New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 14037 for NEMO/branches/2020/dev_r13333_KERNEL-08_techene_gm_HPG_SPG/src/ICE/icethd_zdf_bl99.F90 – NEMO

Ignore:
Timestamp:
2020-12-03T12:20:38+01:00 (3 years ago)
Author:
ayoung
Message:

Updated to trunk at 14020. Sette tests passed with change of results for configurations with non-linear ssh. Ticket #2506.

Location:
NEMO/branches/2020/dev_r13333_KERNEL-08_techene_gm_HPG_SPG
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2020/dev_r13333_KERNEL-08_techene_gm_HPG_SPG

    • Property svn:externals
      •  

        old new  
        88 
        99# SETTE 
        10 ^/utils/CI/sette@13292        sette 
         10^/utils/CI/sette_wave@13990         sette 
  • NEMO/branches/2020/dev_r13333_KERNEL-08_techene_gm_HPG_SPG/src/ICE/icethd_zdf_bl99.F90

    r12489 r14037  
    8585 
    8686      LOGICAL, DIMENSION(jpij) ::   l_T_converged   ! true when T converges (per grid point) 
    87 ! 
     87      ! 
    8888      REAL(wp) ::   zg1s      =  2._wp        ! for the tridiagonal system 
    8989      REAL(wp) ::   zg1       =  2._wp        ! 
    9090      REAL(wp) ::   zgamma    =  18009._wp    ! for specific heat 
    9191      REAL(wp) ::   zbeta     =  0.117_wp     ! for thermal conductivity (could be 0.13) 
    92       REAL(wp) ::   zraext_s  =  10._wp       ! extinction coefficient of radiation in the snow 
    9392      REAL(wp) ::   zkimin    =  0.10_wp      ! minimum ice thermal conductivity 
    9493      REAL(wp) ::   ztsu_err  =  1.e-5_wp     ! range around which t_su is considered at 0C  
    9594      REAL(wp) ::   zdti_bnd  =  1.e-4_wp     ! maximal authorized error on temperature  
    96       REAL(wp) ::   zhs_min   =  0.01_wp      ! minimum snow thickness for conductivity calculation  
     95      REAL(wp) ::   zhs_ssl   =  0.03_wp      ! surface scattering layer in the snow  
     96      REAL(wp) ::   zhi_ssl   =  0.10_wp      ! surface scattering layer in the ice 
     97      REAL(wp) ::   zh_min    =  1.e-3_wp     ! minimum ice/snow thickness for conduction 
    9798      REAL(wp) ::   ztmelts                   ! ice melting temperature 
    9899      REAL(wp) ::   zdti_max                  ! current maximal error on temperature  
    99100      REAL(wp) ::   zcpi                      ! Ice specific heat 
    100101      REAL(wp) ::   zhfx_err, zdq             ! diag errors on heat 
    101       REAL(wp) ::   zfac                      ! dummy factor 
    102       ! 
    103       REAL(wp), DIMENSION(jpij) ::   isnow        ! switch for presence (1) or absence (0) of snow 
     102      ! 
     103      REAL(wp), DIMENSION(jpij) ::   zraext_s     ! extinction coefficient of radiation in the snow 
    104104      REAL(wp), DIMENSION(jpij) ::   ztsub        ! surface temperature at previous iteration 
    105105      REAL(wp), DIMENSION(jpij) ::   zh_i, z1_h_i ! ice layer thickness 
     
