New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11512 for NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex – NEMO

Ignore:
Timestamp:
2019-09-09T12:05:20+02:00 (5 years ago)
Author:
smasson
Message:

dev_r10984_HPC-13 : merge with trunk@11511, see #2285

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex

    r11263 r11512  
    1818 
    1919In that case, the free surface equation is nonlinear, and the variations of volume are fully taken into account. 
    20 These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO web site.  
     20These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO\ web site. 
    2121 
    2222\colorbox{yellow}{  end of to be updated} 
     
    2424% from MOM4p1 documentation 
    2525 
    26 To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordinate  
     26To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordinate 
    2727\[ 
    2828  % \label{eq:PE_} 
     
    4040the surface height, it is clear that surfaces constant $z^\star$ are very similar to the depth surfaces. 
    4141These properties greatly reduce difficulties of computing the horizontal pressure gradient relative to 
    42 terrain following sigma models discussed in \autoref{subsec:PE_sco}.  
     42terrain following sigma models discussed in \autoref{subsec:PE_sco}. 
    4343Additionally, since $z^\star$ when $\eta = 0$, no flow is spontaneously generated in 
    4444an unforced ocean starting from rest, regardless the bottom topography. 
     
    4949neutral physics parameterizations in $z^\star$ models using the same techniques as in $z$-models 
    5050(see Chapters 13-16 of Griffies (2004) for a discussion of neutral physics in $z$-models, 
    51 as well as  \autoref{sec:LDF_slp} in this document for treatment in \NEMO).  
     51as well as  \autoref{sec:LDF_slp} in this document for treatment in \NEMO). 
    5252 
    5353The range over which $z^\star$ varies is time independent $-H \leq z^\star \leq 0$. 
    5454Hence, all cells remain nonvanishing, so long as the surface height maintains $\eta > ?H$. 
    55 This is a minor constraint relative to that encountered on the surface height when using $s = z$ or $s = z - \eta$.  
     55This is a minor constraint relative to that encountered on the surface height when using $s = z$ or $s = z - \eta$. 
    5656 
    5757Because $z^\star$ has a time independent range, all grid cells have static increments ds, 
    58 and the sum of the ver tical increments yields the time independent ocean depth %�k ds = H.  
     58and the sum of the ver tical increments yields the time independent ocean depth %�k ds = H. 
    5959The $z^\star$ coordinate is therefore invisible to undulations of the free surface, 
    6060since it moves along with the free surface. 
     
    6464Quite generally, the time independent range for the $z^\star$ coordinate is a very convenient property that 
    6565allows for a nearly arbitrary vertical resolution even in the presence of large amplitude fluctuations of 
    66 the surface height, again so long as $\eta > -H$.  
     66the surface height, again so long as $\eta > -H$. 
    6767 
    6868%%% 
     
    7878%-----------------------------------------nam_dynspg---------------------------------------------------- 
    7979 
    80 %\nlst{nam_dynspg}  
     80%\nlst{nam_dynspg} 
    8181%------------------------------------------------------------------------------------------------------------ 
    82 Options are defined through the \ngn{nam\_dynspg} namelist variables. 
     82Options are defined through the \nam{\_dynspg} namelist variables. 
    8383The surface pressure gradient term is related to the representation of the free surface (\autoref{sec:PE_hor_pg}). 
    8484The main distinction is between the fixed volume case (linear free surface or rigid lid) and 
     
    116116and $\rho_w =1,000\,Kg.m^{-3}$ is the volumic mass of pure water. 
    117117The sea-surface height is evaluated using a leapfrog scheme in combination with an Asselin time filter, 
    118 (\ie the velocity appearing in (\autoref{eq:dynspg_ssh}) is centred in time (\textit{now} velocity).  
     118(\ie\ the velocity appearing in (\autoref{eq:dynspg_ssh}) is centred in time (\textit{now} velocity). 
    119119 
    120120The surface pressure gradient, also evaluated using a leap-frog scheme, is then simply given by: 
     
    127127    \end{aligned} 
    128128  \right. 
    129 \end{equation}  
     129\end{equation} 
    130130 
    131131Consistent with the linearization, a $\left. \rho \right|_{k=1} / \rho_o$ factor is omitted in 
    132 (\autoref{eq:dynspg_exp}).  
     132(\autoref{eq:dynspg_exp}). 
    133133 
    134134%------------------------------------------------------------- 
     
    140140%--------------------------------------------namdom---------------------------------------------------- 
    141141 
    142 \nlst{namdom}  
     142\nlst{namdom} 
    143143%-------------------------------------------------------------------------------------------------------------- 
    144144The split-explicit free surface formulation used in OPA follows the one proposed by \citet{Griffies2004?}. 
    145145The general idea is to solve the free surface equation with a small time step, 
    146146while the three dimensional prognostic variables are solved with a longer time step that 
    147 is a multiple of \np{rdtbt} in the \ngn{namdom} namelist (Figure III.3).  
     147is a multiple of \np{rdtbt} in the \nam{dom} namelist (Figure III.3). 
    148148 
    149149%>   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   >   > 
     
    175175The split-explicit formulation has a damping effect on external gravity waves, 
    176176which is weaker than the filtered free surface but still significant as shown by \citet{levier.treguier.ea_rpt07} in 
    177 the case of an analytical barotropic Kelvin wave.  
     177the case of an analytical barotropic Kelvin wave. 
    178178 
    179179%from griffies book: .....   copy past ! 
     
