New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11512 for NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/chap_model_basics.tex – NEMO

Ignore:
Timestamp:
2019-09-09T12:05:20+02:00 (5 years ago)
Author:
smasson
Message:

dev_r10984_HPC-13 : merge with trunk@11511, see #2285

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/chap_model_basics.tex

    r11353 r11512  
     1 
    12\documentclass[../main/NEMO_manual]{subfiles} 
    23 
     
    89\chapter{Model Basics} 
    910\label{chap:PE} 
    10 \minitoc 
     11 
     12\chaptertoc 
    1113 
    1214\newpage 
     
    1921 
    2022% ------------------------------------------------------------------------------------------------------------- 
    21 %        Vector Invariant Formulation  
     23%        Vector Invariant Formulation 
    2224% ------------------------------------------------------------------------------------------------------------- 
    2325 
     
    2628 
    2729The ocean is a fluid that can be described to a good approximation by the primitive equations, 
    28 \ie the Navier-Stokes equations along with a nonlinear equation of state which 
     30\ie\ the Navier-Stokes equations along with a nonlinear equation of state which 
    2931couples the two active tracers (temperature and salinity) to the fluid velocity, 
    3032plus the following additional assumptions made from scale considerations: 
     
    3436  \textit{spherical Earth approximation}: the geopotential surfaces are assumed to be oblate spheriods 
    3537  that follow the Earth's bulge; these spheroids are approximated by spheres with 
    36   gravity locally vertical (parallel to the Earth's radius) and independent of latitude  
    37   \citep[][section 2]{white.hoskins.ea_QJRMS05}.    
     38  gravity locally vertical (parallel to the Earth's radius) and independent of latitude 
     39  \citep[][section 2]{white.hoskins.ea_QJRMS05}. 
    3840\item 
    3941  \textit{thin-shell approximation}: the ocean depth is neglected compared to the earth's radius 
     
    6567    \nabla \cdot \vect U = 0 
    6668  \end{equation} 
    67  \item  
    68   \textit{Neglect of additional Coriolis terms}: the Coriolis terms that vary with the cosine of latitude are neglected.  
     69 \item 
     70  \textit{Neglect of additional Coriolis terms}: the Coriolis terms that vary with the cosine of latitude are neglected. 
    6971  These terms may be non-negligible where the Brunt-Vaisala frequency $N$ is small, either in the deep ocean or 
    70   in the sub-mesoscale motions of the mixed layer, or near the equator \citep[][section 1]{white.hoskins.ea_QJRMS05}.  
    71   They can be consistently included as part of the ocean dynamics \citep[][section 3(d)]{white.hoskins.ea_QJRMS05} and are  
    72   retained in the MIT ocean model.      
     72  in the sub-mesoscale motions of the mixed layer, or near the equator \citep[][section 1]{white.hoskins.ea_QJRMS05}. 
     73  They can be consistently included as part of the ocean dynamics \citep[][section 3(d)]{white.hoskins.ea_QJRMS05} and are 
     74  retained in the MIT ocean model. 
    7375\end{enumerate} 
    7476 
     
    7678it is useful to choose an orthogonal set of unit vectors $(i,j,k)$ linked to the Earth such that 
    7779$k$ is the local upward vector and $(i,j)$ are two vectors orthogonal to $k$, 
    78 \ie tangent to the geopotential surfaces. 
     80\ie\ tangent to the geopotential surfaces. 
    7981Let us define the following variables: $\vect U$ the vector velocity, $\vect U = \vect U_h + w \, \vect k$ 
    80 (the subscript $h$ denotes the local horizontal vector, \ie over the $(i,j)$ plane),  
     82(the subscript $h$ denotes the local horizontal vector, \ie\ over the $(i,j)$ plane), 
    8183$T$ the potential temperature, $S$ the salinity, $\rho$ the \textit{in situ} density. 
    8284The vector invariant form of the primitive equations in the $(i,j,k)$ vector system provides 
     
