coefficient is fitted to the coefficients computed from 
    815 the full spectral model of \cite{Morel_JGR88} (as modified by \cite{Morel_Maritorena_JGR01}), 
     830the full spectral model of \cite{morel_JGR88} (as modified by \cite{morel.maritorena_JGR01}), 
    816831assuming the same power-law relationship. 
    817832As shown in \autoref{fig:traqsr_irradiance}, this formulation, called RGB (Red-Green-Blue), 
     
    820835The 2-bands formulation does not reproduce the full model very well. 
    821836 
    822 The RGB formulation is used when \np{ln\_qsr\_rgb}~\forcode{= .true.}. 
     837The RGB formulation is used when \np{ln\_qsr\_rgb}\forcode{ = .true.}. 
    823838The RGB attenuation coefficients (\ie the inverses of the extinction length scales) are tabulated over 
    82483961 nonuniform chlorophyll classes ranging from 0.01 to 10 g.Chl/L 
     
    827842 
    828843\begin{description} 
    829 \item[\np{nn\_chdta}~\forcode{= 0}] 
     844\item[\np{nn\_chdta}\forcode{ = 0}] 
    830845  a constant 0.05 g.Chl/L value everywhere ;  
    831 \item[\np{nn\_chdta}~\forcode{= 1}] 
     846\item[\np{nn\_chdta}\forcode{ = 1}] 
    832847  an observed time varying chlorophyll deduced from satellite surface ocean color measurement spread uniformly in 
    833848  the vertical direction; 
    834 \item[\np{nn\_chdta}~\forcode{= 2}] 
     849\item[\np{nn\_chdta}\forcode{ = 2}] 
    835850  same as previous case except that a vertical profile of chlorophyl is used. 
    836   Following \cite{Morel_Berthon_LO89}, the profile is computed from the local surface chlorophyll value; 
    837 \item[\np{ln\_qsr\_bio}~\forcode{= .true.}] 
     851  Following \cite{morel.berthon_LO89}, the profile is computed from the local surface chlorophyll value; 
     852\item[\np{ln\_qsr\_bio}\forcode{ = .true.}] 
    838853  simulated time varying chlorophyll by TOP biogeochemical model. 
    839854  In this case, the RGB formulation is used to calculate both the phytoplankton light limitation in 
     
    856871\begin{figure}[!t] 
    857872  \begin{center} 
    858     \includegraphics[]{Fig_TRA_Irradiance} 
     873    \includegraphics[width=\textwidth]{Fig_TRA_Irradiance} 
    859874    \caption{ 
    860875      \protect\label{fig:traqsr_irradiance} 
     
    865880      61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of 
    866881      (a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. 
    867       From \citet{Lengaigne_al_CD07}. 
     882      From \citet{lengaigne.menkes.ea_CD07}. 
    868883    } 
    869884  \end{center} 
     
    874889%        Bottom Boundary Condition 
    875890% ------------------------------------------------------------------------------------------------------------- 
    876 \subsection{Bottom boundary condition (\protect\mdl{trabbc})} 
     891\subsection[Bottom boundary condition (\textit{trabbc.F90})] 
     892{Bottom boundary condition (\protect\mdl{trabbc})} 
    877893\label{subsec:TRA_bbc} 
    878894%--------------------------------------------nambbc-------------------------------------------------------- 
     
    883899\begin{figure}[!t] 
    884900  \begin{center} 
    885     \includegraphics[]{Fig_TRA_geoth} 
     901    \includegraphics[width=\textwidth]{Fig_TRA_geoth} 
    886902    \caption{ 
    887903      \protect\label{fig:geothermal} 
    888       Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{Emile-Geay_Madec_OS09}. 
    889       It is inferred from the age of the sea floor and the formulae of \citet{Stein_Stein_Nat92}. 
     904      Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{emile-geay.madec_OS09}. 
     905      It is inferred from the age of the sea floor and the formulae of \citet{stein.stein_N92}. 
    890906    } 
    891907  \end{center} 
     