    109109      REAL(wp), DIMENSION(jpij) ::   zdqns_ice_b  ! derivative of the surface flux function 
    110110      ! 
    111       REAL(wp), DIMENSION(jpij       )     ::   ztsuold     ! Old surface temperature in the ice 
    112       REAL(wp), DIMENSION(jpij,nlay_i)     ::   ztiold      ! Old temperature in the ice 
    113       REAL(wp), DIMENSION(jpij,nlay_s)     ::   ztsold      ! Old temperature in the snow 
    114       REAL(wp), DIMENSION(jpij,nlay_i)     ::   ztib        ! Temporary temperature in the ice to check the convergence 
    115       REAL(wp), DIMENSION(jpij,nlay_s)     ::   ztsb        ! Temporary temperature in the snow to check the convergence 
    116       REAL(wp), DIMENSION(jpij,0:nlay_i)   ::   ztcond_i    ! Ice thermal conductivity 
    117       REAL(wp), DIMENSION(jpij,0:nlay_i)   ::   ztcond_i_cp ! copy 
    118       REAL(wp), DIMENSION(jpij,0:nlay_i)   ::   zradtr_i    ! Radiation transmitted through the ice 
    119       REAL(wp), DIMENSION(jpij,0:nlay_i)   ::   zradab_i    ! Radiation absorbed in the ice 
    120       REAL(wp), DIMENSION(jpij,0:nlay_i)   ::   zkappa_i    ! Kappa factor in the ice 
    121       REAL(wp), DIMENSION(jpij,0:nlay_i)   ::   zeta_i      ! Eta factor in the ice 
    122       REAL(wp), DIMENSION(jpij,0:nlay_s)   ::   zradtr_s    ! Radiation transmited through the snow 
    123       REAL(wp), DIMENSION(jpij,0:nlay_s)   ::   zradab_s    ! Radiation absorbed in the snow 
    124       REAL(wp), DIMENSION(jpij,0:nlay_s)   ::   zkappa_s    ! Kappa factor in the snow 
    125       REAL(wp), DIMENSION(jpij,0:nlay_s)   ::   zeta_s      ! Eta factor in the snow 
    126       REAL(wp), DIMENSION(jpij,nlay_i+3)   ::   zindterm    ! 'Ind'ependent term 
    127       REAL(wp), DIMENSION(jpij,nlay_i+3)   ::   zindtbis    ! Temporary 'ind'ependent term 
    128       REAL(wp), DIMENSION(jpij,nlay_i+3)   ::   zdiagbis    ! Temporary 'dia'gonal term 
    129       REAL(wp), DIMENSION(jpij,nlay_i+3,3) ::   ztrid       ! Tridiagonal system terms 
    130       REAL(wp), DIMENSION(jpij)            ::   zq_ini      ! diag errors on heat 
    131       REAL(wp), DIMENSION(jpij)            ::   zghe        ! G(he), th. conduct enhancement factor, mono-cat 
     111      REAL(wp), DIMENSION(jpij       )   ::   ztsuold     ! Old surface temperature in the ice 
     112      REAL(wp), DIMENSION(jpij,nlay_i)   ::   ztiold      ! Old temperature in the ice 
     113      REAL(wp), DIMENSION(jpij,nlay_s)   ::   ztsold      ! Old temperature in the snow 
     114      REAL(wp), DIMENSION(jpij,nlay_i)   ::   ztib        ! Temporary temperature in the ice to check the convergence 
     115      REAL(wp), DIMENSION(jpij,nlay_s)   ::   ztsb        ! Temporary temperature in the snow to check the convergence 
     116      REAL(wp), DIMENSION(jpij,0:nlay_i) ::   ztcond_i    ! Ice thermal conductivity 
     117      REAL(wp), DIMENSION(jpij,0:nlay_i) ::   ztcond_i_cp ! copy 
     118      REAL(wp), DIMENSION(jpij,0:nlay_i) ::   zradtr_i    ! Radiation transmitted through the ice 
     119      REAL(wp), DIMENSION(jpij,0:nlay_i) ::   zradab_i    ! Radiation absorbed in the ice 
     120      REAL(wp), DIMENSION(jpij,0:nlay_i) ::   zkappa_i    ! Kappa factor in the ice 
     121      REAL(wp), DIMENSION(jpij,0:nlay_i) ::   zeta_i      ! Eta factor in the ice 
     122      REAL(wp), DIMENSION(jpij,0:nlay_s) ::   zradtr_s    ! Radiation transmited through the snow 
     123      REAL(wp), DIMENSION(jpij,0:nlay_s) ::   zradab_s    ! Radiation absorbed in the snow 
     124      REAL(wp), DIMENSION(jpij,0:nlay_s) ::   zkappa_s    ! Kappa factor in the snow 
     125      REAL(wp), DIMENSION(jpij,0:nlay_s) ::   zeta_s      ! Eta factor in the snow 
     126      REAL(wp), DIMENSION(jpij)          ::   zkappa_comb ! Combined snow and ice surface conductivity 
     127      REAL(wp), DIMENSION(jpij)          ::   zq_ini      ! diag errors on heat 
     128      REAL(wp), DIMENSION(jpij)          ::   zghe        ! G(he), th. conduct enhancement factor, mono-cat 
     129      REAL(wp), DIMENSION(jpij)          ::   za_s_fra    ! ice fraction covered by snow  
     130      REAL(wp), DIMENSION(jpij)          ::   isnow       ! snow presence (1) or not (0)  
     131      REAL(wp), DIMENSION(jpij)          ::   isnow_comb  ! snow presence for met-office  
     132      REAL(wp), DIMENSION(jpij,nlay_i+nlay_s+1)   ::   zindterm    ! 'Ind'ependent term 
     133      REAL(wp), DIMENSION(jpij,nlay_i+nlay_s+1)   ::   zindtbis    ! Temporary 'ind'ependent term 
     134      REAL(wp), DIMENSION(jpij,nlay_i+nlay_s+1)   ::   zdiagbis    ! Temporary 'dia'gonal term 
     135      REAL(wp), DIMENSION(jpij,nlay_i+nlay_s+1,3) ::   ztrid       ! Tridiagonal system terms 
    132136      ! 
    133137      ! Mono-category 
     
