New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11558 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2019-09-17T17:04:06+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Review all figure envs + activation of listoflistings

  1. Figure env:
    • Replace center sub-env with only \centering cmd
    • Add alternate caption for \listoffigures (shorter one between square brackets, i.e. \caption[]{})
    • Place \label outside of \caption and remove useless \protect
  1. Namelist listings
    • Put \nlst with the namelist inlcusion in a listing float env with caption and label
    • Remove namelist duplicates

-- This line, and those below, will be ignored--
M subfiles/apdx_triads.tex
M subfiles/chap_model_basics_zstar.tex
M subfiles/chap_SBC.tex
M subfiles/apdx_DOMAINcfg.tex
M subfiles/apdx_s_coord.tex
M subfiles/chap_DOM.tex
M subfiles/chap_ASM.tex
M subfiles/chap_DIU.tex
M subfiles/chap_cfgs.tex
M subfiles/chap_ZDF.tex
M subfiles/chap_OBS.tex
M subfiles/chap_model_basics.tex
M subfiles/chap_time_domain.tex
M subfiles/apdx_algos.tex
M subfiles/chap_TRA.tex
M subfiles/chap_DYN.tex
M subfiles/chap_misc.tex
M subfiles/chap_DIA.tex
M subfiles/apdx_invariants.tex
M subfiles/chap_LBC.tex
M subfiles/apdx_diff_opers.tex
M subfiles/chap_STO.tex
M subfiles/chap_LDF.tex

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r11543 r11558  
    11\documentclass[../main/NEMO_manual]{subfiles} 
     2 
     3%% Custom aliases 
     4\newcommand{\cf}{\ensuremath{C\kern-0.14em f}} 
    25 
    36\begin{document} 
     
    4548%--------------------------------------------namzdf-------------------------------------------------------- 
    4649 
    47 \nlst{namzdf} 
     50\begin{listing} 
     51  \nlst{namzdf} 
     52  \caption{\texttt{namzdf}} 
     53  \label{lst:namzdf} 
     54\end{listing} 
    4855%-------------------------------------------------------------------------------------------------------------- 
    4956 
     
    8087%--------------------------------------------namric--------------------------------------------------------- 
    8188 
    82 \nlst{namzdf_ric} 
     89\begin{listing} 
     90  \nlst{namzdf_ric} 
     91  \caption{\texttt{namzdf\_ric}} 
     92  \label{lst:namzdf_ric} 
     93\end{listing} 
    8394%-------------------------------------------------------------------------------------------------------------- 
    8495 
     
    137148%--------------------------------------------namzdf_tke-------------------------------------------------- 
    138149 
    139 \nlst{namzdf_tke} 
     150\begin{listing} 
     151  \nlst{namzdf_tke} 
     152  \caption{\texttt{namzdf\_tke}} 
     153  \label{lst:namzdf_tke} 
     154\end{listing} 
    140155%-------------------------------------------------------------------------------------------------------------- 
    141156 
     
    238253%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    239254\begin{figure}[!t] 
    240   \begin{center} 
    241     \includegraphics[width=\textwidth]{Fig_mixing_length} 
    242     \caption{ 
    243       \protect\label{fig:ZDF_mixing_length} 
    244       Illustration of the mixing length computation. 
    245     } 
    246   \end{center} 
     255  \centering 
     256  \includegraphics[width=\textwidth]{Fig_mixing_length} 
     257  \caption[Mixing length computation]{Illustration of the mixing length computation} 
     258  \label{fig:ZDF_mixing_length} 
    247259\end{figure} 
    248260%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    421433%--------------------------------------------namzdf_gls--------------------------------------------------------- 
    422434 
    423 \nlst{namzdf_gls} 
     435\begin{listing} 
     436  \nlst{namzdf_gls} 
     437  \caption{\texttt{namzdf\_gls}} 
     438  \label{lst:namzdf_gls} 
     439\end{listing} 
    424440%-------------------------------------------------------------------------------------------------------------- 
    425441 
     
