New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11596 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2019-09-25T19:06:37+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Application of some coding rules

  • Replace comments before sectioning cmds by a single line of 100 characters long to display when every line should break
  • Replace multi blank lines by one single blank line
  • For list environment, put \item, label and content on the same line
  • Remove \newpage and comments line around figure envs
File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r11584 r11596  
    55 
    66\begin{document} 
    7 % ================================================================ 
    8 % Chapter  Vertical Ocean Physics (ZDF) 
    9 % ================================================================ 
    107\chapter{Vertical Ocean Physics (ZDF)} 
    118\label{chap:ZDF} 
     
    1512%gm% Add here a small introduction to ZDF and naming of the different physics (similar to what have been written for TRA and DYN. 
    1613 
    17 \newpage 
    18  
    19 % ================================================================ 
    20 % Vertical Mixing 
    21 % ================================================================ 
    2214\section{Vertical mixing} 
    2315\label{sec:ZDF} 
     
    5547%-------------------------------------------------------------------------------------------------------------- 
    5648 
    57 % ------------------------------------------------------------------------------------------------------------- 
    58 %        Constant 
    59 % ------------------------------------------------------------------------------------------------------------- 
    6049\subsection[Constant (\forcode{ln_zdfcst})]{Constant (\protect\np{ln_zdfcst}{ln\_zdfcst})} 
    6150\label{subsec:ZDF_cst} 
     
    7766$\sim10^{-9}~m^2.s^{-1}$ for salinity. 
    7867 
    79 % ------------------------------------------------------------------------------------------------------------- 
    80 %        Richardson Number Dependent 
    81 % ------------------------------------------------------------------------------------------------------------- 
    8268\subsection[Richardson number dependent (\forcode{ln_zdfric})]{Richardson number dependent (\protect\np{ln_zdfric}{ln\_zdfric})} 
    8369\label{subsec:ZDF_ric} 
     
    138124the empirical values \np{rn_wtmix}{rn\_wtmix} and \np{rn_wvmix}{rn\_wvmix} \citep{lermusiaux_JMS01}. 
    139125 
    140 % ------------------------------------------------------------------------------------------------------------- 
    141 %        TKE Turbulent Closure Scheme 
    142 % ------------------------------------------------------------------------------------------------------------- 
    143126\subsection[TKE turbulent closure scheme (\forcode{ln_zdftke})]{TKE turbulent closure scheme (\protect\np{ln_zdftke}{ln\_zdftke})} 
    144127\label{subsec:ZDF_tke} 
     
    248231evaluate the dissipation and mixing length scales as 
    249232(and note that here we use numerical indexing): 
    250 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    251233\begin{figure}[!t] 
    252234  \centering 
     
    255237  \label{fig:ZDF_mixing_length} 
    256238\end{figure} 
    257 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    258239\[ 
    259240  % \label{eq:ZDF_tke_mxl2} 
     
    421402% (\eg\ Mellor, 1989; Large et al., 1994; Meier, 2001; Axell, 2002; St. Laurent and Garrett, 2002). 
    422403 
    423 % ------------------------------------------------------------------------------------------------------------- 
    424 %        GLS Generic Length Scale Scheme 
    425 % ------------------------------------------------------------------------------------------------------------- 
    426404\subsection[GLS: Generic Length Scale (\forcode{ln_zdfgls})]{GLS: Generic Length Scale (\protect\np{ln_zdfgls}{ln\_zdfgls})} 
    427405\label{subsec:ZDF_gls} 
     
    544522 in \citet{reffray.guillaume.ea_GMD15} for the \NEMO\ model. 
    545523 
    546  
    547 % ------------------------------------------------------------------------------------------------------------- 
    548 %        OSM OSMOSIS BL Scheme 
    549 % ------------------------------------------------------------------------------------------------------------- 
    550524\subsection[OSM: OSMosis boundary layer scheme (\forcode{ln_zdfosm})]{OSM: OSMosis boundary layer scheme (\protect\np{ln_zdfosm}{ln\_zdfosm})} 
    551525\label{subsec:ZDF_osm} 
     
    561535The OSMOSIS turbulent closure scheme is based on......   TBC 
    562536 
    563 % ------------------------------------------------------------------------------------------------------------- 
    564 %        TKE and GLS discretization considerations 
    565 % ------------------------------------------------------------------------------------------------------------- 
    566537\subsection[ Discrete energy conservation for TKE and GLS schemes]{Discrete energy conservation for TKE and GLS schemes} 
    567538\label{subsec:ZDF_tke_ene} 
    568539 
    569 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    570540\begin{figure}[!t] 
    571541  \centering 
     
    576546  \label{fig:ZDF_TKE_time_scheme} 
    577547\end{figure} 
    578 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    579548 
    580549The production of turbulence by vertical shear (the first term of the right hand side of 
     