    897913This is the default option in \NEMO, and it is implemented using the masking technique. 
    898914However, there is a non-zero heat flux across the seafloor that is associated with solid earth cooling. 
    899 This flux is weak compared to surface fluxes (a mean global value of $\sim 0.1 \, W/m^2$ \citep{Stein_Stein_Nat92}), 
     915This flux is weak compared to surface fluxes (a mean global value of $\sim 0.1 \, W/m^2$ \citep{stein.stein_N92}), 
    900916but it warms systematically the ocean and acts on the densest water masses. 
    901917Taking this flux into account in a global ocean model increases the deepest overturning cell 
    902 (\ie the one associated with the Antarctic Bottom Water) by a few Sverdrups \citep{Emile-Geay_Madec_OS09}. 
     918(\ie the one associated with the Antarctic Bottom Water) by a few Sverdrups \citep{emile-geay.madec_OS09}. 
    903919 
    904920Options are defined through the  \ngn{namtra\_bbc} namelist variables. 
     
    907923the \np{nn\_geoflx\_cst}, which is also a namelist parameter. 
    908924When \np{nn\_geoflx} is set to 2, a spatially varying geothermal heat flux is introduced which is provided in 
    909 the \ifile{geothermal\_heating} NetCDF file (\autoref{fig:geothermal}) \citep{Emile-Geay_Madec_OS09}. 
     925the \ifile{geothermal\_heating} NetCDF file (\autoref{fig:geothermal}) \citep{emile-geay.madec_OS09}. 
    910926 
    911927% ================================================================ 
    912928% Bottom Boundary Layer 
    913929% ================================================================ 
    914 \section{Bottom boundary layer (\protect\mdl{trabbl} - \protect\key{trabbl})} 
     930\section[Bottom boundary layer (\textit{trabbl.F90} - \texttt{\textbf{key\_trabbl}})] 
     931{Bottom boundary layer (\protect\mdl{trabbl} - \protect\key{trabbl})} 
    915932\label{sec:TRA_bbl} 
    916933%--------------------------------------------nambbl--------------------------------------------------------- 
     
    931948sometimes over a thickness much larger than the thickness of the observed gravity plume. 
    932949A similar problem occurs in the $s$-coordinate when the thickness of the bottom level varies rapidly downstream of 
    933 a sill \citep{Willebrand_al_PO01}, and the thickness of the plume is not resolved. 
    934  
    935 The idea of the bottom boundary layer (BBL) parameterisation, first introduced by \citet{Beckmann_Doscher1997}, 
     950a sill \citep{willebrand.barnier.ea_PO01}, and the thickness of the plume is not resolved. 
     951 
     952The idea of the bottom boundary layer (BBL) parameterisation, first introduced by \citet{beckmann.doscher_JPO97}, 
    936953is to allow a direct communication between two adjacent bottom cells at different levels, 
    937954whenever the densest water is located above the less dense water. 
     
    939956In the current implementation of the BBL, only the tracers are modified, not the velocities. 
    940957Furthermore, it only connects ocean bottom cells, and therefore does not include all the improvements introduced by 
    941 \citet{Campin_Goosse_Tel99}. 
     958\citet{campin.goosse_T99}. 
    942959 
    943960% ------------------------------------------------------------------------------------------------------------- 
    944961%        Diffusive BBL 
    945962% ------------------------------------------------------------------------------------------------------------- 
    946 \subsection{Diffusive bottom boundary layer (\protect\np{nn\_bbl\_ldf}~\forcode{= 1})} 
     963\subsection[Diffusive bottom boundary layer (\forcode{nn_bbl_ldf = 1})] 
     964{Diffusive bottom boundary layer (\protect\np{nn\_bbl\_ldf}\forcode{ = 1})} 
    947965\label{subsec:TRA_bbl_diff} 
    948966 
     
    955973with $\nabla_\sigma$ the lateral gradient operator taken between bottom cells, and 
    956974$A_l^\sigma$ the lateral diffusivity in the BBL. 
    957 Following \citet{Beckmann_Doscher1997}, the latter is prescribed with a spatial dependence, 
     975Following \citet{beckmann.doscher_JPO97}, the latter is prescribed with a spatial dependence, 
    958976\ie in the conditional form 
    959977\begin{equation} 
     