    475491%--------------------------------------------------TABLE-------------------------------------------------- 
    476492\begin{table}[htbp] 
    477   \begin{center} 
    478     % \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}c} 
    479     \begin{tabular}{ccccc} 
    480       &   $k-kl$   & $k-\epsilon$ & $k-\omega$ &   generic   \\ 
    481       % & \citep{mellor.yamada_RG82} &  \citep{rodi_JGR87}       & \citep{wilcox_AJ88} &                 \\ 
    482       \hline 
    483       \hline 
    484       \np{nn\_clo}     & \textbf{0} &   \textbf{1}  &   \textbf{2}   &    \textbf{3}   \\ 
    485       \hline 
    486       $( p , n , m )$          &   ( 0 , 1 , 1 )   & ( 3 , 1.5 , -1 )   & ( -1 , 0.5 , -1 )    &  ( 2 , 1 , -0.67 )  \\ 
    487       $\sigma_k$      &    2.44         &     1.              &      2.                &      0.8          \\ 
    488       $\sigma_\psi$  &    2.44         &     1.3            &      2.                 &       1.07       \\ 
    489       $C_1$              &      0.9         &     1.44          &      0.555          &       1.           \\ 
    490       $C_2$              &      0.5         &     1.92          &      0.833          &       1.22       \\ 
    491       $C_3$              &      1.           &     1.              &      1.                &       1.           \\ 
    492       $F_{wall}$        &      Yes        &       --             &     --                  &      --          \\ 
    493       \hline 
    494       \hline 
    495     \end{tabular} 
    496     \caption{ 
    497       \protect\label{tab:ZDF_GLS} 
    498       Set of predefined GLS parameters, or equivalently predefined turbulence models available with 
    499       \protect\np{ln\_zdfgls}\forcode{=.true.} and controlled by the \protect\np{nn\_clos} namelist variable in \protect\nam{zdf\_gls}. 
    500     } 
    501   \end{center} 
     493  \centering 
     494  % \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}c} 
     495  \begin{tabular}{ccccc} 
     496    &   $k-kl$   & $k-\epsilon$ & $k-\omega$ &   generic   \\ 
     497    % & \citep{mellor.yamada_RG82} &  \citep{rodi_JGR87}       & \citep{wilcox_AJ88} &                 \\ 
     498    \hline 
     499    \hline 
     500    \np{nn\_clo}     & \textbf{0} &   \textbf{1}  &   \textbf{2}   &    \textbf{3}   \\ 
     501    \hline 
     502    $( p , n , m )$         &   ( 0 , 1 , 1 )   & ( 3 , 1.5 , -1 )   & ( -1 , 0.5 , -1 )    &  ( 2 , 1 , -0.67 )  \\ 
     503    $\sigma_k$      &    2.44         &     1.              &      2.                &      0.8          \\ 
     504    $\sigma_\psi$  &    2.44         &     1.3            &      2.                 &       1.07       \\ 
     505    $C_1$              &      0.9         &     1.44          &      0.555          &       1.           \\ 
     506    $C_2$              &      0.5         &     1.92          &      0.833          &       1.22       \\ 
     507    $C_3$              &      1.           &     1.              &      1.                &       1.           \\ 
     508    $F_{wall}$        &      Yes        &       --             &     --                  &      --          \\ 
     509    \hline 
     510    \hline 
     511  \end{tabular} 
     512  \caption[Set of predefined GLS parameters or equivalently predefined turbulence models available]{ 
     513    Set of predefined GLS parameters, or equivalently predefined turbulence models available with 
     514    \protect\np{ln\_zdfgls}\forcode{=.true.} and controlled by 
     515    the \protect\np{nn\_clos} namelist variable in \protect\nam{zdf\_gls}.} 
     516  \label{tab:ZDF_GLS} 
    502517\end{table} 
    503518%-------------------------------------------------------------------------------------------------------------- 
     
    542557%--------------------------------------------namzdf_osm--------------------------------------------------------- 
    543558 
    544 \nlst{namzdf_osm} 
     559\begin{listing} 
     560  \nlst{namzdf_osm} 
     561  \caption{\texttt{namzdf\_osm}} 
     562  \label{lst:namzdf_osm} 
     563\end{listing} 
    545564%-------------------------------------------------------------------------------------------------------------- 
    546565 
     