    666635%For the latter, it is in fact the ratio $\sqrt{\bar{e}}/l_\epsilon$ which is stored. 
    667636 
    668 % ================================================================ 
    669 % Convection 
    670 % ================================================================ 
    671637\section{Convection} 
    672638\label{sec:ZDF_conv} 
     
    679645or/and the use of a turbulent closure scheme. 
    680646 
    681 % ------------------------------------------------------------------------------------------------------------- 
    682 %       Non-Penetrative Convective Adjustment 
    683 % ------------------------------------------------------------------------------------------------------------- 
    684647\subsection[Non-penetrative convective adjustment (\forcode{ln_tranpc})]{Non-penetrative convective adjustment (\protect\np{ln_tranpc}{ln\_tranpc})} 
    685648\label{subsec:ZDF_npc} 
    686649 
    687 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    688650\begin{figure}[!htb] 
    689651  \centering 
     
    704666  \label{fig:ZDF_npc} 
    705667\end{figure} 
    706 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    707668 
    708669Options are defined through the \nam{zdf}{zdf} namelist variables. 
     
    744705having to recompute the expansion coefficients at each mixing iteration. 
    745706 
    746 % ------------------------------------------------------------------------------------------------------------- 
    747 %       Enhanced Vertical Diffusion 
    748 % ------------------------------------------------------------------------------------------------------------- 
    749707\subsection[Enhanced vertical diffusion (\forcode{ln_zdfevd})]{Enhanced vertical diffusion (\protect\np{ln_zdfevd}{ln\_zdfevd})} 
    750708\label{subsec:ZDF_evd} 
     
    770728a leapfrog environment \citep{leclair_phd10} (see \autoref{sec:TD_mLF}). 
    771729 
    772 % ------------------------------------------------------------------------------------------------------------- 
    773 %       Turbulent Closure Scheme 
    774 % ------------------------------------------------------------------------------------------------------------- 
    775730\subsection[Handling convection with turbulent closure schemes (\forcode{ln_zdf_}\{\forcode{tke,gls,osm}\})]{Handling convection with turbulent closure schemes (\forcode{ln_zdf{tke,gls,osm}})} 
    776731\label{subsec:ZDF_tcs} 
    777  
    778732 
    779733The turbulent closure schemes presented in \autoref{subsec:ZDF_tke}, \autoref{subsec:ZDF_gls} and 
     
    798752% gm%  + one word on non local flux with KPP scheme trakpp.F90 module... 
    799753 
    800 % ================================================================ 
    801 % Double Diffusion Mixing 
    802 % ================================================================ 
    803754\section[Double diffusion mixing (\forcode{ln_zdfddm})]{Double diffusion mixing (\protect\np{ln_zdfddm}{ln\_zdfddm})} 
    804755\label{subsec:ZDF_ddm} 
    805  
    806756 
    807757%-------------------------------------------namzdf_ddm------------------------------------------------- 
     
    818768it leads to relatively minor changes in circulation but exerts significant regional influences on 
    819769temperature and salinity. 
    820  
    821770 
    822771Diapycnal mixing of S and T are described by diapycnal diffusion coefficients 
     
    844793\end{align} 
    845794 
    846 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    847795\begin{figure}[!t] 
    848796  \centering 
     
    861809  \label{fig:ZDF_ddm} 
    862810\end{figure} 
    863 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    864811 
    865812The factor 0.7 in \autoref{eq:ZDF_ddm_f_T} reflects the measured ratio $\alpha F_T /\beta F_S \approx  0.7$ of 
     
    893840This avoids duplication in the computation of $\alpha$ and $\beta$ (which is usually quite expensive). 
    894841 
    895 % ================================================================ 
    896 % Bottom Friction 
    897 % ================================================================ 
    898842\section[Bottom and top friction (\textit{zdfdrg.F90})]{Bottom and top friction (\protect\mdl{zdfdrg})} 
    899843\label{sec:ZDF_drg} 
     
    924868As the friction processes at the top and the bottom are treated in and identical way, 
    925869the description below considers mostly the bottom friction case, if not stated otherwise. 
    926  
    927870 
    928871Both the surface momentum flux (wind stress) and the bottom momentum flux (bottom friction) enter the equations as 
     
    973916Note than from \NEMO\ 4.0, drag coefficients are only computed at cell centers (\ie\ at T-points) and refer to as $c_b^T$ in the following. These are then linearly interpolated in space to get $c_b^\textbf{U}$ at velocity points. 
    974917 
    975 % ------------------------------------------------------------------------------------------------------------- 
    976 %       Linear Bottom Friction 
    977 % ------------------------------------------------------------------------------------------------------------- 
    978918\subsection[Linear top/bottom friction (\forcode{ln_lin})]{Linear top/bottom friction (\protect\np{ln_lin}{ln\_lin})} 
    979919\label{subsec:ZDF_drg_linear} 
     