    115117an air-sea or ice-sea interface at its top. 
    116118These boundaries can be defined by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,k,t)$, 
    117 where $H$ is the depth of the ocean bottom and $\eta$ is the height of the sea surface  
    118 (discretisation can introduce additional artificial ``side-wall'' boundaries).  
    119 Both $H$ and $\eta$ are referenced to a surface of constant geopotential (\ie a mean sea surface height) on which $z = 0$.  
     119where $H$ is the depth of the ocean bottom and $\eta$ is the height of the sea surface 
     120(discretisation can introduce additional artificial ``side-wall'' boundaries). 
     121Both $H$ and $\eta$ are referenced to a surface of constant geopotential (\ie\ a mean sea surface height) on which $z = 0$. 
    120122(\autoref{fig:ocean_bc}). 
    121123Through these two boundaries, the ocean can exchange fluxes of heat, fresh water, salt, and momentum with 
     
    153155  \footnote{ 
    154156    In fact, it has been shown that the heat flux associated with the solid Earth cooling 
    155     (\ie the geothermal heating) is not negligible for the thermohaline circulation of the world ocean 
     157    (\ie\ the geothermal heating) is not negligible for the thermohaline circulation of the world ocean 
    156158    (see \autoref{subsec:TRA_bbc}). 
    157159  }. 
    158160  The boundary condition is thus set to no flux of heat and salt across solid boundaries. 
    159161  For momentum, the situation is different. There is no flow across solid boundaries, 
    160   \ie the velocity normal to the ocean bottom and coastlines is zero (in other words, 
     162  \ie\ the velocity normal to the ocean bottom and coastlines is zero (in other words, 
    161163  the bottom velocity is parallel to solid boundaries). This kinematic boundary condition 
    162164  can be expressed as: 
     
    221223the time step has to be very short when they are present in the model. 
    222224The latter strategy filters out these waves since the rigid lid approximation implies $\eta = 0$, 
    223 \ie the sea surface is the surface $z = 0$. 
     225\ie\ the sea surface is the surface $z = 0$. 
    224226This well known approximation increases the surface wave speed to infinity and 
    225 modifies certain other longwave dynamics (\eg barotropic Rossby or planetary waves). 
     227modifies certain other longwave dynamics (\eg\ barotropic Rossby or planetary waves). 
    226228The rigid-lid hypothesis is an obsolescent feature in modern OGCMs. 
    227229It has been available until the release 3.1 of \NEMO, and it has been removed in release 3.2 and followings. 
     
    246248Allowing the air-sea interface to move introduces the external gravity waves (EGWs) as 
    247249a class of solution of the primitive equations. 
    248 These waves are barotropic (\ie nearly independent of depth) and their phase speed is quite high. 
     250These waves are barotropic (\ie\ nearly independent of depth) and their phase speed is quite high. 
    249251Their time scale is short with respect to the other processes described by the primitive equations. 
    250252 
     
    275277the implicit scheme \citep{dukowicz.smith_JGR94} or 
    276278the addition of a filtering force in the momentum equation \citep{roullet.madec_JGR00}. 
    277 With the present release, \NEMO  offers the choice between 
     279With the present release, \NEMO\  offers the choice between 
    278280an explicit free surface (see \autoref{subsec:DYN_spg_exp}) or 
    279281a split-explicit scheme strongly inspired the one proposed by \citet{shchepetkin.mcwilliams_OM05} 
     
    293295 
    294296In many ocean circulation problems, the flow field has regions of enhanced dynamics 
    295 (\ie surface layers, western boundary currents, equatorial currents, or ocean fronts). 
     297(\ie\ surface layers, western boundary currents, equatorial currents, or ocean fronts). 
    296298The representation of such dynamical processes can be improved by 
    297299specifically increasing the model resolution in these regions. 
     