    143147      END DO 
    144148 
     149      ! calculate ice fraction covered by snow for radiation 
     150      CALL ice_var_snwfra( h_s_1d(1:npti), za_s_fra(1:npti) ) 
     151       
    145152      !------------------ 
    146153      ! 1) Initialization 
    147154      !------------------ 
     155      ! 
     156      ! extinction radiation in the snow 
     157      IF    ( nn_qtrice == 0 ) THEN   ! constant  
     158         zraext_s(1:npti) = rn_kappa_s 
     159      ELSEIF( nn_qtrice == 1 ) THEN   ! depends on melting/freezing conditions 
     160         WHERE( t_su_1d(1:npti) < rt0 )   ;   zraext_s(1:npti) = rn_kappa_sdry   ! no surface melting 
     161         ELSEWHERE                        ;   zraext_s(1:npti) = rn_kappa_smlt   !    surface melting 
     162         END WHERE 
     163      ENDIF 
     164      ! 
     165      ! thicknesses 
    148166      DO ji = 1, npti 
    149          isnow(ji) = 1._wp - MAX( 0._wp , SIGN(1._wp, - h_s_1d(ji) ) )  ! is there snow or not 
    150          ! layer thickness 
    151          zh_i(ji) = h_i_1d(ji) * r1_nlay_i 
    152          zh_s(ji) = h_s_1d(ji) * r1_nlay_s 
     167         ! ice thickness 
     168         IF( h_i_1d(ji) > 0._wp ) THEN  
     169            zh_i  (ji) = MAX( zh_min , h_i_1d(ji) ) * r1_nlay_i ! set a minimum thickness for conduction 
     170            z1_h_i(ji) = 1._wp / zh_i(ji)                       !       it must be very small 
     171         ELSE 
     172            zh_i  (ji) = 0._wp 
     173            z1_h_i(ji) = 0._wp 
     174         ENDIF 
     175         ! snow thickness 
     176         IF( h_s_1d(ji) > 0._wp ) THEN 
     177            zh_s  (ji) = MAX( zh_min , h_s_1d(ji) ) * r1_nlay_s ! set a minimum thickness for conduction 
     178            z1_h_s(ji) = 1._wp / zh_s(ji)                       !       it must be very small 
     179            isnow (ji) = 1._wp 
     180         ELSE 
     181            zh_s  (ji) = 0._wp 
     182            z1_h_s(ji) = 0._wp 
     183            isnow (ji) = 0._wp 
     184         ENDIF 
     185         ! for Met-Office 
     186         IF( h_s_1d(ji) < zh_min ) THEN 
     187            isnow_comb(ji) = h_s_1d(ji) / zh_min 
     188         ELSE 
     189            isnow_comb(ji) = 1._wp 
     190         ENDIF 
    153191      END DO 
    154       ! 
    155       WHERE( zh_i(1:npti) >= epsi10 )   ;   z1_h_i(1:npti) = 1._wp / zh_i(1:npti) 
    156       ELSEWHERE                         ;   z1_h_i(1:npti) = 0._wp 
    157       END WHERE 
    158       ! 
    159       WHERE( zh_s(1:npti) > 0._wp   )       zh_s(1:npti) = MAX( zhs_min * r1_nlay_s, zh_s(1:npti) ) 
    160       ! 
    161       WHERE( zh_s(1:npti) > 0._wp   )   ;   z1_h_s(1:npti) = 1._wp / zh_s(1:npti) 
    162       ELSEWHERE                         ;   z1_h_s(1:npti) = 0._wp 
    163       END WHERE 
     192      ! clem: we should apply correction on snow thickness to take into account snow fraction 
     193      !       it must be a distribution, so it is a bit complicated 
    164194      ! 
    165195      ! Store initial temperatures and non solar heat fluxes 
    166196      IF( k_cnd == np_cnd_OFF .OR. k_cnd == np_cnd_EMU ) THEN 
    167          ! 
    168197         ztsub      (1:npti) = t_su_1d(1:npti)                          ! surface temperature at iteration n-1 
    169198         ztsuold    (1:npti) = t_su_1d(1:npti)                          ! surface temperature initial value 
     
    185214         DO ji = 1, npti 
    186215            !                             ! radiation transmitted below the layer-th snow layer 
    187             zradtr_s(ji,jk) = zradtr_s(ji,0) * EXP( - zraext_s * h_s_1d(ji) * r1_nlay_s * REAL(jk) ) 
     216            zradtr_s(ji,jk) = zradtr_s(ji,0) * EXP( - zraext_s(ji) * MAX( 0._wp, zh_s(ji) * REAL(jk) - zhs_ssl ) ) 
    188217            !                             ! radiation absorbed by the layer-th snow layer 
    189218            zradab_s(ji,jk) = zradtr_s(ji,jk-1) - zradtr_s(ji,jk) 
     
