New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11558 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex – NEMO

Ignore:
Timestamp:
2019-09-17T17:04:06+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Review all figure envs + activation of listoflistings

  1. Figure env:
    • Replace center sub-env with only \centering cmd
    • Add alternate caption for \listoffigures (shorter one between square brackets, i.e. \caption[]{})
    • Place \label outside of \caption and remove useless \protect
  1. Namelist listings
    • Put \nlst with the namelist inlcusion in a listing float env with caption and label
    • Remove namelist duplicates

-- This line, and those below, will be ignored--
M subfiles/apdx_triads.tex
M subfiles/chap_model_basics_zstar.tex
M subfiles/chap_SBC.tex
M subfiles/apdx_DOMAINcfg.tex
M subfiles/apdx_s_coord.tex
M subfiles/chap_DOM.tex
M subfiles/chap_ASM.tex
M subfiles/chap_DIU.tex
M subfiles/chap_cfgs.tex
M subfiles/chap_ZDF.tex
M subfiles/chap_OBS.tex
M subfiles/chap_model_basics.tex
M subfiles/chap_time_domain.tex
M subfiles/apdx_algos.tex
M subfiles/chap_TRA.tex
M subfiles/chap_DYN.tex
M subfiles/chap_misc.tex
M subfiles/chap_DIA.tex
M subfiles/apdx_invariants.tex
M subfiles/chap_LBC.tex
M subfiles/apdx_diff_opers.tex
M subfiles/chap_STO.tex
M subfiles/chap_LDF.tex

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_TRA.tex

    r11552 r11558  
    6565%------------------------------------------namtra_adv----------------------------------------------------- 
    6666 
    67 \nlst{namtra_adv} 
     67\begin{listing} 
     68  \nlst{namtra_adv} 
     69  \caption{\texttt{namtra\_adv}} 
     70  \label{lst:namtra_adv} 
     71\end{listing} 
    6872%------------------------------------------------------------------------------------------------------------- 
    6973 
     
    9094%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    9195\begin{figure}[!t] 
    92   \begin{center} 
    93     \includegraphics[width=\textwidth]{Fig_adv_scheme} 
    94     \caption{ 
    95       \protect\label{fig:TRA_adv_scheme} 
    96       Schematic representation of some ways used to evaluate the tracer value at $u$-point and 
    97       the amount of tracer exchanged between two neighbouring grid points. 
    98       Upsteam biased scheme (ups): 
    99       the upstream value is used and the black area is exchanged. 
    100       Piecewise parabolic method (ppm): 
    101       a parabolic interpolation is used and the black and dark grey areas are exchanged. 
    102       Monotonic upstream scheme for conservative laws (muscl): 
    103       a parabolic interpolation is used and black, dark grey and grey areas are exchanged. 
    104       Second order scheme (cen2): 
    105       the mean value is used and black, dark grey, grey and light grey areas are exchanged. 
    106       Note that this illustration does not include the flux limiter used in ppm and muscl schemes. 
    107     } 
    108   \end{center} 
     96  \centering 
     97  \includegraphics[width=\textwidth]{Fig_adv_scheme} 
     98  \caption[Ways to evaluate the tracer value and the amount of tracer exchanged]{ 
     99    Schematic representation of some ways used to evaluate the tracer value at $u$-point and 
     100    the amount of tracer exchanged between two neighbouring grid points. 
     101    Upsteam biased scheme (ups): 
     102    the upstream value is used and the black area is exchanged. 
     103    Piecewise parabolic method (ppm): 
     104    a parabolic interpolation is used and the black and dark grey areas are exchanged. 
     105    Monotonic upstream scheme for conservative laws (muscl): 
     106    a parabolic interpolation is used and black, dark grey and grey areas are exchanged. 
     107    Second order scheme (cen2): 
     108    the mean value is used and black, dark grey, grey and light grey areas are exchanged. 
     109    Note that this illustration does not include the flux limiter used in ppm and muscl schemes.} 
     110  \label{fig:TRA_adv_scheme} 
    109111\end{figure} 
    110112%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    435437%-----------------------------------------nam_traldf------------------------------------------------------ 
    436438 
    437 \nlst{namtra_ldf} 
     439\begin{listing} 
     440  \nlst{namtra_ldf} 
     441  \caption{\texttt{namtra\_ldf}} 
     442  \label{lst:namtra_ldf} 
     443\end{listing} 
    438444%------------------------------------------------------------------------------------------------------------- 
    439445 
     