    556575%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    557576\begin{figure}[!t] 
    558   \begin{center} 
    559     \includegraphics[width=\textwidth]{Fig_ZDF_TKE_time_scheme} 
    560     \caption{ 
    561       \protect\label{fig:ZDF_TKE_time_scheme} 
    562       Illustration of the subgrid kinetic energy integration in GLS and TKE schemes and its links to the momentum and tracer time integration. 
    563     } 
    564   \end{center} 
     577  \centering 
     578  \includegraphics[width=\textwidth]{Fig_ZDF_TKE_time_scheme} 
     579  \caption[Subgrid kinetic energy integration in GLS and TKE schemes]{ 
     580    Illustration of the subgrid kinetic energy integration in GLS and TKE schemes and 
     581    its links to the momentum and tracer time integration.} 
     582  \label{fig:ZDF_TKE_time_scheme} 
    565583\end{figure} 
    566584%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    676694%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    677695\begin{figure}[!htb] 
    678   \begin{center} 
    679     \includegraphics[width=\textwidth]{Fig_npc} 
    680     \caption{ 
    681       \protect\label{fig:ZDF_npc} 
    682       Example of an unstable density profile treated by the non penetrative convective adjustment algorithm. 
    683       $1^{st}$ step: the initial profile is checked from the surface to the bottom. 
    684       It is found to be unstable between levels 3 and 4. 
    685       They are mixed. 
    686       The resulting $\rho$ is still larger than $\rho$(5): levels 3 to 5 are mixed. 
    687       The resulting $\rho$ is still larger than $\rho$(6): levels 3 to 6 are mixed. 
    688       The $1^{st}$ step ends since the density profile is then stable below the level 3. 
    689       $2^{nd}$ step: the new $\rho$ profile is checked following the same procedure as in $1^{st}$ step: 
    690       levels 2 to 5 are mixed. 
    691       The new density profile is checked. 
    692       It is found stable: end of algorithm. 
    693     } 
    694   \end{center} 
     696  \centering 
     697  \includegraphics[width=\textwidth]{Fig_npc} 
     698  \caption[Unstable density profile treated by the non penetrative convective adjustment algorithm]{ 
     699    Example of an unstable density profile treated by 
     700    the non penetrative convective adjustment algorithm. 
     701    $1^{st}$ step: the initial profile is checked from the surface to the bottom. 
     702    It is found to be unstable between levels 3 and 4. 
     703    They are mixed. 
     704    The resulting $\rho$ is still larger than $\rho$(5): levels 3 to 5 are mixed. 
     705    The resulting $\rho$ is still larger than $\rho$(6): levels 3 to 6 are mixed. 
     706    The $1^{st}$ step ends since the density profile is then stable below the level 3. 
     707    $2^{nd}$ step: the new $\rho$ profile is checked following the same procedure as in $1^{st}$ step: 
     708    levels 2 to 5 are mixed. 
     709    The new density profile is checked. 
     710    It is found stable: end of algorithm.} 
     711  \label{fig:ZDF_npc} 
    695712\end{figure} 
    696713%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    838855%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    839856\begin{figure}[!t] 
    840   \begin{center} 
    841     \includegraphics[width=\textwidth]{Fig_zdfddm} 
    842     \caption{ 
    843       \protect\label{fig:ZDF_ddm} 
    844       From \citet{merryfield.holloway.ea_JPO99} : 
    845       (a) Diapycnal diffusivities $A_f^{vT}$ and $A_f^{vS}$ for temperature and salt in regions of salt fingering. 
    846       Heavy curves denote $A^{\ast v} = 10^{-3}~m^2.s^{-1}$ and thin curves $A^{\ast v} = 10^{-4}~m^2.s^{-1}$; 
    847       (b) diapycnal diffusivities $A_d^{vT}$ and $A_d^{vS}$ for temperature and salt in regions of 
    848       diffusive convection. 
    849       Heavy curves denote the Federov parameterisation and thin curves the Kelley parameterisation. 
    850       The latter is not implemented in \NEMO. 
    851     } 
    852   \end{center} 
     857  \centering 
     858  \includegraphics[width=\textwidth]{Fig_zdfddm} 
     859  \caption[Diapycnal diffusivities for temperature and salt in regions of salt fingering and 
     860  diffusive convection]{ 
     861    From \citet{merryfield.holloway.ea_JPO99}: 
     862    (a) Diapycnal diffusivities $A_f^{vT}$ and $A_f^{vS}$ for temperature and salt in 
     863    regions of salt fingering. 
     864    Heavy curves denote $A^{\ast v} = 10^{-3}~m^2.s^{-1}$ and 
     865    thin curves $A^{\ast v} = 10^{-4}~m^2.s^{-1}$; 
     866    (b) diapycnal diffusivities $A_d^{vT}$ and $A_d^{vS}$ for temperature and salt in 
     867    regions of diffusive convection. 
     868    Heavy curves denote the Federov parameterisation and thin curves the Kelley parameterisation. 
     869    The latter is not implemented in \NEMO.} 
     870  \label{fig:ZDF_ddm} 
    853871\end{figure} 
    854872%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    893911%--------------------------------------------namdrg-------------------------------------------------------- 
    894912% 
    895 \nlst{namdrg} 
    896 \nlst{namdrg_top} 
    897 \nlst{namdrg_bot} 
     913\begin{listing} 
     914  \nlst{namdrg} 
     915  \caption{\texttt{namdrg}} 
     916  \label{lst:namdrg} 
     917\end{listing} 
     918\begin{listing} 
     919  \nlst{namdrg_top} 
     920  \caption{\texttt{namdrg\_top}} 
     921  \label{lst:namdrg_top} 
     922\end{listing} 
     923\begin{listing} 
     924  \nlst{namdrg_bot} 
     925  \caption{\texttt{namdrg\_bot}} 
     926  \label{lst:namdrg_bot} 
     927\end{listing} 
    898928 
    899929%-------------------------------------------------------------------------------------------------------------- 
     