    191220      END DO 
    192221      ! 
    193       zradtr_i(1:npti,0) = zradtr_s(1:npti,nlay_s) * isnow(1:npti) + qtr_ice_top_1d(1:npti) * ( 1._wp - isnow(1:npti) ) 
     222      zradtr_i(1:npti,0) = zradtr_s(1:npti,nlay_s) * za_s_fra(1:npti) + qtr_ice_top_1d(1:npti) * ( 1._wp - za_s_fra(1:npti) ) 
    194223      DO jk = 1, nlay_i  
    195224         DO ji = 1, npti 
    196225            !                             ! radiation transmitted below the layer-th ice layer 
    197             zradtr_i(ji,jk) = zradtr_i(ji,0) * EXP( - rn_kappa_i * zh_i(ji) * REAL(jk) ) 
     226            zradtr_i(ji,jk) =           za_s_fra(ji)   * zradtr_s(ji,nlay_s)                       &   ! part covered by snow 
     227               &                                       * EXP( - rn_kappa_i * MAX( 0._wp, zh_i(ji) * REAL(jk) - zh_min  ) ) & 
     228               &            + ( 1._wp - za_s_fra(ji) ) * qtr_ice_top_1d(ji)                        &   ! part snow free 
     229               &                                       * EXP( - rn_kappa_i * MAX( 0._wp, zh_i(ji) * REAL(jk) - zhi_ssl ) )             
    198230            !                             ! radiation absorbed by the layer-th ice layer 
    199231            zradab_i(ji,jk) = zradtr_i(ji,jk-1) - zradtr_i(ji,jk) 
     
    203235      qtr_ice_bot_1d(1:npti) = zradtr_i(1:npti,nlay_i)   ! record radiation transmitted below the ice 
    204236      ! 
    205       iconv    = 0          ! number of iterations 
     237      iconv = 0          ! number of iterations 
    206238      ! 
    207239      l_T_converged(:) = .FALSE. 
     
    230262               DO ji = 1, npti 
    231263                  ztcond_i_cp(ji,jk) = rcnd_i + zbeta * 0.5_wp * ( sz_i_1d(ji,jk) + sz_i_1d(ji,jk+1) ) /  & 
    232                      &                         MIN( -epsi10, 0.5_wp * (t_i_1d(ji,jk) + t_i_1d(ji,jk+1)) - rt0 ) 
     264                     &                    MIN( -epsi10, 0.5_wp * (  t_i_1d(ji,jk) +  t_i_1d(ji,jk+1) ) - rt0 ) 
    233265               END DO 
    234266            END DO 
     
    238270            DO ji = 1, npti 
    239271               ztcond_i_cp(ji,0)      = rcnd_i + 0.09_wp  *  sz_i_1d(ji,1)      / MIN( -epsi10, t_i_1d(ji,1) - rt0 )  & 
    240                   &                           - 0.011_wp * ( t_i_1d(ji,1) - rt0 ) 
     272                  &                            - 0.011_wp * ( t_i_1d(ji,1) - rt0 ) 
    241273               ztcond_i_cp(ji,nlay_i) = rcnd_i + 0.09_wp  *  sz_i_1d(ji,nlay_i) / MIN( -epsi10, t_bo_1d(ji)  - rt0 )  & 
    242                   &                           - 0.011_wp * ( t_bo_1d(ji) - rt0 ) 
     274                  &                            - 0.011_wp * ( t_bo_1d(ji) - rt0 ) 
    243275            END DO 
    244276            DO jk = 1, nlay_i-1 
    245277               DO ji = 1, npti 
    246                   ztcond_i_cp(ji,jk) = rcnd_i + 0.09_wp  *   0.5_wp * ( sz_i_1d(ji,jk) + sz_i_1d(ji,jk+1) ) /        & 
    247                      &                        MIN( -epsi10, 0.5_wp * ( t_i_1d (ji,jk) + t_i_1d (ji,jk+1) ) - rt0 ) & 
    248                      &                       - 0.011_wp * ( 0.5_wp * ( t_i_1d (ji,jk) + t_i_1d (ji,jk+1) ) - rt0 ) 
     278                  ztcond_i_cp(ji,jk) = rcnd_i + 0.09_wp  *   0.5_wp * ( sz_i_1d(ji,jk) + sz_i_1d(ji,jk+1) ) /       & 
     279                     &                         MIN( -epsi10, 0.5_wp * (  t_i_1d(ji,jk) +  t_i_1d(ji,jk+1) ) - rt0 ) & 
     280                     &                        - 0.011_wp * ( 0.5_wp * (  t_i_1d(ji,jk) +  t_i_1d(ji,jk+1) ) - rt0 ) 
    249281               END DO 
    250282            END DO 
     
    290322         END DO 
    291323         DO ji = 1, npti   ! Snow-ice interface 
    292             IF ( .NOT. l_T_converged(ji) ) THEN 
    293                zfac = 0.5_wp * ( ztcond_i(ji,0) * zh_s(ji) + rn_cnd_s * zh_i(ji) ) 
    294                IF( zfac > epsi10 ) THEN 
    295                   zkappa_s(ji,nlay_s) = zghe(ji) * rn_cnd_s * ztcond_i(ji,0) / zfac 
    296                ELSE 
    297                   zkappa_s(ji,nlay_s) = 0._wp 
    298                ENDIF 
    299             ENDIF 
     324            IF ( .NOT. l_T_converged(ji) ) & 
     325               zkappa_s(ji,nlay_s) = isnow(ji) * zghe(ji) * rn_cnd_s * ztcond_i(ji,0) & 
     326                  &                            / ( 0.5_wp * ( ztcond_i(ji,0) * zh_s(ji) + rn_cnd_s * zh_i(ji) ) ) 
    300327         END DO 
    301328 
     