    640646%--------------------------------------------namzdf--------------------------------------------------------- 
    641647 
    642 \nlst{namzdf} 
    643648%-------------------------------------------------------------------------------------------------------------- 
    644649 
     
    759764%--------------------------------------------namqsr-------------------------------------------------------- 
    760765 
    761 \nlst{namtra_qsr} 
     766\begin{listing} 
     767  \nlst{namtra_qsr} 
     768  \caption{\texttt{namtra\_qsr}} 
     769  \label{lst:namtra_qsr} 
     770\end{listing} 
    762771%-------------------------------------------------------------------------------------------------------------- 
    763772 
     
    857866%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    858867\begin{figure}[!t] 
    859   \begin{center} 
    860     \includegraphics[width=\textwidth]{Fig_TRA_Irradiance} 
    861     \caption{ 
    862       \protect\label{fig:TRA_qsr_irradiance} 
    863       Penetration profile of the downward solar irradiance calculated by four models. 
    864       Two waveband chlorophyll-independent formulation (blue), 
    865       a chlorophyll-dependent monochromatic formulation (green), 
    866       4 waveband RGB formulation (red), 
    867       61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of 
    868       (a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. 
    869       From \citet{lengaigne.menkes.ea_CD07}. 
    870     } 
    871   \end{center} 
     868  \centering 
     869  \includegraphics[width=\textwidth]{Fig_TRA_Irradiance} 
     870  \caption[Penetration profile of the downward solar irradiance calculated by four models]{ 
     871    Penetration profile of the downward solar irradiance calculated by four models. 
     872    Two waveband chlorophyll-independent formulation (blue), 
     873    a chlorophyll-dependent monochromatic formulation (green), 
     874    4 waveband RGB formulation (red), 
     875    61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of 
     876    (a) Chl=0.05 mg/m$^3$ and (b) Chl=0.5 mg/m$^3$. 
     877    From \citet{lengaigne.menkes.ea_CD07}.} 
     878  \label{fig:TRA_qsr_irradiance} 
    872879\end{figure} 
    873880%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    881888%--------------------------------------------nambbc-------------------------------------------------------- 
    882889 
    883 \nlst{nambbc} 
     890\begin{listing} 
     891  \nlst{nambbc} 
     892  \caption{\texttt{nambbc}} 
     893  \label{lst:nambbc} 
     894\end{listing} 
    884895%-------------------------------------------------------------------------------------------------------------- 
    885896%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    886897\begin{figure}[!t] 
    887   \begin{center} 
    888     \includegraphics[width=\textwidth]{Fig_TRA_geoth} 
    889     \caption{ 
    890       \protect\label{fig:TRA_geothermal} 
    891       Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{emile-geay.madec_OS09}. 
    892       It is inferred from the age of the sea floor and the formulae of \citet{stein.stein_N92}. 
    893     } 
    894   \end{center} 
     898  \centering 
     899  \includegraphics[width=\textwidth]{Fig_TRA_geoth} 
     900  \caption[Geothermal heat flux]{ 
     901    Geothermal Heat flux (in $mW.m^{-2}$) used by \cite{emile-geay.madec_OS09}. 
     902    It is inferred from the age of the sea floor and the formulae of \citet{stein.stein_N92}.} 
     903  \label{fig:TRA_geothermal} 
    895904\end{figure} 
    896905%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    920929%--------------------------------------------nambbl--------------------------------------------------------- 
    921930 
    922 \nlst{nambbl} 
     931\begin{listing} 
     932  \nlst{nambbl} 
     933  \caption{\texttt{nambbl}} 
     934  \label{lst:nambbl} 
     935\end{listing} 
    923936%-------------------------------------------------------------------------------------------------------------- 
    924937 
     
