New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 14018 for NEMO/branches/2020/dev_r13327_KERNEL-06_2_techene_e3/doc/latex/NEMO/subfiles/chap_SBC.tex – NEMO

Ignore:
Timestamp:
2020-12-02T18:22:24+01:00 (3 years ago)
Author:
techene
Message:

#2385 branch updated with trunk 13970

Location:
NEMO/branches/2020/dev_r13327_KERNEL-06_2_techene_e3
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2020/dev_r13327_KERNEL-06_2_techene_e3

    • Property svn:externals
      •  

        old new  
        88 
        99# SETTE 
        10 ^/utils/CI/sette@13559        sette 
         10^/utils/CI/sette@13795        sette 
  • NEMO/branches/2020/dev_r13327_KERNEL-06_2_techene_e3/doc/latex/NEMO/subfiles/chap_SBC.tex

    r13165 r14018  
    55\begin{document} 
    66 
    7 \chapter{Surface Boundary Condition (SBC, SAS, ISF, ICB)} 
     7\chapter{Surface Boundary Condition (SBC, SAS, ISF, ICB, TDE)} 
    88\label{chap:SBC} 
    99 
     
    1818    Release & Author(s) & Modifications \\ 
    1919    \hline 
     20    {\em  next} & {\em Simon M{\" u}ller} & {\em Update of \autoref{sec:SBC_TDE}}\\[2mm] 
    2021    {\em   4.0} & {\em ...} & {\em ...} \\ 
    2122    {\em   3.6} & {\em ...} & {\em ...} \\ 
     
    10131014 
    10141015%% ================================================================================================= 
    1015 \section[Surface tides (\textit{sbctide.F90})]{Surface tides (\protect\mdl{sbctide})} 
    1016 \label{sec:SBC_tide} 
     1016\section{Surface tides (TDE)} 
     1017\label{sec:SBC_TDE} 
    10171018 
    10181019\begin{listing} 
     