    9831001%        Advective BBL 
    9841002% ------------------------------------------------------------------------------------------------------------- 
    985 \subsection{Advective bottom boundary layer  (\protect\np{nn\_bbl\_adv}~\forcode{= 1..2})} 
     1003\subsection[Advective bottom boundary layer (\forcode{nn_bbl_adv = [12]})] 
     1004{Advective bottom boundary layer (\protect\np{nn\_bbl\_adv}\forcode{ = [12]})} 
    9861005\label{subsec:TRA_bbl_adv} 
    9871006 
     
    9941013\begin{figure}[!t] 
    9951014  \begin{center} 
    996     \includegraphics[]{Fig_BBL_adv} 
     1015    \includegraphics[width=\textwidth]{Fig_BBL_adv} 
    9971016    \caption{ 
    9981017      \protect\label{fig:bbl} 
     
    10141033%%%gmcomment   :  this section has to be really written 
    10151034 
    1016 When applying an advective BBL (\np{nn\_bbl\_adv}~\forcode{= 1..2}), an overturning circulation is added which 
     1035When applying an advective BBL (\np{nn\_bbl\_adv}\forcode{ = 1..2}), an overturning circulation is added which 
    10171036connects two adjacent bottom grid-points only if dense water overlies less dense water on the slope. 
    10181037The density difference causes dense water to move down the slope. 
    10191038 
    1020 \np{nn\_bbl\_adv}~\forcode{= 1}: 
     1039\np{nn\_bbl\_adv}\forcode{ = 1}: 
    10211040the downslope velocity is chosen to be the Eulerian ocean velocity just above the topographic step 
    1022 (see black arrow in \autoref{fig:bbl}) \citep{Beckmann_Doscher1997}. 
     1041(see black arrow in \autoref{fig:bbl}) \citep{beckmann.doscher_JPO97}. 
    10231042It is a \textit{conditional advection}, that is, advection is allowed only 
    10241043if dense water overlies less dense water on the slope (\ie $\nabla_\sigma \rho \cdot \nabla H < 0$) and 
    10251044if the velocity is directed towards greater depth (\ie $\vect U \cdot \nabla H > 0$). 
    10261045 
    1027 \np{nn\_bbl\_adv}~\forcode{= 2}: 
     1046\np{nn\_bbl\_adv}\forcode{ = 2}: 
    10281047the downslope velocity is chosen to be proportional to $\Delta \rho$, 
    1029 the density difference between the higher cell and lower cell densities \citep{Campin_Goosse_Tel99}. 
     1048the density difference between the higher cell and lower cell densities \citep{campin.goosse_T99}. 
    10301049The advection is allowed only  if dense water overlies less dense water on the slope 
    10311050(\ie $\nabla_\sigma \rho \cdot \nabla H < 0$). 
     
    10411060The parameter $\gamma$ should take a different value for each bathymetric step, but for simplicity, 
    10421061and because no direct estimation of this parameter is available, a uniform value has been assumed. 
    1043 The possible values for $\gamma$ range between 1 and $10~s$ \citep{Campin_Goosse_Tel99}. 
     1062The possible values for $\gamma$ range between 1 and $10~s$ \citep{campin.goosse_T99}. 
    10441063 
    10451064Scalar properties are advected by this additional transport $(u^{tr}_{bbl},v^{tr}_{bbl})$ using the upwind scheme. 
     
    10741093% Tracer damping 
    10751094% ================================================================ 
    1076 \section{Tracer damping (\protect\mdl{tradmp})} 
     1095\section[Tracer damping (\textit{tradmp.F90})] 
     1096{Tracer damping (\protect\mdl{tradmp})} 
    10771097\label{sec:TRA_dmp} 
    10781098%--------------------------------------------namtra_dmp------------------------------------------------- 
     
    11091129In the vicinity of these walls, $\gamma$ takes large values (equivalent to a time scale of a few days) whereas 
    11101130it is zero in the interior of the model domain. 
    1111 The second case corresponds to the use of the robust diagnostic method \citep{Sarmiento1982}. 
     1131The second case corresponds to the use of the robust diagnostic method \citep{sarmiento.bryan_JGR82}. 
    11121132It allows us to find the velocity field consistent with the model dynamics whilst 
    11131133having a $T$, $S$ field close to a given climatological field ($T_o$, $S_o$). 
     