    310337         END DO 
    311338         DO ji = 1, npti   ! Snow-ice interface 
    312             IF ( .NOT. l_T_converged(ji) ) & 
    313                zkappa_i(ji,0) = zkappa_s(ji,nlay_s) * isnow(ji) + zkappa_i(ji,0) * ( 1._wp - isnow(ji) ) 
     339            IF ( .NOT. l_T_converged(ji) ) THEN 
     340               ! Calculate combined surface snow and ice conductivity to pass through the coupler (met-office) 
     341               zkappa_comb(ji) = isnow_comb(ji) * zkappa_s(ji,0) + ( 1._wp - isnow_comb(ji) ) * zkappa_i(ji,0) 
     342               ! If there is snow then use the same snow-ice interface conductivity for the top layer of ice 
     343               IF( h_s_1d(ji) > 0._wp )   zkappa_i(ji,0) = zkappa_s(ji,nlay_s) 
     344           ENDIF 
    314345         END DO 
    315346         ! 
     
    320351            DO ji = 1, npti 
    321352               zcpi = rcpi + zgamma * sz_i_1d(ji,jk) / MAX( ( t_i_1d(ji,jk) - rt0 ) * ( ztiold(ji,jk) - rt0 ), epsi10 ) 
    322                zeta_i(ji,jk) = rDt_ice * r1_rhoi * z1_h_i(ji) / MAX( epsi10, zcpi )  
     353               zeta_i(ji,jk) = rDt_ice * r1_rhoi * z1_h_i(ji) / zcpi 
    323354            END DO 
    324355         END DO 
     
    502533            ! Solve the tridiagonal system with Gauss elimination method. 
    503534            ! Thomas algorithm, from Computational fluid Dynamics, J.D. ANDERSON, McGraw-Hill 1984 
    504             jm_maxt = 0 
    505             jm_mint = nlay_i+5 
    506             DO ji = 1, npti 
    507                jm_mint = MIN(jm_min(ji),jm_mint) 
    508                jm_maxt = MAX(jm_max(ji),jm_maxt) 
    509             END DO 
    510  
    511             DO jk = jm_mint+1, jm_maxt 
    512                DO ji = 1, npti 
    513                   jm = MIN(MAX(jm_min(ji)+1,jk),jm_max(ji)) 
     535!!$            jm_maxt = 0 
     536!!$            jm_mint = nlay_i+5 
     537!!$            DO ji = 1, npti 
     538!!$               jm_mint = MIN(jm_min(ji),jm_mint) 
     539!!$               jm_maxt = MAX(jm_max(ji),jm_maxt) 
     540!!$            END DO 
     541!!$            !!clem SNWLAY => check why LIM1D does not get this loop. Is nlay_i+5 correct? 
     542!!$             
     543!!$            DO jk = jm_mint+1, jm_maxt 
     544!!$               DO ji = 1, npti 
     545!!$                  jm = MIN(MAX(jm_min(ji)+1,jk),jm_max(ji)) 
     546!!$                  zdiagbis(ji,jm) = ztrid   (ji,jm,2) - ztrid(ji,jm,1) * ztrid   (ji,jm-1,3) / zdiagbis(ji,jm-1) 
     547!!$                  zindtbis(ji,jm) = zindterm(ji,jm  ) - ztrid(ji,jm,1) * zindtbis(ji,jm-1  ) / zdiagbis(ji,jm-1) 
     548!!$               END DO 
     549!!$            END DO 
     550            ! clem: maybe one should find a way to reverse this loop for mpi performance 
     551            DO ji = 1, npti 
     552               jm_mint = jm_min(ji) 
     553               jm_maxt = jm_max(ji) 
     554               DO jm = jm_mint+1, jm_maxt 
    514555                  zdiagbis(ji,jm) = ztrid   (ji,jm,2) - ztrid(ji,jm,1) * ztrid   (ji,jm-1,3) / zdiagbis(ji,jm-1) 
    515556                  zindtbis(ji,jm) = zindterm(ji,jm  ) - ztrid(ji,jm,1) * zindtbis(ji,jm-1  ) / zdiagbis(ji,jm-1) 
     