    11751205%--------------------------------------------namzdf_iwm------------------------------------------ 
    11761206% 
    1177 \nlst{namzdf_iwm} 
     1207\begin{listing} 
     1208  \nlst{namzdf_iwm} 
     1209  \caption{\texttt{namzdf\_iwm}} 
     1210  \label{lst:namzdf_iwm} 
     1211\end{listing} 
    11781212%-------------------------------------------------------------------------------------------------------------- 
    11791213 
     
    12871321 
    12881322\begin{table}[htbp] 
    1289   \begin{center} 
    1290     % \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}} 
    1291     \begin{tabular}{r|ccc} 
    1292       \hline 
    1293       spatial discretization &   2nd order centered   & 3rd order upwind & 4th order compact  \\ 
    1294       advective CFL criterion     & 0.904 &   0.472  &   0.522    \\ 
    1295       \hline 
    1296     \end{tabular} 
    1297     \caption{ 
    1298       \protect\label{tab:ZDF_zad_Aimp_CFLcrit} 
    1299       The advective CFL criteria for a range of spatial discretizations for the Leap-Frog with Robert Asselin filter time-stepping 
    1300       ($\nu=0.1$) as given in \citep{lemarie.debreu.ea_OM15}. 
    1301     } 
    1302   \end{center} 
     1323  \centering 
     1324  % \begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}} 
     1325  \begin{tabular}{r|ccc} 
     1326    \hline 
     1327    spatial discretization  & 2$^nd$ order centered & 3$^rd$ order upwind & 4$^th$ order compact \\ 
     1328    advective CFL criterion &                 0.904 &              0.472  &                0.522 \\ 
     1329    \hline 
     1330  \end{tabular} 
     1331  \caption[Advective CFL criteria for the leapfrog with Robert Asselin filter time-stepping]{ 
     1332    The advective CFL criteria for a range of spatial discretizations for 
     1333    the leapfrog with Robert Asselin filter time-stepping 
     1334    ($\nu=0.1$) as given in \citep{lemarie.debreu.ea_OM15}.} 
     1335  \label{tab:ZDF_zad_Aimp_CFLcrit} 
    13031336\end{table} 
    13041337 
     
