New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11597 for NEMO/trunk/doc/latex/NEMO/subfiles/apdx_invariants.tex – NEMO

Ignore:
Timestamp:
2019-09-25T20:20:19+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Continuation of coding rules application
Recovery of some sections deleted by the previous commit

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/apdx_invariants.tex

    r11596 r11597  
    1212%\gmcomment{ 
    1313 
     14%% ================================================================================================= 
    1415\section{Introduction / Notations} 
    1516\label{sec:INVARIANTS_0} 
     
    8586\end{flalign} 
    8687 
     88%% ================================================================================================= 
    8789\section{Continuous conservation} 
    8890\label{sec:INVARIANTS_1} 
     
    311313% 
    312314 
     315%% ================================================================================================= 
    313316\section{Discrete total energy conservation: vector invariant form} 
    314317\label{sec:INVARIANTS_2} 
    315318 
     319%% ================================================================================================= 
    316320\subsection{Total energy conservation} 
    317321\label{subsec:INVARIANTS_KE+PE_vect} 
     
    337341leads to the discrete equivalent of the four equations \autoref{eq:INVARIANTS_E_tot_flux}. 
    338342 
     343%% ================================================================================================= 
    339344\subsection{Vorticity term (coriolis + vorticity part of the advection)} 
    340345\label{subsec:INVARIANTS_vor} 
     
    343348or the planetary ($q=f/e_{3f}$), or the total potential vorticity ($q=(\zeta +f) /e_{3f}$). 
    344349Two discretisation of the vorticity term (ENE and EEN) allows the conservation of the kinetic energy. 
     350%% ================================================================================================= 
    345351\subsubsection{Vorticity term with ENE scheme (\protect\np[=.true.]{ln_dynvor_ene}{ln\_dynvor\_ene})} 
    346352\label{subsec:INVARIANTS_vorENE} 
     
    380386In other words, the domain averaged kinetic energy does not change due to the vorticity term. 
    381387 
     388%% ================================================================================================= 
    382389\subsubsection{Vorticity term with EEN scheme (\protect\np[=.true.]{ln_dynvor_een}{ln\_dynvor\_een})} 
    383390\label{subsec:INVARIANTS_vorEEN_vect} 
     
    449456\end{flalign*} 
    450457 
     458%% ================================================================================================= 
    451459\subsubsection{Gradient of kinetic energy / Vertical advection} 
    452460\label{subsec:INVARIANTS_zad} 
     
    556564Blah blah required on the the step representation of bottom topography..... 
    557565 
     566%% ================================================================================================= 
    558567\subsection{Pressure gradient term} 
    559568\label{subsec:INVARIANTS_2.6} 
     
    698707Nevertheless, it is almost never satisfied since a linear equation of state is rarely used. 
    699708 
     709%% ================================================================================================= 
    700710\section{Discrete total energy conservation: flux form} 
    701711\label{sec:INVARIANTS_3} 
    702712 
     713%% ================================================================================================= 
    703714\subsection{Total energy conservation} 
    704715\label{subsec:INVARIANTS_KE+PE_flux} 
     
    721732vector invariant or in flux form, leads to the discrete equivalent of the ???? 
    722733 
     734%% ================================================================================================= 
    723735\subsection{Coriolis and advection terms: flux form} 
    724736\label{subsec:INVARIANTS_3.2} 
    725737 
     738%% ================================================================================================= 
    726739\subsubsection{Coriolis plus ``metric'' term} 
    727740\label{subsec:INVARIANTS_3.3} 
     
    742755The derivation is the same as for the vorticity term in the vector invariant form (\autoref{subsec:INVARIANTS_vor}). 
    743756 
     757%% ================================================================================================= 
    744758\subsubsection{Flux form advection} 
    745759\label{subsec:INVARIANTS_3.4} 
     
    820834The horizontal kinetic energy is not conserved, but forced to decay (\ie\ the scheme is diffusive). 
    821835 
     836%% ================================================================================================= 
    822837\section{Discrete enstrophy conservation} 
    823838\label{sec:INVARIANTS_4} 
    824839 
     840%% ================================================================================================= 
    825841\subsubsection{Vorticity term with ENS scheme  (\protect\np[=.true.]{ln_dynvor_ens}{ln\_dynvor\_ens})} 
    826842\label{subsec:INVARIANTS_vorENS} 
     
    889905The later equality is obtain only when the flow is horizontally non-divergent, \ie\ $\chi$=$0$. 
    890906 
     907%% ================================================================================================= 
    891908\subsubsection{Vorticity Term with EEN scheme (\protect\np[=.true.]{ln_dynvor_een}{ln\_dynvor\_een})} 
    892909\label{subsec:INVARIANTS_vorEEN} 
     
    959976\end{flalign*} 
    960977 
     978%% ================================================================================================= 
    961979\section{Conservation properties on tracers} 
    962980\label{sec:INVARIANTS_5} 
     
    972990as the equation of state is non linear with respect to $T$ and $S$. 
    973991In practice, the mass is conserved to a very high accuracy. 
     992%% ================================================================================================= 
    974993\subsection{Advection term} 
    975994\label{subsec:INVARIANTS_5.1} 
     
    10351054which is the discrete form of $ \frac{1}{2} \int_D {  T^2 \frac{1}{e_3} \frac{\partial  e_3 }{\partial t} \;dv }$. 
    10361055 
     1056%% ================================================================================================= 
    10371057\section{Conservation properties on lateral momentum physics} 
    10381058\label{sec:INVARIANTS_dynldf_properties} 
     
    10531073the term associated with the horizontal gradient of the divergence is locally zero. 
    10541074 
     1075%% ================================================================================================= 
    10551076\subsection{Conservation of potential vorticity} 
    10561077\label{subsec:INVARIANTS_6.1} 
     
    10841105\end{flalign*} 
    10851106 
     1107%% ================================================================================================= 
    10861108\subsection{Dissipation of horizontal kinetic energy} 
    10871109\label{subsec:INVARIANTS_6.2} 
     
    11331155\] 
    11341156 
     1157%% ================================================================================================= 
    11351158\subsection{Dissipation of enstrophy} 
    11361159\label{subsec:INVARIANTS_6.3} 
     
    11541177\end{flalign*} 
    11551178 
     1179%% ================================================================================================= 
    11561180\subsection{Conservation of horizontal divergence} 
    11571181\label{subsec:INVARIANTS_6.4} 
     
    11781202\end{flalign*} 
    11791203 
     1204%% ================================================================================================= 
    11801205\subsection{Dissipation of horizontal divergence variance} 
    11811206\label{subsec:INVARIANTS_6.5} 
     
    12011226\end{flalign*} 
    12021227 
     1228%% ================================================================================================= 
    12031229\section{Conservation properties on vertical momentum physics} 
    12041230\label{sec:INVARIANTS_7} 
     
    13691395\end{flalign*} 
    13701396 
     1397%% ================================================================================================= 
    13711398\section{Conservation properties on tracer physics} 
    13721399\label{sec:INVARIANTS_8} 
     
    13781405As for the advection term, there is conservation of mass only if the Equation Of Seawater is linear. 
    13791406 
     1407%% ================================================================================================= 
    13801408\subsection{Conservation of tracers} 
    13811409\label{subsec:INVARIANTS_8.1} 
     
    14081436In fact, this property simply results from the flux form of the operator. 
    14091437 
     1438%% ================================================================================================= 
    14101439\subsection{Dissipation of tracer variance} 
    14111440\label{subsec:INVARIANTS_8.2} 
Note: See TracChangeset for help on using the changeset viewer.