    533574            END DO 
    534575 
     576            ! snow temperatures       
    535577            DO ji = 1, npti 
    536578               ! Variables used after iterations 
    537579               ! Value must be frozen after convergence for MPP independance reason 
    538                IF ( .NOT. l_T_converged(ji) ) THEN 
    539                   ! snow temperatures       
    540                   IF( h_s_1d(ji) > 0._wp ) THEN 
    541                      t_s_1d(ji,nlay_s) = ( zindtbis(ji,nlay_s+1) - ztrid(ji,nlay_s+1,3) * t_i_1d(ji,1) ) / zdiagbis(ji,nlay_s+1) 
    542                   ENDIF 
    543                   ! surface temperature 
     580               IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) & 
     581                  &   t_s_1d(ji,nlay_s) = ( zindtbis(ji,nlay_s+1) - ztrid(ji,nlay_s+1,3) * t_i_1d(ji,1) ) / zdiagbis(ji,nlay_s+1) 
     582            END DO 
     583            !!clem SNWLAY 
     584            DO jm = nlay_s, 2, -1 
     585               DO ji = 1, npti 
     586                  jk = jm - 1 
     587                  IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) & 
     588                     &   t_s_1d(ji,jk) = ( zindtbis(ji,jm) - ztrid(ji,jm,3) * t_s_1d(ji,jk+1) ) / zdiagbis(ji,jm) 
     589               END DO 
     590            END DO 
     591             
     592            ! surface temperature 
     593            DO ji = 1, npti 
     594               IF( .NOT. l_T_converged(ji) ) THEN 
    544595                  ztsub(ji) = t_su_1d(ji) 
    545596                  IF( t_su_1d(ji) < rt0 ) THEN 
     
    561612 
    562613               IF ( .NOT. l_T_converged(ji) ) THEN 
     614 
    563615                  t_su_1d(ji) = MAX( MIN( t_su_1d(ji) , rt0 ) , rt0 - 100._wp ) 
    564616                  zdti_max    = MAX( zdti_max, ABS( t_su_1d(ji) - ztsub(ji) ) ) 
    565617 
    566                   t_s_1d(ji,1:nlay_s) = MAX( MIN( t_s_1d(ji,1:nlay_s), rt0 ), rt0 - 100._wp ) 
    567                   zdti_max = MAX ( zdti_max , MAXVAL( ABS( t_s_1d(ji,1:nlay_s) - ztsb(ji,1:nlay_s) ) ) ) 
     618                  IF( h_s_1d(ji) > 0._wp ) THEN 
     619                     DO jk = 1, nlay_s 
     620                        t_s_1d(ji,jk) = MAX( MIN( t_s_1d(ji,jk), rt0 ), rt0 - 100._wp ) 
     621                        zdti_max      = MAX ( zdti_max , ABS( t_s_1d(ji,jk) - ztsb(ji,jk) ) ) 
     622                     END DO 
     623                  ENDIF 
    568624 
    569625                  DO jk = 1, nlay_i 
     
    572628                     zdti_max      =  MAX( zdti_max, ABS( t_i_1d(ji,jk) - ztib(ji,jk) ) ) 
    573629                  END DO 
    574  
    575                   IF ( zdti_max < zdti_bnd ) l_T_converged(ji) = .TRUE. 
     630                   
     631                  ! convergence test 
     632                  IF( ln_zdf_chkcvg ) THEN 
     633                     tice_cvgerr_1d(ji) = zdti_max 
     634                     tice_cvgstp_1d(ji) = REAL(iconv) 
     635                  ENDIF 
     636 
     637                  IF( zdti_max < zdti_bnd )   l_T_converged(ji) = .TRUE. 
    576638 
    577639               ENDIF 
     
    684746            ! Solve the tridiagonal system with Gauss elimination method. 
    685747            ! Thomas algorithm, from Computational fluid Dynamics, J.D. ANDERSON, McGraw-Hill 1984 
    686             jm_maxt = 0 
    687             jm_mint = nlay_i+5 
    688             DO ji = 1, npti 
    689                jm_mint = MIN(jm_min(ji),jm_mint) 
    690                jm_maxt = MAX(jm_max(ji),jm_maxt) 
    691             END DO 
    692              
    693             DO jk = jm_mint+1, jm_maxt 
    694                DO ji = 1, npti 
    695                   jm = MIN(MAX(jm_min(ji)+1,jk),jm_max(ji)) 
     748!!$            jm_maxt = 0 
     749!!$            jm_mint = nlay_i+5 
     750!!$            DO ji = 1, npti 
     751!!$               jm_mint = MIN(jm_min(ji),jm_mint) 
     752!!$               jm_maxt = MAX(jm_max(ji),jm_maxt) 
     753!!$            END DO 
     754!!$             
     755!!$            DO jk = jm_mint+1, jm_maxt 
     756!!$               DO ji = 1, npti 
     757!!$                  jm = MIN(MAX(jm_min(ji)+1,jk),jm_max(ji)) 
     758!!$                  zdiagbis(ji,jm) = ztrid   (ji,jm,2) - ztrid(ji,jm,1) * ztrid   (ji,jm-1,3) / zdiagbis(ji,jm-1) 
     759!!$                  zindtbis(ji,jm) = zindterm(ji,jm)   - ztrid(ji,jm,1) * zindtbis(ji,jm-1)   / zdiagbis(ji,jm-1) 
     760!!$               END DO 
     761!!$            END DO 
     762            ! clem: maybe one should find a way to reverse this loop for mpi performance 
     763            DO ji = 1, npti 
     764               jm_mint = jm_min(ji) 
     765               jm_maxt = jm_max(ji) 
     766               DO jm = jm_mint+1, jm_maxt 
    696767                  zdiagbis(ji,jm) = ztrid   (ji,jm,2) - ztrid(ji,jm,1) * ztrid   (ji,jm-1,3) / zdiagbis(ji,jm-1) 
    697                   zindtbis(ji,jm) = zindterm(ji,jm)   - ztrid(ji,jm,1) * zindtbis(ji,jm-1)  / zdiagbis(ji,jm-1) 
     768                  zindtbis(ji,jm) = zindterm(ji,jm  ) - ztrid(ji,jm,1) * zindtbis(ji,jm-1  ) / zdiagbis(ji,jm-1) 
    698769               END DO 
    699770            END DO 
    700              
     771 
    701772            ! ice temperatures 
    702773            DO ji = 1, npti 
     