    11211141only below the mixed layer (defined either on a density or $S_o$ criterion). 
    11221142It is common to set the damping to zero in the mixed layer as the adjustment time scale is short here 
    1123 \citep{Madec_al_JPO96}. 
     1143\citep{madec.delecluse.ea_JPO96}. 
    11241144 
    11251145For generating \ifile{resto}, see the documentation for the DMP tool provided with the source code under 
     
    11291149% Tracer time evolution 
    11301150% ================================================================ 
    1131 \section{Tracer time evolution (\protect\mdl{tranxt})} 
     1151\section[Tracer time evolution (\textit{tranxt.F90})] 
     1152{Tracer time evolution (\protect\mdl{tranxt})} 
    11321153\label{sec:TRA_nxt} 
    11331154%--------------------------------------------namdom----------------------------------------------------- 
     
    11371158 
    11381159Options are defined through the \ngn{namdom} namelist variables. 
    1139 The general framework for tracer time stepping is a modified leap-frog scheme \citep{Leclair_Madec_OM09}, 
     1160The general framework for tracer time stepping is a modified leap-frog scheme \citep{leclair.madec_OM09}, 
    11401161\ie a three level centred time scheme associated with a Asselin time filter (cf. \autoref{sec:STP_mLF}): 
    11411162\begin{equation} 
     
    11511172(\ie fluxes plus content in mass exchanges). 
    11521173$\gamma$ is initialized as \np{rn\_atfp} (\textbf{namelist} parameter). 
    1153 Its default value is \np{rn\_atfp}~\forcode{= 10.e-3}. 
     1174Its default value is \np{rn\_atfp}\forcode{ = 10.e-3}. 
    11541175Note that the forcing correction term in the filter is not applied in linear free surface 
    1155 (\jp{lk\_vvl}~\forcode{= .false.}) (see \autoref{subsec:TRA_sbc}). 
     1176(\jp{lk\_vvl}\forcode{ = .false.}) (see \autoref{subsec:TRA_sbc}). 
    11561177Not also that in constant volume case, the time stepping is performed on $T$, not on its content, $e_{3t}T$. 
    11571178 
     
    11661187% Equation of State (eosbn2)  
    11671188% ================================================================ 
    1168 \section{Equation of state (\protect\mdl{eosbn2}) } 
     1189\section[Equation of state (\textit{eosbn2.F90})] 
     1190{Equation of state (\protect\mdl{eosbn2})} 
    11691191\label{sec:TRA_eosbn2} 
    11701192%--------------------------------------------nameos----------------------------------------------------- 
     
    11761198%        Equation of State 
    11771199% ------------------------------------------------------------------------------------------------------------- 
    1178 \subsection{Equation of seawater (\protect\np{nn\_eos}~\forcode{= -1..1})} 
     1200\subsection[Equation of seawater (\forcode{nn_eos = {-1,1}})] 
     1201{Equation of seawater (\protect\np{nn\_eos}\forcode{ = {-1,1}})} 
    11791202\label{subsec:TRA_eos} 
    11801203 
     
    11861209Nonlinearities of the EOS are of major importance, in particular influencing the circulation through 
    11871210determination of the static stability below the mixed layer, 
    1188 thus controlling rates of exchange between the atmosphere and the ocean interior \citep{Roquet_JPO2015}. 
    1189 Therefore an accurate EOS based on either the 1980 equation of state (EOS-80, \cite{UNESCO1983}) or 
    1190 TEOS-10 \citep{TEOS10} standards should be used anytime a simulation of the real ocean circulation is attempted 
    1191 \citep{Roquet_JPO2015}. 
     1211thus controlling rates of exchange between the atmosphere and the ocean interior \citep{roquet.madec.ea_JPO15}. 
     1212Therefore an accurate EOS based on either the 1980 equation of state (EOS-80, \cite{fofonoff.millard_bk83}) or 
     1213TEOS-10 \citep{ioc.iapso_bk10} standards should be used anytime a simulation of the real ocean circulation is attempted 
     1214\citep{roquet.madec.ea_JPO15}. 
    11921215The use of TEOS-10 is highly recommended because 
    11931216\textit{(i)}   it is the new official EOS, 
     