    313315$(i,j,k)$ linked to the earth such that 
    314316$k$ is the local upward vector and $(i,j)$ are two vectors orthogonal to $k$, 
    315 \ie along geopotential surfaces (\autoref{fig:referential}). 
     317\ie\ along geopotential surfaces (\autoref{fig:referential}). 
    316318Let $(\lambda,\varphi,z)$ be the geographical coordinate system in which a position is defined by 
    317319the latitude $\varphi(i,j)$, the longitude $\lambda(i,j)$ and 
     
    445447This is the so-called \textit{vector invariant form} of the momentum advection term. 
    446448For some purposes, it can be advantageous to write this term in the so-called flux form, 
    447 \ie to write it as the divergence of fluxes. 
     449\ie\ to write it as the divergence of fluxes. 
    448450For example, the first component of \autoref{eq:PE_vector_form} (the $i$-component) is transformed as follows: 
    449451\begin{alignat*}{2} 
     
    484486the first one is expressed as the divergence of momentum fluxes (hence the flux form name given to this formulation) 
    485487and the second one is due to the curvilinear nature of the coordinate system used. 
    486 The latter is called the \textit{metric} term and can be viewed as a modification of the Coriolis parameter:  
     488The latter is called the \textit{metric} term and can be viewed as a modification of the Coriolis parameter: 
    487489\[ 
    488490  % \label{eq:PE_cor+metric} 
     
    491493 
    492494Note that in the case of geographical coordinate, 
    493 \ie when $(i,j) \to (\lambda,\varphi)$ and $(e_1,e_2) \to (a \, \cos \varphi,a)$, 
     495\ie\ when $(i,j) \to (\lambda,\varphi)$ and $(e_1,e_2) \to (a \, \cos \varphi,a)$, 
    494496we recover the commonly used modification of the Coriolis parameter $f \to f + (u / a) \tan \varphi$. 
    495497 
     
    508510                  &+ D_u^{\vect U} + F_u^{\vect U} \\ 
    509511      \pd[v]{t} = &- (\zeta + f) \, u - \frac{1}{2 e_2} \pd[]{j} (u^2 + v^2) 
    510                    - \frac{1}{e_3} w \pd[v]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) \\  
     512                   - \frac{1}{e_3} w \pd[v]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) \\ 
    511513                  &+ D_v^{\vect U} + F_v^{\vect U} 
    512514    \end{split} 
     
    540542  \[ 
    541543  % \label{eq:w_diag} 
    542     \pd[w]{k} = - \chi \; e_3 \qquad  
     544    \pd[w]{k} = - \chi \; e_3 \qquad 
    543545  % \label{eq:hp_diag} 
    544546    \pd[p_h]{k} = - \rho \; g \; e_3 
     
    546548  where the divergence of the horizontal velocity, $\chi$ is given by \autoref{eq:PE_div_Uh}. 
    547549 
    548 \item  
     550\item 
    549551  \textbf{tracer equations}: 
    550552  \begin{equation} 
     
    579581Therefore, in order to represent the ocean with respect to 
    580582the first point a space and time dependent vertical coordinate that follows the variation of the sea surface height 
    581 \eg an \zstar-coordinate; 
     583\eg\ an \zstar-coordinate; 
    582584for the second point, a space variation to fit the change of bottom topography 
    583 \eg a terrain-following or $\sigma$-coordinate; 
     585\eg\ a terrain-following or $\sigma$-coordinate; 
    584586and for the third point, one will be tempted to use a space and time dependent coordinate that 
    585 follows the isopycnal surfaces, \eg an isopycnic coordinate. 
     587follows the isopycnal surfaces, \eg\ an isopycnic coordinate. 
    586588 
    587589In order to satisfy two or more constraints one can even be tempted to mixed these coordinate systems, as in 
     
    666668  \sigma_2 = \frac{1}{e_2} \; \lt. \pd[z]{j} \rt|_s 
    667669\end{equation} 
    668 We also introduce $\omega$, a dia-surface velocity component, defined as the velocity  
     670We also introduce $\omega$, a dia-surface velocity component, defined as the velocity 
    669671relative to the moving $s$-surfaces and normal to them: 
    670672\[ 
     