    718789            ! snow temperatures       
    719790            DO ji = 1, npti 
    720                ! Variable used after iterations 
     791               ! Variables used after iterations 
    721792               ! Value must be frozen after convergence for MPP independance reason 
    722                IF ( .NOT. l_T_converged(ji) ) THEN 
    723                   IF( h_s_1d(ji) > 0._wp ) THEN 
    724                      t_s_1d(ji,nlay_s) = ( zindtbis(ji,nlay_s+1) - ztrid(ji,nlay_s+1,3) * t_i_1d(ji,1) ) / zdiagbis(ji,nlay_s+1) 
    725                   ENDIF 
    726                ENDIF 
     793               IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) & 
     794                  &   t_s_1d(ji,nlay_s) = ( zindtbis(ji,nlay_s+1) - ztrid(ji,nlay_s+1,3) * t_i_1d(ji,1) ) / zdiagbis(ji,nlay_s+1) 
     795            END DO 
     796            !!clem SNWLAY 
     797            DO jm = nlay_s, 2, -1 
     798               DO ji = 1, npti 
     799                  jk = jm - 1 
     800                  IF ( .NOT. l_T_converged(ji) .AND. h_s_1d(ji) > 0._wp ) & 
     801                     &   t_s_1d(ji,jk) = ( zindtbis(ji,jm) - ztrid(ji,jm,3) * t_s_1d(ji,jk+1) ) / zdiagbis(ji,jm) 
     802               END DO 
    727803            END DO 
    728804            ! 
     
    738814 
    739815               IF ( .NOT. l_T_converged(ji) ) THEN 
    740                   ! t_s 
    741                   t_s_1d(ji,1:nlay_s) = MAX( MIN( t_s_1d(ji,1:nlay_s), rt0 ), rt0 - 100._wp ) 
    742                   zdti_max = MAX ( zdti_max , MAXVAL( ABS( t_s_1d(ji,1:nlay_s) - ztsb(ji,1:nlay_s) ) ) ) 
    743                   ! t_i 
     816 
     817                  IF( h_s_1d(ji) > 0._wp ) THEN 
     818                     DO jk = 1, nlay_s 
     819                        t_s_1d(ji,jk) = MAX( MIN( t_s_1d(ji,jk), rt0 ), rt0 - 100._wp ) 
     820                        zdti_max      = MAX ( zdti_max , ABS( t_s_1d(ji,jk) - ztsb(ji,jk) ) ) 
     821                     END DO 
     822                  ENDIF 
     823 
    744824                  DO jk = 1, nlay_i 
    745825                     ztmelts       = -rTmlt * sz_i_1d(ji,jk) + rt0  
     
    748828                  END DO 
    749829 
    750                   IF ( zdti_max < zdti_bnd ) l_T_converged(ji) = .TRUE. 
     830                  ! convergence test 
     831                  IF( ln_zdf_chkcvg ) THEN 
     832                     tice_cvgerr_1d(ji) = zdti_max 
     833                     tice_cvgstp_1d(ji) = REAL(iconv) 
     834                  ENDIF 
     835 
     836                  IF( zdti_max < zdti_bnd )   l_T_converged(ji) = .TRUE. 
    751837 
    752838               ENDIF 
     
    755841 
    756842         ENDIF ! k_cnd 
    757           
     843 
    758844      END DO  ! End of the do while iterative procedure 
    759        
    760       IF( ln_icectl .AND. lwp ) THEN 
    761          WRITE(numout,*) ' zdti_max : ', zdti_max 
    762          WRITE(numout,*) ' iconv    : ', iconv 
    763       ENDIF 
    764        
    765845      ! 
    766846      !----------------------------- 
     