    11951218\textit{(iii)} it uses Conservative Temperature and Absolute Salinity (instead of potential temperature and 
    11961219practical salinity for EOS-980, both variables being more suitable for use as model variables 
    1197 \citep{TEOS10, Graham_McDougall_JPO13}. 
     1220\citep{ioc.iapso_bk10, graham.mcdougall_JPO13}. 
    11981221EOS-80 is an obsolescent feature of the NEMO system, kept only for backward compatibility. 
    11991222For process studies, it is often convenient to use an approximation of the EOS. 
    1200 To that purposed, a simplified EOS (S-EOS) inspired by \citet{Vallis06} is also available. 
     1223To that purposed, a simplified EOS (S-EOS) inspired by \citet{vallis_bk06} is also available. 
    12011224 
    12021225In the computer code, a density anomaly, $d_a = \rho / \rho_o - 1$, is computed, with $\rho_o$ a reference density. 
     
    12041227This is a sensible choice for the reference density used in a Boussinesq ocean climate model, as, 
    12051228with the exception of only a small percentage of the ocean, 
    1206 density in the World Ocean varies by no more than 2$\%$ from that value \citep{Gill1982}. 
     1229density in the World Ocean varies by no more than 2$\%$ from that value \citep{gill_bk82}. 
    12071230 
    12081231Options are defined through the \ngn{nameos} namelist variables, and in particular \np{nn\_eos} which 
     
    12101233 
    12111234\begin{description} 
    1212 \item[\np{nn\_eos}~\forcode{= -1}] 
    1213   the polyTEOS10-bsq equation of seawater \citep{Roquet_OM2015} is used. 
     1235\item[\np{nn\_eos}\forcode{ = -1}] 
     1236  the polyTEOS10-bsq equation of seawater \citep{roquet.madec.ea_OM15} is used. 
    12141237  The accuracy of this approximation is comparable to the TEOS-10 rational function approximation, 
    12151238  but it is optimized for a boussinesq fluid and the polynomial expressions have simpler and 
     
    12171240  use in ocean models. 
    12181241  Note that a slightly higher precision polynomial form is now used replacement of 
    1219   the TEOS-10 rational function approximation for hydrographic data analysis \citep{TEOS10}. 
     1242  the TEOS-10 rational function approximation for hydrographic data analysis \citep{ioc.iapso_bk10}. 
    12201243  A key point is that conservative state variables are used: 
    12211244  Absolute Salinity (unit: g/kg, notation: $S_A$) and Conservative Temperature (unit: \deg{C}, notation: $\Theta$). 
    12221245  The pressure in decibars is approximated by the depth in meters. 
    12231246  With TEOS10, the specific heat capacity of sea water, $C_p$, is a constant. 
    1224   It is set to $C_p = 3991.86795711963~J\,Kg^{-1}\,^{\circ}K^{-1}$, according to \citet{TEOS10}. 
     1247  It is set to $C_p = 3991.86795711963~J\,Kg^{-1}\,^{\circ}K^{-1}$, according to \citet{ioc.iapso_bk10}. 
    12251248  Choosing polyTEOS10-bsq implies that the state variables used by the model are $\Theta$ and $S_A$. 
    12261249  In particular, the initial state deined by the user have to be given as \textit{Conservative} Temperature and 
     
    12291252  either computing the air-sea and ice-sea fluxes (forced mode) or 
    12301253  sending the SST field to the atmosphere (coupled mode). 
    1231 \item[\np{nn\_eos}~\forcode{= 0}] 
     1254\item[\np{nn\_eos}\forcode{ = 0}] 
    12321255  the polyEOS80-bsq equation of seawater is used. 
    12331256  It takes the same polynomial form as the polyTEOS10, but the coefficients have been optimized to 
     