    761763 
    762764In this case, the free surface equation is nonlinear, and the variations of volume are fully taken into account. 
    763 These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO web site. 
     765These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO\ web site. 
    764766 
    765767The \zstar coordinate approach is an unapproximated, non-linear free surface implementation which allows one to 
     
    784786\[ 
    785787  % \label{eq:PE_zstar_2} 
    786   \zstar = H \lt( \frac{z - \eta}{H + \eta} \rt) .  
     788  \zstar = H \lt( \frac{z - \eta}{H + \eta} \rt) . 
    787789\] 
    788790Since the vertical displacement of the free surface is incorporated in the vertical coordinate \zstar, 
     
    831833%end MOM doc %%% 
    832834 
    833 \newpage  
     835\newpage 
    834836 
    835837% ------------------------------------------------------------------------------------------------------------- 
     
    911913In contrast, the ocean will stay at rest in a $z$-model. 
    912914As for the truncation error, the problem can be reduced by introducing the terrain-following coordinate below 
    913 the strongly stratified portion of the water column (\ie the main thermocline) \citep{madec.delecluse.ea_JPO96}. 
     915the strongly stratified portion of the water column (\ie\ the main thermocline) \citep{madec.delecluse.ea_JPO96}. 
    914916An alternate solution consists of rotating the lateral diffusive tensor to geopotential or to isoneutral surfaces 
    915917(see \autoref{subsec:PE_ldf}). 
     
    929931 
    930932The \ztilde -coordinate has been developed by \citet{leclair.madec_OM11}. 
    931 It is available in \NEMO since the version 3.4 and is more robust in version 4.0 than previously.  
     933It is available in \NEMO\ since the version 3.4 and is more robust in version 4.0 than previously. 
    932934Nevertheless, it is currently not robust enough to be used in all possible configurations. 
    933935Its use is therefore not recommended. 
    934936 
    935 \newpage  
     937\newpage 
    936938 
    937939% ================================================================ 
     
    947949must be represented entirely in terms of large-scale patterns to close the equations. 
    948950These effects appear in the equations as the divergence of turbulent fluxes 
    949 (\ie fluxes associated with the mean correlation of small scale perturbations). 
     951(\ie\ fluxes associated with the mean correlation of small scale perturbations). 
    950952Assuming a turbulent closure hypothesis is equivalent to choose a formulation for these fluxes. 
    951953It is usually called the subgrid scale physics. 
     
    991993All the vertical physics is embedded in the specification of the eddy coefficients. 
    992994They can be assumed to be either constant, or function of the local fluid properties 
    993 (\eg Richardson number, Brunt-Vais\"{a}l\"{a} frequency, distance from the boundary ...), 
     995(\eg\ Richardson number, Brunt-Vais\"{a}l\"{a} frequency, distance from the boundary ...), 
    994996or computed from a turbulent closure model. 
    995 The choices available in \NEMO are discussed in \autoref{chap:ZDF}). 
     997The choices available in \NEMO\ are discussed in \autoref{chap:ZDF}). 
    996998 
    997999% ------------------------------------------------------------------------------------------------------------- 
     
    10061008and a sub mesoscale turbulence which is never explicitly solved even partially, but always parameterized. 
    10071009The formulation of lateral eddy fluxes depends on whether the mesoscale is below or above the grid-spacing 
    1008 (\ie the model is eddy-resolving or not). 
     1010(\ie\ the model is eddy-resolving or not). 
    10091011 
    10101012In non-eddy-resolving configurations, the closure is similar to that used for the vertical physics. 
     