    771851      !     bottom ice conduction flux 
    772852      DO ji = 1, npti 
    773          qcn_ice_bot_1d(ji) = - zkappa_i(ji,nlay_i) * zg1  * ( t_bo_1d(ji ) - t_i_1d (ji,nlay_i) ) 
     853         qcn_ice_bot_1d(ji) = - zkappa_i(ji,nlay_i) * zg1 * ( t_bo_1d(ji ) - t_i_1d (ji,nlay_i) ) 
    774854      END DO 
    775855      !     surface ice conduction flux 
     
    777857         ! 
    778858         DO ji = 1, npti 
    779             qcn_ice_top_1d(ji) =  -           isnow(ji)   * zkappa_s(ji,0) * zg1s * ( t_s_1d(ji,1) - t_su_1d(ji) ) & 
    780                &                  - ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1  * ( t_i_1d(ji,1) - t_su_1d(ji) ) 
     859            qcn_ice_top_1d(ji) = -           isnow(ji)   * zkappa_s(ji,0) * zg1s * ( t_s_1d(ji,1) - t_su_1d(ji) ) & 
     860               &                 - ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1  * ( t_i_1d(ji,1) - t_su_1d(ji) ) 
    781861         END DO 
    782862         ! 
     
    792872         ! 
    793873         DO ji = 1, npti 
    794             t_su_1d(ji) = (  qcn_ice_top_1d(ji) &            ! calculate surface temperature 
    795                &           +           isnow(ji)   * zkappa_s(ji,0) * zg1s * t_s_1d(ji,1) & 
    796                &           + ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1  * t_i_1d(ji,1) & 
    797                &          ) / MAX( epsi10, isnow(ji) * zkappa_s(ji,0) * zg1s + ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1 ) 
     874            t_su_1d(ji) = ( qcn_ice_top_1d(ji) +          isnow(ji)   * zkappa_s(ji,0) * zg1s * t_s_1d(ji,1) + & 
     875               &                                ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1  * t_i_1d(ji,1) ) & 
     876               &          / MAX( epsi10, isnow(ji) * zkappa_s(ji,0) * zg1s + ( 1._wp - isnow(ji) ) * zkappa_i(ji,0) * zg1 ) 
    798877            t_su_1d(ji) = MAX( MIN( t_su_1d(ji), rt0 ), rt0 - 100._wp )  ! cap t_su 
    799878         END DO 
     
    853932      !-------------------------------------------------------------------- 
    854933      ! effective conductivity and 1st layer temperature (needed by Met Office) 
     934      ! this is a conductivity at mid-layer, hence the factor 2 
    855935      DO ji = 1, npti 
    856          IF( h_s_1d(ji) > 0.1_wp ) THEN  
    857             cnd_ice_1d(ji) = 2._wp * zkappa_s(ji,0) 
     936         IF( h_i_1d(ji) >= zhi_ssl ) THEN 
     937            cnd_ice_1d(ji) = 2._wp * zkappa_comb(ji) 
     938            !!cnd_ice_1d(ji) = 2._wp * zkappa_i(ji,0) 
    858939         ELSE 
    859             IF( h_i_1d(ji) > 0.1_wp ) THEN 
    860                cnd_ice_1d(ji) = 2._wp * zkappa_i(ji,0) 
    861             ELSE 
    862                cnd_ice_1d(ji) = 2._wp * ztcond_i(ji,0) * 10._wp 
    863             ENDIF 
     940            cnd_ice_1d(ji) = 2._wp * ztcond_i(ji,0) / zhi_ssl ! cnd_ice is capped by: cond_i/zhi_ssl 
    864941         ENDIF 
    865942         t1_ice_1d(ji) = isnow(ji) * t_s_1d(ji,1) + ( 1._wp - isnow(ji) ) * t_i_1d(ji,1) 
     
    877954      DO ji = 1, npti          
    878955         !--- Snow-ice interfacial temperature (diagnostic SIMIP) 
    879          zfac = rn_cnd_s * zh_i(ji) + ztcond_i(ji,1) * zh_s(ji) 
    880          IF( h_s_1d(ji) >= zhs_min ) THEN 
    881             t_si_1d(ji) = ( rn_cnd_s       * zh_i(ji) * t_s_1d(ji,1) +   & 
    882                &            ztcond_i(ji,1) * zh_s(ji) * t_i_1d(ji,1) ) / MAX( epsi10, zfac ) 
     956         IF( h_s_1d(ji) >= zhs_ssl ) THEN 
     957            t_si_1d(ji) = (   rn_cnd_s       * h_i_1d(ji) * r1_nlay_i * t_s_1d(ji,nlay_s)   & 
     958               &            + ztcond_i(ji,1) * h_s_1d(ji) * r1_nlay_s * t_i_1d(ji,1)      ) & 
     959               &          / ( rn_cnd_s       * h_i_1d(ji) * r1_nlay_i & 
     960               &            + ztcond_i(ji,1) * h_s_1d(ji) * r1_nlay_s ) 
    883961         ELSE 
    884962            t_si_1d(ji) = t_su_1d(ji) 
Note: See TracChangeset for help on using the changeset viewer.