    10221023\end{listing} 
    10231024 
    1024 The tidal forcing, generated by the gravity forces of the Earth-Moon and Earth-Sun sytems, 
    1025 is activated if \np{ln_tide}{ln\_tide} and \np{ln_tide_pot}{ln\_tide\_pot} are both set to \forcode{.true.} in \nam{_tide}{\_tide}. 
    1026 This translates as an additional barotropic force in the momentum \autoref{eq:MB_PE_dyn} such that: 
     1025\subsection{Tidal constituents} 
     1026Ocean model component TDE provides the common functionality for tidal forcing 
     1027and tidal analysis in the model framework. This includes the computation of the gravitational 
     1028surface forcing, as well as support for lateral forcing at open boundaries (see 
     1029\autoref{subsec:LBC_bdy_tides}) and tidal harmonic analysis (see 
     1030\autoref{subsec:DIA_diamlr} and \autoref{subsec:DIA_diadetide}). The module is 
     1031activated with \np[=.true.]{ln_tide}{ln\_tide} in namelist 
     1032\nam{_tide}{\_tide}. It provides the same 34 tidal constituents that are 
     1033included in the 
     1034\href{https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html}{FES2014 
     1035  ocean tide model}: Mf, Mm, Ssa, Mtm, Msf, Msqm, Sa, K1, O1, P1, Q1, J1, S1, 
     1036M2, S2, N2, K2, nu2, mu2, 2N2, L2, T2, eps2, lam2, R2, M3, MKS2, MN4, MS4, M4, 
     1037N4, S4, M6, and M8; see file \hf{tide} and \mdl{tide\_mod} for further 
     1038information and references\footnote{As a legacy option \np{ln_tide_var} can be 
     1039  set to \forcode{0}, in which case the 19 tidal constituents (M2, N2, 2N2, S2, 
     1040  K2, K1, O1, Q1, P1, M4, Mf, Mm, Msqm, Mtm, S1, MU2, NU2, L2, and T2; see file 
     1041  \hf{tide}) and associated parameters that have been available in NEMO version 
     1042  4.0 and earlier are available}. Constituents to be included in the tidal forcing 
     1043(surface and lateral boundaries) are selected by enumerating their respective 
     1044names in namelist array \np{sn_tide_cnames}{sn\_tide\_cnames}.\par 
     1045 
     1046\subsection{Surface tidal forcing} 
     1047Surface tidal forcing can be represented in the model through an additional 
     1048barotropic force in the momentum equation (\autoref{eq:MB_PE_dyn}) such that: 
    10271049\[ 
    1028   % \label{eq:SBC_PE_dyn_tides} 
    1029   \frac{\partial {\mathrm {\mathbf U}}_h }{\partial t}= ... 
    1030   +g\nabla (\Pi_{eq} + \Pi_{sal}) 
     1050  \frac{\partial {\mathrm {\mathbf U}}_h }{\partial t} = \ldots +g\nabla (\gamma 
     1051  \Pi_{eq} + \Pi_{sal}) 
    10311052\] 
    1032 where $\Pi_{eq}$ stands for the equilibrium tidal forcing and 
    1033 $\Pi_{sal}$ is a self-attraction and loading term (SAL). 
    1034  
    1035 The equilibrium tidal forcing is expressed as a sum over a subset of 
    1036 constituents chosen from the set of available tidal constituents 
    1037 defined in file \hf{SBC/tide} (this comprises the tidal 
    1038 constituents \textit{M2, N2, 2N2, S2, K2, K1, O1, Q1, P1, M4, Mf, Mm, 
    1039   Msqm, Mtm, S1, MU2, NU2, L2}, and \textit{T2}). Individual 
    1040 constituents are selected by including their names in the array 
    1041 \np{clname}{clname} in \nam{_tide}{\_tide} (e.g., \np{clname}{clname}\forcode{(1)='M2', } 
    1042 \np{clname}{clname}\forcode{(2)='S2'} to select solely the tidal consituents \textit{M2} 
    1043 and \textit{S2}). Optionally, when \np{ln_tide_ramp}{ln\_tide\_ramp} is set to 
    1044 \forcode{.true.}, the equilibrium tidal forcing can be ramped up 
    1045 linearly from zero during the initial \np{rdttideramp}{rdttideramp} days of the 
    1046 model run. 
     1053where $\gamma \Pi_{eq}$ stands for the equilibrium tidal forcing scaled by a spatially 
     1054uniform tilt factor $\gamma$, and $\Pi_{sal}$ is an optional 
     1055self-attraction and loading term (SAL). These additional terms are enabled when, 
     1056in addition to \np[=.true.]{ln_tide}{ln\_tide}), 
     1057\np[=.true.]{ln_tide_pot}{ln\_tide\_pot}.\par 
     1058 
     1059The equilibrium tidal forcing is expressed as a sum over the subset of 
     1060constituents listed in \np{sn_tide_cnames}{sn\_tide\_cnames} of 
     1061\nam{_tide} (e.g., 
     1062\begin{forlines} 
     1063      sn_tide_cnames(1) = 'M2' 
     1064      sn_tide_cnames(2) = 'K1' 
     1065      sn_tide_cnames(3) = 'S2' 
     1066      sn_tide_cnames(4) = 'O1' 
     1067\end{forlines} 
     1068to select the four tidal constituents of strongest equilibrium tidal 
     1069potential). The tidal tilt factor $\gamma = 1 + k - h$ includes the 
     1070Love numbers $k$ and $h$ \citep{love_prsla1909}; this factor is 
     1071configurable using \np{rn_tide_gamma} (default value 0.7). Optionally, 
     1072when \np[=.true.]{ln_tide_ramp}{ln\_tide\_ramp}, the equilibrium tidal 
     1073forcing can be ramped up linearly from zero during the initial 
     1074\np{rn_tide_ramp_dt}{rn\_tide\_ramp\_dt} days of the model run.\par 
    10471075 
    10481076The SAL term should in principle be computed online as it depends on 
    10491077the model tidal prediction itself (see \citet{arbic.garner.ea_DSR04} for a 
    1050 discussion about the practical implementation of this term). 
    1051 Nevertheless, the complex calculations involved would make this 
    1052 computationally too expensive. Here, two options are available: 
    1053 $\Pi_{sal}$ generated by an external model can be read in 
    1054 (\np[=.true.]{ln_read_load}{ln\_read\_load}), or a ``scalar approximation'' can be 
    1055 used (\np[=.true.]{ln_scal_load}{ln\_scal\_load}). In the latter case 
     1078discussion about the practical implementation of this term). The complex 
     1079calculations involved in such computations, however, are computationally very 
     1080expensive. Here, two mutually exclusive simpler variants are available: 
     1081amplitudes generated by an external model for oscillatory $\Pi_{sal}$ 
     1082contributions from each of the selected tidal constituents can be read in 
     1083(\np[=.true.]{ln_read_load}{ln\_read\_load}) from the file specified in 
     1084\np{cn_tide_load}{cn\_tide\_load} (the variable names are comprised of the 
     1085tidal-constituent name and suffixes \forcode{_z1} and \forcode{_z2} for the two 
     1086orthogonal components, respectively); alternatively, a ``scalar approximation'' 
     1087can be used (\np[=.true.]{ln_scal_load}{ln\_scal\_load}), where 
    10561088\[ 
    10571089  \Pi_{sal} = \beta \eta, 
    10581090\] 
    1059 where $\beta$ (\np{rn_scal_load}{rn\_scal\_load} with a default value of 0.094) is a 
    1060 spatially constant scalar, often chosen to minimize tidal prediction 
    1061 errors. Setting both \np{ln_read_load}{ln\_read\_load} and \np{ln_scal_load}{ln\_scal\_load} to 
    1062 \forcode{.false.} removes the SAL contribution. 
     1091with a spatially uniform coefficient $\beta$, which can be configured 
     1092via \np{rn_scal_load}{rn\_scal\_load} (default value 0.094) and is 
     1093often tuned to minimize tidal prediction errors.\par 
     1094 
     1095For diagnostic purposes, the forcing potential of the individual tidal 
     1096constituents (incl. load ptential, if activated) and the total forcing 
     1097potential (incl. load potential, if activated) can be made available 
     1098as diagnostic output by setting 
     1099\np[=.true.]{ln_tide_dia}{ln\_tide\_dia} (fields 
     1100\forcode{tide_pot_<constituent>} and \forcode{tide_pot}).\par 
    10631101 
    10641102%% ================================================================================================= 
Note: See TracChangeset for help on using the changeset viewer.