    188188  % \label{eq:DYN_spg_ts_eta} 
    189189  \eta^{(b)}(\tau,t_{n+1}) - \eta^{(b)}(\tau,t_{n+1}) (\tau,t_{n-1}) 
    190   = 2 \Delta t \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right]  
     190  = 2 \Delta t \left[-\nabla \cdot \textbf{U}^{(b)}(\tau,t_n) + \text{EMP}_w(\tau) \right] 
    191191\] 
    192192\begin{multline*} 
     
    205205the freshwater flux $\text{EMP}_w(\tau)$, and total depth of the ocean $H(\tau)$ are held for 
    206206the duration of the barotropic time stepping over a single cycle. 
    207 This is also the time that sets the barotropic time steps via  
     207This is also the time that sets the barotropic time steps via 
    208208\[ 
    209209  % \label{eq:DYN_spg_ts_t} 
    210   t_n=\tau+n\Delta t    
     210  t_n=\tau+n\Delta t 
    211211\] 
    212212with $n$ an integer. 
    213 The density scaled surface pressure is evaluated via  
     213The density scaled surface pressure is evaluated via 
    214214\[ 
    215215  % \label{eq:DYN_spg_ts_ps} 
     
    220220  \end{cases} 
    221221\] 
    222 To get started, we assume the following initial conditions  
     222To get started, we assume the following initial conditions 
    223223\[ 
    224224  % \label{eq:DYN_spg_ts_eta} 
     
    228228  \end{split} 
    229229\] 
    230 with  
     230with 
    231231\[ 
    232232  % \label{eq:DYN_spg_ts_etaF} 
     
    240240  \textbf{U}(\tau,t_{n=1}) = \textbf{U}^{(b)}(\tau,t_{n=0}) + \Delta t \ \text{RHS}_{n=0} 
    241241\] 
    242 with  
     242with 
    243243\[ 
    244244  % \label{eq:DYN_spg_ts_u} 
     
    246246\] 
    247247the time averaged vertically integrated transport. 
    248 Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration.  
     248Notably, there is no Robert-Asselin time filter used in the barotropic portion of the integration. 
    249249 
    250250Upon reaching $t_{n=N} = \tau + 2\Delta \tau$ , the vertically integrated velocity is time averaged to 
    251 produce the updated vertically integrated velocity at baroclinic time $\tau + \Delta \tau$  
     251produce the updated vertically integrated velocity at baroclinic time $\tau + \Delta \tau$ 
    252252\[ 
    253253  % \label{eq:DYN_spg_ts_u} 
     
    256256\] 
    257257The surface height on the new baroclinic time step is then determined via 
    258 a baroclinic leap-frog using the following form  
     258a baroclinic leap-frog using the following form 
    259259\begin{equation} 
    260260  \label{eq:DYN_spg_ts_ssh} 
     
    264264The use of this "big-leap-frog" scheme for the surface height ensures compatibility between 
    265265the mass/volume budgets and the tracer budgets. 
    266 More discussion of this point is provided in Chapter 10 (see in particular Section 10.2).  
    267   
     266More discussion of this point is provided in Chapter 10 (see in particular Section 10.2). 
     267 
    268268In general, some form of time filter is needed to maintain integrity of the surface height field due to 
    269269the leap-frog splitting mode in equation \autoref{eq:DYN_spg_ts_ssh}. 
    270270We have tried various forms of such filtering, 
    271271with the following method discussed in Griffies et al. (2001) chosen due to its stability and 
    272 reasonably good maintenance of tracer conservation properties (see ??)  
     272reasonably good maintenance of tracer conservation properties (see ??) 
    273273 
    274274\begin{equation} 
     
    276276  \eta^{F}(\tau-\Delta) =  \overline{\eta^{(b)}(\tau)} 
    277277\end{equation} 
    278 Another approach tried was  
     278Another approach tried was 
    279279 
    280280\[ 
     
    289289surface height time filtering (see ?? for more complete discussion). 
    290290However, in the general case with a non-zero $\alpha$, the filter \autoref{eq:DYN_spg_ts_sshf} was found to 
    291 be more conservative, and so is recommended.  
    292  
    293 %------------------------------------------------------------- 
    294 % Filtered formulation  
     291be more conservative, and so is recommended. 
     292 
     293%------------------------------------------------------------- 
     294% Filtered formulation 
    295295%------------------------------------------------------------- 
    296296\subsubsection[Filtered formulation (\texttt{\textbf{key\_dynspg\_flt}})] 
     
    307307 
    308308%------------------------------------------------------------- 
    309 % Non-linear free surface formulation  
     309% Non-linear free surface formulation 
    310310%------------------------------------------------------------- 
    311311\subsection[Non-linear free surface formulation (\texttt{\textbf{key\_vvl}})] 
     
    314314 
    315315In the non-linear free surface formulation, the variations of volume are fully taken into account. 
    316 This option is presented in a report \citep{levier.treguier.ea_rpt07} available on the NEMO web site. 
     316This option is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO\ web site. 
    317317The three time-stepping methods (explicit, split-explicit and filtered) are the same as in 
    318318\autoref{DYN_spg_linear} except that the ocean depth is now time-dependent. 
Note: See TracChangeset for help on using the changeset viewer.