    9991012%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    10001013\begin{figure}[!t] 
    1001   \begin{center} 
    1002     \includegraphics[width=\textwidth]{Fig_BBL_adv} 
    1003     \caption{ 
    1004       \protect\label{fig:TRA_bbl} 
    1005       Advective/diffusive Bottom Boundary Layer. 
    1006       The BBL parameterisation is activated when $\rho^i_{kup}$ is larger than $\rho^{i + 1}_{kdnw}$. 
    1007       Red arrows indicate the additional overturning circulation due to the advective BBL. 
    1008       The transport of the downslope flow is defined either as the transport of the bottom ocean cell (black arrow), 
    1009       or as a function of the along slope density gradient. 
    1010       The green arrow indicates the diffusive BBL flux directly connecting $kup$ and $kdwn$ ocean bottom cells. 
    1011     } 
    1012   \end{center} 
     1014  \centering 
     1015  \includegraphics[width=\textwidth]{Fig_BBL_adv} 
     1016  \caption[Advective/diffusive bottom boundary layer]{ 
     1017    Advective/diffusive Bottom Boundary Layer. 
     1018    The BBL parameterisation is activated when $\rho^i_{kup}$ is larger than $\rho^{i + 1}_{kdnw}$. 
     1019    Red arrows indicate the additional overturning circulation due to the advective BBL. 
     1020    The transport of the downslope flow is defined either 
     1021    as the transport of the bottom ocean cell (black arrow), 
     1022    or as a function of the along slope density gradient. 
     1023    The green arrow indicates the diffusive BBL flux directly connecting 
     1024    $kup$ and $kdwn$ ocean bottom cells.} 
     1025  \label{fig:TRA_bbl} 
    10131026\end{figure} 
    10141027%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    10851098%--------------------------------------------namtra_dmp------------------------------------------------- 
    10861099 
    1087 \nlst{namtra_dmp} 
     1100\begin{listing} 
     1101  \nlst{namtra_dmp} 
     1102  \caption{\texttt{namtra\_dmp}} 
     1103  \label{lst:namtra_dmp} 
     1104\end{listing} 
    10881105%-------------------------------------------------------------------------------------------------------------- 
    10891106 
     
    11401157\label{sec:TRA_nxt} 
    11411158%--------------------------------------------namdom----------------------------------------------------- 
    1142  
    1143 \nlst{namdom} 
    11441159%-------------------------------------------------------------------------------------------------------------- 
    11451160 
     
    11791194%--------------------------------------------nameos----------------------------------------------------- 
    11801195 
    1181 \nlst{nameos} 
     1196\begin{listing} 
     1197  \nlst{nameos} 
     1198  \caption{\texttt{nameos}} 
     1199  \label{lst:nameos} 
     1200\end{listing} 
    11821201%-------------------------------------------------------------------------------------------------------------- 
    11831202 
     