    13311364Cu_{cut} &= 2Cu_{max} - Cu_{min} \nonumber \\ 
    13321365Fcu    &= 4Cu_{max}*(Cu_{max}-Cu_{min}) \nonumber \\ 
    1333 C\kern-0.14em f &= 
     1366\cf &= 
    13341367     \begin{cases} 
    13351368        0.0                                                        &\text{if $Cu \leq Cu_{min}$} \\ 
     
    13401373 
    13411374\begin{figure}[!t] 
    1342   \begin{center} 
    1343     \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_coeff} 
    1344     \caption{ 
    1345       \protect\label{fig:ZDF_zad_Aimp_coeff} 
    1346       The value of the partitioning coefficient ($C\kern-0.14em f$) used to partition vertical velocities into parts to 
    1347       be treated implicitly and explicitly for a range of typical Courant numbers (\forcode{ln_zad_Aimp=.true.}) 
    1348     } 
    1349   \end{center} 
     1375  \centering 
     1376  \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_coeff} 
     1377  \caption[Partitioning coefficient used to partition vertical velocities into parts]{ 
     1378    The value of the partitioning coefficient (\cf) used to partition vertical velocities into 
     1379    parts to be treated implicitly and explicitly for a range of typical Courant numbers 
     1380    (\forcode{ln_zad_Aimp=.true.}).} 
     1381  \label{fig:ZDF_zad_Aimp_coeff} 
    13501382\end{figure} 
    13511383 
     
    13561388\begin{align} 
    13571389  \label{eq:ZDF_Eqn_zad_Aimp_partition2} 
    1358     w_{i_{ijk}} &= C\kern-0.14em f_{ijk} w_{n_{ijk}}     \nonumber \\ 
    1359     w_{n_{ijk}} &= (1-C\kern-0.14em f_{ijk}) w_{n_{ijk}} 
     1390    w_{i_{ijk}} &= \cf_{ijk} w_{n_{ijk}}     \nonumber \\ 
     1391    w_{n_{ijk}} &= (1-\cf_{ijk}) w_{n_{ijk}} 
    13601392\end{align} 
    13611393 
     
    13631395the three cases from \autoref{eq:ZDF_Eqn_zad_Aimp_partition} can be considered as: 
    13641396fully-explicit; mixed explicit/implicit and mostly-implicit.  With the settings shown the 
    1365 coefficient ($C\kern-0.14em f$) varies as shown in \autoref{fig:ZDF_zad_Aimp_coeff}. Note with these values 
     1397coefficient (\cf) varies as shown in \autoref{fig:ZDF_zad_Aimp_coeff}. Note with these values 
    13661398the $Cu_{cut}$ boundary between the mixed implicit-explicit treatment and 'mostly 
    13671399implicit' is 0.45 which is just below the stability limited given in 
     
    13811413 
    13821414\begin{figure}[!t] 
    1383   \begin{center} 
    1384     \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_overflow_frames} 
    1385     \caption{ 
    1386       \protect\label{fig:ZDF_zad_Aimp_overflow_frames} 
    1387       A time-series of temperature vertical cross-sections for the OVERFLOW test case. These results are for the default 
    1388       settings with \forcode{nn_rdt=10.0} and without adaptive implicit vertical advection (\forcode{ln_zad_Aimp=.false.}). 
    1389     } 
    1390   \end{center} 
     1415  \centering 
     1416  \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_overflow_frames} 
     1417  \caption[OVERFLOW: time-series of temperature vertical cross-sections]{ 
     1418    A time-series of temperature vertical cross-sections for the OVERFLOW test case. 
     1419    These results are for the default settings with \forcode{nn_rdt=10.0} and 
     1420    without adaptive implicit vertical advection (\forcode{ln_zad_Aimp=.false.}).} 
     1421  \label{fig:ZDF_zad_Aimp_overflow_frames} 
    13911422\end{figure} 
    13921423 
    13931424\subsection{Adaptive-implicit vertical advection in the OVERFLOW test-case} 
     1425 
    13941426The \href{https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/guide/html/test\_cases.html\#overflow}{OVERFLOW test case} 
    13951427provides a simple illustration of the adaptive-implicit advection in action. The example here differs from the basic test case 
     
