New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11422 for NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO/subfiles/chap_conservation.tex – NEMO

Ignore:
Timestamp:
2019-08-08T15:40:47+02:00 (5 years ago)
Author:
jchanut
Message:

#1791, merge with trunk

Location:
NEMO/branches/2019/fix_vvl_ticket1791/doc
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/fix_vvl_ticket1791/doc

    • Property svn:ignore deleted
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
        8 *.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
         1figures 
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO

    • Property svn:ignore deleted
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO/subfiles/chap_conservation.tex

    r10442 r11422  
    2121horizontal kinetic energy and/or potential enstrophy of horizontally non-divergent flow, 
    2222and variance of temperature and salinity will be conserved in the absence of dissipative effects and forcing. 
    23 \citet{Arakawa1966} has first pointed out the advantage of this approach. 
     23\citet{arakawa_JCP66} has first pointed out the advantage of this approach. 
    2424He showed that if integral constraints on energy are maintained, 
    2525the computation will be free of the troublesome "non linear" instability originally pointed out by 
    26 \citet{Phillips1959}. 
     26\citet{phillips_TAMS59}. 
    2727A consistent formulation of the energetic properties is also extremely important in carrying out 
    2828long-term numerical simulations for an oceanographic model. 
    29 Such a formulation avoids systematic errors that accumulate with time \citep{Bryan1997}. 
     29Such a formulation avoids systematic errors that accumulate with time \citep{bryan_JCP97}. 
    3030 
    3131The general philosophy of OPA which has led to the discrete formulation presented in {\S}II.2 and II.3 is to 
     
    3939Note that in some very specific cases as passive tracer studies, the positivity of the advective scheme is required. 
    4040In that case, and in that case only, the advective scheme used for passive tracer is a flux correction scheme 
    41 \citep{Marti1992, Levy1996, Levy1998}. 
     41\citep{Marti1992?, Levy1996?, Levy1998?}. 
    4242 
    4343% ------------------------------------------------------------------------------------------------------------- 
     
    6565  % \label{eq:vor_vorticity} 
    6666  \int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma 
    67         \;{\rm {\bf k}}\times {\textbf {U}}_h } \right)\;dv} =0 
     67        \;{\mathrm {\mathbf k}}\times {\textbf {U}}_h } \right)\;dv} =0 
    6868\] 
    6969 
     
    189189\[ 
    190190  % \label{eq:dynldf_dyn} 
    191   \int\limits_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left[ {\nabla 
     191  \int\limits_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left[ {\nabla 
    192192        _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta 
    193             \;{\rm {\bf k}}} \right)} \right]\;dv} =0 
     193            \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} =0 
    194194\] 
    195195 
     
    197197  % \label{eq:dynldf_div} 
    198198  \int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
    199         \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
     199        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} 
    200200    \right]\;dv} =0 
    201201\] 
     
    203203\[ 
    204204  % \label{eq:dynldf_curl} 
    205   \int_D {{\rm {\bf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
    206         \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
     205  \int_D {{\mathrm {\mathbf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
     206        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} 
    207207    \right]\;dv} \leqslant 0 
    208208\] 
     
    210210\[ 
    211211  % \label{eq:dynldf_curl2} 
    212   \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\rm {\bf k}}\cdot 
     212  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\mathrm {\mathbf k}}\cdot 
    213213    \nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h 
    214         \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} 
     214        \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} 
    215215  \leqslant 0 
    216216\] 
     
    220220  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[ 
    221221      {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( 
    222           {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} \leqslant 0 
     222          {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} \right]\;dv} \leqslant 0 
    223223\] 
    224224 
     
    260260  % \label{eq:dynzdf_vor} 
    261261  \begin{aligned} 
    262     & \int_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3 
    263           }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
    264                   {\bf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\ 
    265     & \int_D {\zeta \,{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3 
    266           }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
    267                   {\bf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\ 
     262    & \int_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3 
     263          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm 
     264                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\ 
     265    & \int_D {\zeta \,{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3 
     266          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm 
     267                  {\mathbf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\ 
    268268  \end{aligned} 
    269269\] 
     
    273273  \begin{aligned} 
    274274    &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
    275             k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
     275            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} 
    276276          \right)} \right)\;dv} =0 \\ 
    277277    & \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
    278             k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
     278            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} 
    279279          \right)} \right)\;dv} \leq 0 \\ 
    280280  \end{aligned} 
Note: See TracChangeset for help on using the changeset viewer.