    12831302%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    12841303\begin{table}[!tb] 
    1285   \begin{center} 
    1286     \begin{tabular}{|l|l|l|l|} 
    1287       \hline 
    1288       coeff.      & computer name   & S-EOS           & description                      \\ 
    1289       \hline 
    1290       $a_0$       & \np{rn\_a0}     & $1.6550~10^{-1}$ & linear thermal expansion coeff. \\ 
    1291       \hline 
    1292       $b_0$       & \np{rn\_b0}     & $7.6554~10^{-1}$ & linear haline  expansion coeff. \\ 
    1293       \hline 
    1294       $\lambda_1$ & \np{rn\_lambda1}& $5.9520~10^{-2}$ & cabbeling coeff. in $T^2$       \\ 
    1295       \hline 
    1296       $\lambda_2$ & \np{rn\_lambda2}& $5.4914~10^{-4}$ & cabbeling coeff. in $S^2$       \\ 
    1297       \hline 
    1298       $\nu$       & \np{rn\_nu}     & $2.4341~10^{-3}$ & cabbeling coeff. in $T \, S$    \\ 
    1299       \hline 
    1300       $\mu_1$     & \np{rn\_mu1}    & $1.4970~10^{-4}$ & thermobaric coeff. in T         \\ 
    1301       \hline 
    1302       $\mu_2$     & \np{rn\_mu2}    & $1.1090~10^{-5}$ & thermobaric coeff. in S         \\ 
    1303       \hline 
    1304     \end{tabular} 
    1305     \caption{ 
    1306       \protect\label{tab:TRA_SEOS} 
    1307       Standard value of S-EOS coefficients. 
    1308     } 
    1309 \end{center} 
     1304  \centering 
     1305  \begin{tabular}{|l|l|l|l|} 
     1306    \hline 
     1307    coeff.     & computer name   & S-EOS           & description                      \\ 
     1308    \hline 
     1309    $a_0$       & \np{rn\_a0}     & $1.6550~10^{-1}$ & linear thermal expansion coeff. \\ 
     1310    \hline 
     1311    $b_0$         & \np{rn\_b0}     & $7.6554~10^{-1}$ & linear haline  expansion coeff. \\ 
     1312    \hline 
     1313    $\lambda_1$   & \np{rn\_lambda1}& $5.9520~10^{-2}$ & cabbeling coeff. in $T^2$       \\ 
     1314    \hline 
     1315    $\lambda_2$   & \np{rn\_lambda2}& $5.4914~10^{-4}$ & cabbeling coeff. in $S^2$       \\ 
     1316    \hline 
     1317    $\nu$       & \np{rn\_nu}     & $2.4341~10^{-3}$ & cabbeling coeff. in $T \, S$      \\ 
     1318    \hline 
     1319    $\mu_1$     & \np{rn\_mu1}   & $1.4970~10^{-4}$ & thermobaric coeff. in T         \\ 
     1320    \hline 
     1321    $\mu_2$     & \np{rn\_mu2}   & $1.1090~10^{-5}$ & thermobaric coeff. in S         \\ 
     1322    \hline 
     1323  \end{tabular} 
     1324  \caption{Standard value of S-EOS coefficients} 
     1325  \label{tab:TRA_SEOS} 
    13101326\end{table} 
    13111327%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    13911407%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    13921408\begin{figure}[!p] 
    1393   \begin{center} 
    1394     \includegraphics[width=\textwidth]{Fig_partial_step_scheme} 
    1395     \caption{ 
    1396       \protect\label{fig:TRA_Partial_step_scheme} 
    1397       Discretisation of the horizontal difference and average of tracers in the $z$-partial step coordinate 
    1398       (\protect\np{ln\_zps}\forcode{=.true.}) in the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 
    1399       A linear interpolation is used to estimate $\widetilde T_k^{i + 1}$, 
    1400       the tracer value at the depth of the shallower tracer point of the two adjacent bottom $T$-points. 
    1401       The horizontal difference is then given by: $\delta_{i + 1/2} T_k = \widetilde T_k^{\, i + 1} -T_k^{\, i}$ and 
    1402       the average by: $\overline T_k^{\, i + 1/2} = (\widetilde T_k^{\, i + 1/2} - T_k^{\, i}) / 2$. 
    1403     } 
    1404   \end{center} 
     1409  \centering 
     1410  \includegraphics[width=\textwidth]{Fig_partial_step_scheme} 
     1411  \caption[Discretisation of the horizontal difference and average of tracers in 
     1412  the $z$-partial step coordinate]{ 
     1413    Discretisation of the horizontal difference and average of tracers in 
     1414    the $z$-partial step coordinate (\protect\np{ln\_zps}\forcode{=.true.}) in 
     1415    the case $(e3w_k^{i + 1} - e3w_k^i) > 0$. 
     1416    A linear interpolation is used to estimate $\widetilde T_k^{i + 1}$, 
     1417    the tracer value at the depth of the shallower tracer point of 
     1418    the two adjacent bottom $T$-points. 
     1419    The horizontal difference is then given by: 
     1420    $\delta_{i + 1/2} T_k = \widetilde T_k^{\, i + 1} -T_k^{\, i}$ and 
     1421    the average by: 
     1422    $\overline T_k^{\, i + 1/2} = (\widetilde T_k^{\, i + 1/2} - T_k^{\, i}) / 2$.} 
     1423  \label{fig:TRA_Partial_step_scheme} 
    14051424\end{figure} 
    14061425%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
Note: See TracChangeset for help on using the changeset viewer.