    12381261  The pressure in decibars is approximated by the depth in meters. 
    12391262  With thsi EOS, the specific heat capacity of sea water, $C_p$, is a function of temperature, salinity and 
    1240   pressure \citep{UNESCO1983}. 
     1263  pressure \citep{fofonoff.millard_bk83}. 
    12411264  Nevertheless, a severe assumption is made in order to have a heat content ($C_p T_p$) which 
    12421265  is conserved by the model: $C_p$ is set to a constant value, the TEOS10 value. 
    1243 \item[\np{nn\_eos}~\forcode{= 1}] 
    1244   a simplified EOS (S-EOS) inspired by \citet{Vallis06} is chosen, 
     1266\item[\np{nn\_eos}\forcode{ = 1}] 
     1267  a simplified EOS (S-EOS) inspired by \citet{vallis_bk06} is chosen, 
    12451268  the coefficients of which has been optimized to fit the behavior of TEOS10 
    1246   (Roquet, personal comm.) (see also \citet{Roquet_JPO2015}). 
     1269  (Roquet, personal comm.) (see also \citet{roquet.madec.ea_JPO15}). 
    12471270  It provides a simplistic linear representation of both cabbeling and thermobaricity effects which 
    1248   is enough for a proper treatment of the EOS in theoretical studies \citep{Roquet_JPO2015}. 
     1271  is enough for a proper treatment of the EOS in theoretical studies \citep{roquet.madec.ea_JPO15}. 
    12491272  With such an equation of state there is no longer a distinction between 
    12501273  \textit{conservative} and \textit{potential} temperature, 
     
    13031326%        Brunt-V\"{a}is\"{a}l\"{a} Frequency 
    13041327% ------------------------------------------------------------------------------------------------------------- 
    1305 \subsection{Brunt-V\"{a}is\"{a}l\"{a} frequency (\protect\np{nn\_eos}~\forcode{= 0..2})} 
     1328\subsection[Brunt-V\"{a}is\"{a}l\"{a} frequency (\forcode{nn_eos = [0-2]})] 
     1329{Brunt-V\"{a}is\"{a}l\"{a} frequency (\protect\np{nn\_eos}\forcode{ = [0-2]})} 
    13061330\label{subsec:TRA_bn2} 
    13071331 
     
    13291353\label{subsec:TRA_fzp} 
    13301354 
    1331 The freezing point of seawater is a function of salinity and pressure \citep{UNESCO1983}: 
     1355The freezing point of seawater is a function of salinity and pressure \citep{fofonoff.millard_bk83}: 
    13321356\begin{equation} 
    13331357  \label{eq:tra_eos_fzp} 
     
    13571381% Horizontal Derivative in zps-coordinate  
    13581382% ================================================================ 
    1359 \section{Horizontal derivative in \textit{zps}-coordinate (\protect\mdl{zpshde})} 
     1383\section[Horizontal derivative in \textit{zps}-coordinate (\textit{zpshde.F90})] 
     1384{Horizontal derivative in \textit{zps}-coordinate (\protect\mdl{zpshde})} 
    13601385\label{sec:TRA_zpshde} 
    13611386 
     
    13631388I've changed "derivative" to "difference" and "mean" to "average"} 
    13641389 
    1365 With partial cells (\np{ln\_zps}~\forcode{= .true.}) at bottom and top (\np{ln\_isfcav}~\forcode{= .true.}), 
     1390With partial cells (\np{ln\_zps}\forcode{ = .true.}) at bottom and top (\np{ln\_isfcav}\forcode{ = .true.}), 
    13661391in general, tracers in horizontally adjacent cells live at different depths. 
    13671392Horizontal gradients of tracers are needed for horizontal diffusion (\mdl{traldf} module) and 
    13681393the hydrostatic pressure gradient calculations (\mdl{dynhpg} module). 
    1369 The partial cell properties at the top (\np{ln\_isfcav}~\forcode{= .true.}) are computed in the same way as 
     1394The partial cell properties at the top (\np{ln\_isfcav}\forcode{ = .true.}) are computed in the same way as 
    13701395for the bottom. 
    13711396So, only the bottom interpolation is explained below. 
     
    13791404\begin{figure}[!p] 
    13801405  \begin{center} 
    1381     \includegraphics[]{Fig_partial_step_scheme} 
     1406    \includegraphics[width=\textwidth]{Fig_partial_step_scheme} 
    13821407    \caption{ 
    13831408      \protect\label{fig:Partial_step_scheme} 
    13841409      Discretisation of the horizontal difference and average of tracers in the $z$-partial step coordinate 
    1385       (\protect\np{ln\_zps}~\forcode{= .true.}) in the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 
     1410      (\protect\np{ln\_zps}\forcode{ = .true.}) in the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 
    13861411      A linear interpolation is used to estimate $\widetilde T_k^{i + 1}$, 
    13871412      the tracer value at the depth of the shallower tracer point of the two adjacent bottom $T$-points. 
Note: See TracChangeset for help on using the changeset viewer.