    14281460implicit and explicit components of the vertical velocity are available via XIOS as 
    14291461\texttt{wimp} and \texttt{wexp} respectively.  Likewise, the partitioning coefficient 
    1430 ($C\kern-0.14em f$) is also available as \texttt{wi\_cff}. For a quick oversight of 
     1462(\cf) is also available as \texttt{wi\_cff}. For a quick oversight of 
    14311463the schemes activity the global maximum values of the absolute implicit component 
    14321464of the vertical velocity and the partitioning coefficient are written to the netCDF 
     
    14601492 
    14611493\begin{figure}[!t] 
    1462   \begin{center} 
    1463     \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_overflow_all_rdt} 
    1464     \caption{ 
    1465       \protect\label{fig:ZDF_zad_Aimp_overflow_all_rdt} 
    1466       Sample temperature vertical cross-sections from mid- and end-run using different values for \forcode{nn_rdt} 
    1467       and with or without adaptive implicit vertical advection. Without the adaptive implicit vertical advection only 
    1468       the run with the shortest timestep is able to run to completion. Note also that the colour-scale has been 
    1469       chosen to confirm that temperatures remain within the original range of 10$^o$ to 20$^o$. 
    1470     } 
    1471   \end{center} 
     1494  \centering 
     1495  \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_overflow_all_rdt} 
     1496  \caption[OVERFLOW: sample temperature vertical cross-sections from mid- and end-run]{ 
     1497    Sample temperature vertical cross-sections from mid- and end-run using 
     1498    different values for \forcode{nn_rdt} and with or without adaptive implicit vertical advection. 
     1499    Without the adaptive implicit vertical advection 
     1500    only the run with the shortest timestep is able to run to completion. 
     1501    Note also that the colour-scale has been chosen to confirm that 
     1502    temperatures remain within the original range of 10$^o$ to 20$^o$.} 
     1503  \label{fig:ZDF_zad_Aimp_overflow_all_rdt} 
    14721504\end{figure} 
    14731505 
    14741506\begin{figure}[!t] 
    1475   \begin{center} 
    1476     \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_maxCf} 
    1477     \caption{ 
    1478       \protect\label{fig:ZDF_zad_Aimp_maxCf} 
    1479       The maximum partitioning coefficient during a series of test runs with increasing model timestep length. 
    1480       At the larger timesteps, the vertical velocity is treated mostly implicitly at some location throughout 
    1481       the run. 
    1482     } 
    1483   \end{center} 
     1507  \centering 
     1508  \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_maxCf} 
     1509  \caption[OVERFLOW: maximum partitioning coefficient during a series of test runs]{ 
     1510    The maximum partitioning coefficient during a series of test runs with 
     1511    increasing model timestep length. 
     1512    At the larger timesteps, 
     1513    the vertical velocity is treated mostly implicitly at some location throughout the run.} 
     1514  \label{fig:ZDF_zad_Aimp_maxCf} 
    14841515\end{figure} 
    14851516 
    14861517\begin{figure}[!t] 
    1487   \begin{center} 
    1488     \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_maxCf_loc} 
    1489     \caption{ 
    1490       \protect\label{fig:ZDF_zad_Aimp_maxCf_loc} 
    1491       The maximum partitioning coefficient for the  \forcode{nn_rdt=10.0s} case overlaid with  information on the gridcell i- and k- 
    1492       locations of the maximum value. 
    1493     } 
    1494   \end{center} 
     1518  \centering 
     1519  \includegraphics[width=\textwidth]{Fig_ZDF_zad_Aimp_maxCf_loc} 
     1520  \caption[OVERFLOW: maximum partitioning coefficient for the case overlaid]{ 
     1521    The maximum partitioning coefficient for the \forcode{nn_rdt=10.0} case overlaid with 
     1522    information on the gridcell i- and k-locations of the maximum value.} 
     1523  \label{fig:ZDF_zad_Aimp_maxCf_loc} 
    14951524\end{figure} 
    14961525 
Note: See TracChangeset for help on using the changeset viewer.