    1012952$mask\_value$ * \np{rn_boost}{rn\_boost} * \np{rn_Cd0}{rn\_Cd0}. 
    1013953 
    1014 % ------------------------------------------------------------------------------------------------------------- 
    1015 %       Non-Linear Bottom Friction 
    1016 % ------------------------------------------------------------------------------------------------------------- 
    1017954\subsection[Non-linear top/bottom friction (\forcode{ln_non_lin})]{Non-linear top/bottom friction (\protect\np{ln_non_lin}{ln\_non\_lin})} 
    1018955\label{subsec:ZDF_drg_nonlinear} 
     
    1047984$mask\_value$ * \np{rn_boost}{rn\_boost} * \np{rn_Cd0}{rn\_Cd0}. 
    1048985 
    1049 % ------------------------------------------------------------------------------------------------------------- 
    1050 %       Bottom Friction Log-layer 
    1051 % ------------------------------------------------------------------------------------------------------------- 
    1052986\subsection[Log-layer top/bottom friction (\forcode{ln_loglayer})]{Log-layer top/bottom friction (\protect\np{ln_loglayer}{ln\_loglayer})} 
    1053987\label{subsec:ZDF_drg_loglayer} 
     
    10731007%In this case, the relevant namelist parameters are \np{rn_tfrz0}{rn\_tfrz0}, \np{rn_tfri2}{rn\_tfri2} and \np{rn_tfri2_max}{rn\_tfri2\_max}. 
    10741008 
    1075 % ------------------------------------------------------------------------------------------------------------- 
    1076 %       Explicit bottom Friction 
    1077 % ------------------------------------------------------------------------------------------------------------- 
    10781009\subsection[Explicit top/bottom friction (\forcode{ln_drgimp=.false.})]{Explicit top/bottom friction (\protect\np[=.false.]{ln_drgimp}{ln\_drgimp})} 
    10791010\label{subsec:ZDF_drg_stability} 
     
    11341065The number of potential breaches of the explicit stability criterion are still reported for information purposes. 
    11351066 
    1136 % ------------------------------------------------------------------------------------------------------------- 
    1137 %       Implicit Bottom Friction 
    1138 % ------------------------------------------------------------------------------------------------------------- 
    11391067\subsection[Implicit top/bottom friction (\forcode{ln_drgimp=.true.})]{Implicit top/bottom friction (\protect\np[=.true.]{ln_drgimp}{ln\_drgimp})} 
    11401068\label{subsec:ZDF_drg_imp} 
     
    11641092Superscript $n+1$ means the velocity used in the friction formula is to be calculated, so it is implicit. 
    11651093 
    1166 % ------------------------------------------------------------------------------------------------------------- 
    1167 %       Bottom Friction with split-explicit free surface 
    1168 % ------------------------------------------------------------------------------------------------------------- 
    11691094\subsection[Bottom friction with split-explicit free surface]{Bottom friction with split-explicit free surface} 
    11701095\label{subsec:ZDF_drg_ts} 
     
    11801105Note that other strategies are possible, like considering vertical diffusion step in advance, \ie\ prior barotropic integration. 
    11811106 
    1182  
    1183 % ================================================================ 
    1184 % Internal wave-driven mixing 
    1185 % ================================================================ 
    11861107\section[Internal wave-driven mixing (\forcode{ln_zdfiwm})]{Internal wave-driven mixing (\protect\np{ln_zdfiwm}{ln\_zdfiwm})} 
    11871108\label{subsec:ZDF_tmx_new} 
     
    12451166% Jc: input files names ? 
    12461167 
    1247 % ================================================================ 
    1248 % surface wave-induced mixing 
    1249 % ================================================================ 
    12501168\section[Surface wave-induced mixing (\forcode{ln_zdfswm})]{Surface wave-induced mixing (\protect\np{ln_zdfswm}{ln\_zdfswm})} 
    12511169\label{subsec:ZDF_swm} 
     
    12781196(for more information on wave parameters and settings see \autoref{sec:SBC_wave}) 
    12791197 
    1280 % ================================================================ 
    1281 % Adaptive-implicit vertical advection 
    1282 % ================================================================ 
    12831198\section[Adaptive-implicit vertical advection (\forcode{ln_zad_Aimp})]{Adaptive-implicit vertical advection(\protect\np{ln_zad_Aimp}{ln\_zad\_Aimp})} 
    12841199\label{subsec:ZDF_aimp} 
Note: See TracChangeset for help on using the changeset viewer.