    10141016(or more precisely neutral surfaces \cite{mcdougall_JPO87}) rather than across them. 
    10151017As the slope of neutral surfaces is small in the ocean, a common approximation is to assume that 
    1016 the `lateral' direction is the horizontal, \ie the lateral mixing is performed along geopotential surfaces. 
     1018the `lateral' direction is the horizontal, \ie\ the lateral mixing is performed along geopotential surfaces. 
    10171019This leads to a geopotential second order operator for lateral subgrid scale physics. 
    10181020This assumption can be relaxed: the eddy-induced turbulent fluxes can be better approached by assuming that 
     
    10211023it has components in the three space directions. 
    10221024However, 
    1023 both horizontal and isoneutral operators have no effect on mean (\ie large scale) potential energy whereas 
     1025both horizontal and isoneutral operators have no effect on mean (\ie\ large scale) potential energy whereas 
    10241026potential energy is a main source of turbulence (through baroclinic instabilities). 
    10251027\citet{gent.mcwilliams_JPO90} proposed a parameterisation of mesoscale eddy-induced turbulence which 
     
    10651067\end{equation} 
    10661068where $r_1$ and $r_2$ are the slopes between the surface along which the diffusive operator acts and 
    1067 the model level (\eg $z$- or $s$-surfaces). 
     1069the model level (\eg\ $z$- or $s$-surfaces). 
    10681070Note that the formulation \autoref{eq:PE_iso_tensor} is exact for 
    10691071the rotation between geopotential and $s$-surfaces, 
     
    11121114(or equivalently the isoneutral thickness diffusivity coefficient), 
    11131115and $\tilde r_1$ and $\tilde r_2$ are the slopes between isoneutral and \textit{geopotential} surfaces. 
    1114 Their values are thus independent of the vertical coordinate, but their expression depends on the coordinate:  
     1116Their values are thus independent of the vertical coordinate, but their expression depends on the coordinate: 
    11151117\begin{align} 
    11161118  \label{eq:PE_slopes_eiv} 
     
    11261128This can be achieved in a model by tapering either the eddy coefficient or the slopes to zero in the vicinity of 
    11271129the boundaries. 
    1128 The latter strategy is used in \NEMO (cf. \autoref{chap:LDF}). 
     1130The latter strategy is used in \NEMO\ (cf. \autoref{chap:LDF}). 
    11291131 
    11301132\subsubsection{Lateral bilaplacian tracer diffusive operator} 
     
    11481150                         - \nabla_h \times \big( A^{lm} \, \zeta \; \vect k \big) \\ 
    11491151                      &= \lt(   \frac{1}{e_1}     \pd[ \lt( A^{lm}    \chi      \rt) ]{i} \rt. 
    1150                               - \frac{1}{e_2 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{j} ,  
     1152                              - \frac{1}{e_2 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{j} , 
    11511153                                \frac{1}{e_2}     \pd[ \lt( A^{lm}    \chi      \rt) ]{j} 
    11521154                         \lt. + \frac{1}{e_1 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{i} \rt) 
     
    11571159Unfortunately, it is only available in \textit{iso-level} direction. 
    11581160When a rotation is required 
    1159 (\ie geopotential diffusion in $s$-coordinates or isoneutral diffusion in both $z$- and $s$-coordinates), 
     1161(\ie\ geopotential diffusion in $s$-coordinates or isoneutral diffusion in both $z$- and $s$-coordinates), 
    11601162the $u$ and $v$-fields are considered as independent scalar fields, so that the diffusive operator is given by: 
    11611163\begin{gather*} 
     
    11671169It is the same expression as those used for diffusive operator on tracers. 
    11681170It must be emphasised that such a formulation is only exact in a Cartesian coordinate system, 
    1169 \ie on a $f$- or $\beta$-plane, not on the sphere. 
     1171\ie\ on a $f$- or $\beta$-plane, not on the sphere. 
    11701172It is also a very good approximation in vicinity of the Equator in 
    11711173a geographical coordinate system \citep{lengaigne.madec.ea_JGR03}. 
Note: See TracChangeset for help on using the changeset viewer.