New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11630 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex – NEMO

Ignore:
Timestamp:
2019-10-01T19:37:49+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Review of TRA chapter

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex

    r11622 r11630  
    208208\] 
    209209Two strategies can be considered for the surface pressure term: 
    210 \begin{enumerate*}[label={(\alph*)}] 
     210\begin{enumerate*}[label=(\textit{\alph*})] 
    211211\item introduce of a new variable $\eta$, the free-surface elevation, 
    212212for which a prognostic equation can be established and solved; 
     
    486486\item [Flux form of the momentum equations] 
    487487  % \label{eq:MB_dyn_flux} 
    488   \begin{multline*} 
     488  \begin{alignat*}{2} 
    489489    % \label{eq:MB_dyn_flux_u} 
    490     \pd[u]{t} = + \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v - \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, u)]{i} + \pd[(e_1 \, v \, u)]{j} \rt) \\ 
    491     - \frac{1}{e_3} \pd[(w \, u)]{k} - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) + D_u^{\vect U} + F_u^{\vect U} 
    492   \end{multline*} 
    493   \begin{multline*} 
     490    \pd[u]{t} = &+ \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v - \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, u)]{i} + \pd[(e_1 \, v \, u)]{j} \rt) - \frac{1}{e_3} \pd[(w \, u)]{k} \\ 
     491    &- \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) + D_u^{\vect U} + F_u^{\vect U} 
     492  \end{alignat*} 
     493  \begin{alignat*}{2} 
    494494    % \label{eq:MB_dyn_flux_v} 
    495     \pd[v]{t} = - \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u - \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, v)]{i} + \pd[(e_1 \, v \, v)]{j} \rt) \\ 
    496     - \frac{1}{e_3} \pd[(w \, v)]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) + D_v^{\vect U} + F_v^{\vect U} 
    497   \end{multline*} 
     495    \pd[v]{t} = &- \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u - \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, v)]{i} + \pd[(e_1 \, v \, v)]{j} \rt) - \frac{1}{e_3} \pd[(w \, v)]{k} \\ 
     496    &- \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) + D_v^{\vect U} + F_v^{\vect U} 
     497  \end{alignat*} 
    498498  where $\zeta$, the relative vorticity, is given by \autoref{eq:MB_curl_Uh} and 
    499499  $p_s$, the surface pressure, is given by: 
     
    650650  \end{gather*} 
    651651\item [Flux form of the momentum equation] 
    652   \begin{multline*} 
     652  \begin{alignat*}{2} 
    653653    % \label{eq:MB_sco_u_flux} 
    654     \frac{1}{e_3} \pd[(e_3 \, u)]{t} = + \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[(e_2 \, e_3 \, u \, u)]{i} + \pd[(e_1 \, e_3 \, v \, u)]{j} \rt) \\ 
    655     - \frac{1}{e_3} \pd[(\omega \, u)]{k} - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o} \sigma_1 + D_u^{\vect U} + F_u^{\vect U} 
    656   \end{multline*} 
    657   \begin{multline*} 
     654    \frac{1}{e_3} \pd[(e_3 \, u)]{t} = &+ \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[(e_2 \, e_3 \, u \, u)]{i} + \pd[(e_1 \, e_3 \, v \, u)]{j} \rt) - \frac{1}{e_3} \pd[(\omega \, u)]{k} \\ 
     655    &- \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o} \sigma_1 + D_u^{\vect U} + F_u^{\vect U} 
     656  \end{alignat*} 
     657  \begin{alignat*}{2} 
    658658  % \label{eq:MB_sco_v_flux} 
    659     \frac{1}{e_3} \pd[(e_3 \, v)]{t} = - \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[( e_2 \; e_3 \, u \, v)]{i} + \pd[(e_1 \; e_3 \, v \, v)]{j} \rt) \\ 
    660     - \frac{1}{e_3} \pd[(\omega \, v)]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o}\sigma_2 + D_v^{\vect U} + F_v^{\vect U} 
    661   \end{multline*} 
     659    \frac{1}{e_3} \pd[(e_3 \, v)]{t} = &- \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[( e_2 \; e_3 \, u \, v)]{i} + \pd[(e_1 \; e_3 \, v \, v)]{j} \rt) - \frac{1}{e_3} \pd[(\omega \, v)]{k} \\ 
     660    &- \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o}\sigma_2 + D_v^{\vect U} + F_v^{\vect U} 
     661  \end{alignat*} 
    662662  where the relative vorticity, $\zeta$, the surface pressure gradient, 
    663663  and the hydrostatic pressure have the same expressions as in $z$-coordinates although 
     
    694694  \includegraphics[width=0.66\textwidth]{Fig_z_zstar} 
    695695  \caption[Curvilinear z-coordinate systems (\{non-\}linear free-surface cases and re-scaled \zstar)]{ 
    696     \begin{enumerate*}[label={(\alph*)}] 
     696    \begin{enumerate*}[label=(\textit{\alph*})] 
    697697    \item $z$-coordinate in linear free-surface case; 
    698698    \item $z$-coordinate in non-linear free surface case; 
     
    10671067where $ \vect U^\ast = \lt( u^\ast,v^\ast,w^\ast \rt)$ is a non-divergent, 
    10681068eddy-induced transport velocity. This velocity field is defined by: 
    1069 \begin{gather*} 
     1069\[ 
    10701070  % \label{eq:MB_eiv} 
    10711071  u^\ast =   \frac{1}{e_3}            \pd[]{k} \lt( A^{eiv} \;        \tilde{r}_1 \rt) \quad 
    1072   v^\ast =   \frac{1}{e_3}            \pd[]{k} \lt( A^{eiv} \;        \tilde{r}_2 \rt) \\ 
     1072  v^\ast =   \frac{1}{e_3}            \pd[]{k} \lt( A^{eiv} \;        \tilde{r}_2 \rt) \quad 
    10731073  w^\ast = - \frac{1}{e_1 e_2} \lt[   \pd[]{i} \lt( A^{eiv} \; e_2 \, \tilde{r}_1 \rt) 
    10741074                                     + \pd[]{j} \lt( A^{eiv} \; e_1 \, \tilde{r}_2 \rt) \rt] 
    1075 \end{gather*} 
     1075\] 
    10761076where $A^{eiv}$ is the eddy induced velocity coefficient 
    10771077(or equivalently the isoneutral thickness diffusivity coefficient), 
     
    11301130the $u$ and $v$-fields are considered as independent scalar fields, 
    11311131so that the diffusive operator is given by: 
    1132 \begin{gather*} 
     1132\[ 
    11331133  % \label{eq:MB_lapU_iso} 
    1134     D_u^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla u \rt) \\ 
     1134    D_u^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla u \rt) \quad 
    11351135    D_v^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla v \rt) 
    1136 \end{gather*} 
     1136\] 
    11371137where $\Re$ is given by \autoref{eq:MB_iso_tensor}. 
    11381138It is the same expression as those used for diffusive operator on tracers. 
Note: See TracChangeset for help on using the changeset viewer.