New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 12340 for NEMO/branches/2019/dev_r11943_MERGE_2019/src/ICE/iceitd.F90 – NEMO

Ignore:
Timestamp:
2020-01-27T15:31:53+01:00 (4 years ago)
Author:
acc
Message:

Branch 2019/dev_r11943_MERGE_2019. This commit introduces basic do loop macro
substitution to the 2019 option 1, merge branch. These changes have been SETTE
tested. The only addition is the do_loop_substitute.h90 file in the OCE directory but
the macros defined therein are used throughout the code to replace identifiable, 2D-
and 3D- nested loop opening and closing statements with single-line alternatives. Code
indents are also adjusted accordingly.

The following explanation is taken from comments in the new header file:

This header file contains preprocessor definitions and macros used in the do-loop
substitutions introduced between version 4.0 and 4.2. The primary aim of these macros
is to assist in future applications of tiling to improve performance. This is expected
to be achieved by alternative versions of these macros in selected locations. The
initial introduction of these macros simply replaces all identifiable nested 2D- and
3D-loops with single line statements (and adjusts indenting accordingly). Do loops
are identifiable if they comform to either:

DO jk = ....

DO jj = .... DO jj = ...

DO ji = .... DO ji = ...
. OR .
. .

END DO END DO

END DO END DO

END DO

and white-space variants thereof.

Additionally, only loops with recognised jj and ji loops limits are treated; these are:
Lower limits of 1, 2 or fs_2
Upper limits of jpi, jpim1 or fs_jpim1 (for ji) or jpj, jpjm1 or fs_jpjm1 (for jj)

The macro naming convention takes the form: DO_2D_BT_LR where:

B is the Bottom offset from the PE's inner domain;
T is the Top offset from the PE's inner domain;
L is the Left offset from the PE's inner domain;
R is the Right offset from the PE's inner domain

So, given an inner domain of 2,jpim1 and 2,jpjm1, a typical example would replace:

DO jj = 2, jpj

DO ji = 1, jpim1
.
.

END DO

END DO

with:

DO_2D_01_10
.
.
END_2D

similar conventions apply to the 3D loops macros. jk loop limits are retained
through macro arguments and are not restricted. This includes the possibility of
strides for which an extra set of DO_3DS macros are defined.

In the example definition below the inner PE domain is defined by start indices of
(kIs, kJs) and end indices of (kIe, KJe)

#define DO_2D_00_00 DO jj = kJs, kJe ; DO ji = kIs, kIe
#define END_2D END DO ; END DO

TO DO:


Only conventional nested loops have been identified and replaced by this step. There are constructs such as:

DO jk = 2, jpkm1

z2d(:,:) = z2d(:,:) + e3w(:,:,jk,Kmm) * z3d(:,:,jk) * wmask(:,:,jk)

END DO

which may need to be considered.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r11943_MERGE_2019/src/ICE/iceitd.F90

    r11960 r12340  
    4848   REAL(wp), DIMENSION(0:100) ::   rn_catbnd    ! ice categories bounds 
    4949   ! 
     50   !! * Substitutions 
     51#  include "do_loop_substitute.h90" 
    5052   !!---------------------------------------------------------------------- 
    5153   !! NEMO/ICE 4.0 , NEMO Consortium (2018) 
     
    9698      ! 
    9799      npti = 0   ;   nptidx(:) = 0 
    98       DO jj = 1, jpj 
    99          DO ji = 1, jpi 
    100             IF ( at_i(ji,jj) > epsi10 ) THEN 
    101                npti = npti + 1 
    102                nptidx( npti ) = (jj - 1) * jpi + ji 
    103             ENDIF 
    104          END DO 
    105       END DO 
     100      DO_2D_11_11 
     101         IF ( at_i(ji,jj) > epsi10 ) THEN 
     102            npti = npti + 1 
     103            nptidx( npti ) = (jj - 1) * jpi + ji 
     104         ENDIF 
     105      END_2D 
    106106       
    107107      !----------------------------------------------------------------------------------------------- 
     
    597597         !                    !--------------------------------------- 
    598598         npti = 0   ;   nptidx(:) = 0 
    599          DO jj = 1, jpj 
    600             DO ji = 1, jpi 
    601                IF( a_i(ji,jj,jl) > 0._wp .AND. v_i(ji,jj,jl) > (a_i(ji,jj,jl) * hi_max(jl)) ) THEN 
    602                   npti = npti + 1 
    603                   nptidx( npti ) = (jj - 1) * jpi + ji                   
    604                ENDIF 
    605             END DO 
    606          END DO 
     599         DO_2D_11_11 
     600            IF( a_i(ji,jj,jl) > 0._wp .AND. v_i(ji,jj,jl) > (a_i(ji,jj,jl) * hi_max(jl)) ) THEN 
     601               npti = npti + 1 
     602               nptidx( npti ) = (jj - 1) * jpi + ji                   
     603            ENDIF 
     604         END_2D 
    607605         ! 
    608606!!clem   CALL tab_2d_1d( npti, nptidx(1:npti), h_i_1d(1:npti), h_i(:,:,jl) ) 
     
    638636         !                    !----------------------------------------- 
    639637         npti = 0 ; nptidx(:) = 0 
    640          DO jj = 1, jpj 
    641             DO ji = 1, jpi 
    642                IF( a_i(ji,jj,jl+1) > 0._wp .AND. v_i(ji,jj,jl+1) <= (a_i(ji,jj,jl+1) * hi_max(jl)) ) THEN 
    643                   npti = npti + 1 
    644                   nptidx( npti ) = (jj - 1) * jpi + ji                   
    645                ENDIF 
    646             END DO 
    647          END DO 
     638         DO_2D_11_11 
     639            IF( a_i(ji,jj,jl+1) > 0._wp .AND. v_i(ji,jj,jl+1) <= (a_i(ji,jj,jl+1) * hi_max(jl)) ) THEN 
     640               npti = npti + 1 
     641               nptidx( npti ) = (jj - 1) * jpi + ji                   
     642            ENDIF 
     643         END_2D 
    648644         ! 
    649645         CALL tab_2d_1d( npti, nptidx(1:npti), a_i_1d(1:npti), a_i(:,:,jl+1) ) ! jl+1 is ok 
Note: See TracChangeset for help on using the changeset viewer.