New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 14644 for NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc – NEMO

Ignore:
Timestamp:
2021-03-26T15:33:49+01:00 (3 years ago)
Author:
sparonuz
Message:

Merge trunk -r14642:HEAD

Location:
NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final
Files:
8 added
2 deleted
65 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final

    • Property svn:externals
      •  

        old new  
        99 
        1010# SETTE 
        11 ^/utils/CI/sette_wave@13990         sette 
         11^/utils/CI/sette@14244        sette 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/NEMO_manual_state.txt

    r13461 r14644  
    1515chap_misc.tex: key{mpp\_mpi} key{nosignedzero} key{vectopt\_loop} np{iom\_get} np{jpjdta} np{jpjglo} np{nn\_bench} np{nn\_bit\_cmp} np{open\_ocean\_jstart}  
    1616chap_LDF.tex: hf{dynldf\_cNd} hf{ldfdyn\_substitute} hf{ldftra\_substitute} hf{traldf\_c1d} hf{traldf\_cNd} key{dynldf\_c1d} key{dynldf\_c2d} key{dynldf\_c3d} key{traldf\_c1d} key{traldf\_c2d} key{traldf\_c3d} key{traldf\_cNd} key{traldf\_eiv} mdl{ldfdyn\_c2d} mdl{ldfeiv} mdl{traadv\_eiv} np{ln\_dynldf\_bilap} np{ln\_sco} np{nn\_eos} np{rn\_aeih\_0} np{rn\_aeiv} np{rn\_aeiv\_0} np{rn\_ahm0} np{rn\_ahmb0} np{rn\_aht0} np{rn\_ahtb0} np{traldf\_grif} np{traldf\_grif\_iso} rou{ldf\_dyn\_c2d\_orca} rou{ldfslp\_init}  
    17 chap_LBC.tex: jp{jpreci} key{mpp\_mpi} np{jperio} np{jpiglo} np{jpindt} np{jpinft} np{jpjglo} np{jpjnob} np{nbdysegn} np{nn\_bdy\_jpk} np{nn\_msh} np{nn\_tra} rou{inimpp2}  
    18 chap_DOM.tex: key{mpp\_mpi} ngn{namzgr} ngn{namzgr\_sco} nlst{namzgr} nlst{namzgr_sco} np{jperio} np{jpiglo} np{jpjglo} np{jpkglo} np{ln\_sco} np{ln\_sigcrit} np{ln\_s\_SF12} np{ln\_s\_SH94} np{ln\_tsd\_ini} np{ln\_zco} np{ln\_zps} np{nn\_bathy} np{nn\_msh} np{ppa0} np{ppa1} np{ppacr} np{ppdzmin} np{pphmax} np{ppkth} np{ppsur} np{rn\_alpha} np{rn\_bb} np{rn\_e3zps\_min} np{rn\_e3zps\_rat} np{rn\_hc} np{rn\_rmax} np{rn\_sbot\_max} np{rn\_sbot\_min} np{rn\_theta} np{rn\_zb\_a} np{rn\_zb\_b} np{rn\_zs} rou{istate\_t\_s}  
     17chap_LBC.tex: jp{jpreci} key{mpp\_mpi} np{jpiglo} np{jpindt} np{jpinft} np{jpjglo} np{jpjnob} np{nbdysegn} np{nn\_bdy\_jpk} np{nn\_msh} np{nn\_tra} rou{inimpp2}  
     18chap_DOM.tex: key{mpp\_mpi} ngn{namzgr} ngn{namzgr\_sco} nlst{namzgr} nlst{namzgr_sco} np{jpiglo} np{jpjglo} np{jpkglo} np{ln\_sco} np{ln\_sigcrit} np{ln\_s\_SF12} np{ln\_s\_SH94} np{ln\_tsd\_ini} np{ln\_zco} np{ln\_zps} np{nn\_bathy} np{nn\_msh} np{ppa0} np{ppa1} np{ppacr} np{ppdzmin} np{pphmax} np{ppkth} np{ppsur} np{rn\_alpha} np{rn\_bb} np{rn\_e3zps\_min} np{rn\_e3zps\_rat} np{rn\_hc} np{rn\_rmax} np{rn\_sbot\_max} np{rn\_sbot\_min} np{rn\_theta} np{rn\_zb\_a} np{rn\_zb\_b} np{rn\_zs} rou{istate\_t\_s}  
    1919chap_conservation.tex: key{\_}  
    2020annex_iso.tex: key{trabbl} key{traldf\_eiv} np{ln\_traldf\_eiv} np{ln\_traldf\_gdia}  
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/.svnignore

    r14113 r14644  
    99*.lo* 
    1010*.out 
     11*.pdf 
     12*.pyg 
     13*.tdo 
    1114*.toc 
    1215*.xdv 
    13 _minted-* 
     16cache* 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/build

    • Property svn:ignore
      •  

        old new  
        99*.lo* 
        1010*.out 
         11*.pdf 
         12*.pyg 
         13*.tdo 
        1114*.toc 
        1215*.xdv 
        13 _minted-* 
         16cache* 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/main/abstract.tex

    r11591 r14644  
    1 %% ================================================================ 
    2 %% Abstract 
    3 %% ================================================================ 
     1%% ================================================================================================= 
     2%% Specific abstract 
     3%% ================================================================================================= 
    44 
    5 %% Common part between NEMO-SI3-TOP 
    6 \NEMO\ (``Nucleus for European Modelling of the Ocean'') is a framework of ocean-related engines. 
    7 It is intended to be a flexible tool for studying the ocean dynamics and thermodynamics (``blue ocean''), 
    8 as well as its interactions with the components of the Earth climate system over 
    9 a wide range of space and time scales. 
    10 Within \NEMO, the ocean engine is interfaced with a sea-ice model (\SIcube\ or 
    11 \href{http://github.com/CICE-Consortium/CICE}{CICE}), 
    12 passive tracers and biogeochemical models (\TOP) and, 
    13 via the \href{http://portal.enes.org/oasis}{OASIS} coupler, 
    14 with several atmospheric general circulation models. 
    15 It also supports two-way grid embedding by means of the \href{http://agrif.imag.fr}{AGRIF} software. 
     5%% Common part 
     6\input{../../global/nemo} 
    167 
    178%% Specific part 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/main/appendices.tex

    r14113 r14644  
     1%% ================================================================================================= 
     2%% Appendices 
     3%% ================================================================================================= 
    14 
    25\subfile{../subfiles/apdx_s_coord}      %% A. Generalised vertical coordinate 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/main/authors.tex

    r11591 r14644  
    1 %Romain Bourdall\'{e}-Badie 
    2 %\orcid{0000-0002-8742-3289} \\ 
    3 %Mike Bell                   \\ 
    4 %J\'{e}r\^{o}me Chanut       \\ 
    5 %Emanuela Clementi 
    6 %\orcid{0000-0002-5752-1849} \\ 
    7 %Andrew Coward 
    8 %\orcid{0000-0002-0456-129X} \\ 
    9 %Massimiliano Drudi 
    10 %\orcid{0000-0002-9951-740X} \\ 
    11 %Christian \'{E}th\'{e}      \\ 
    12 %Doroteaciro Iovino 
    13 %\orcid{0000-0001-5132-7255} \\ 
    14 %Dan Lea                     \\ 
    15 %Claire L\'{e}vy 
    16 %\orcid{0000-0003-2518-6692} \\ 
    17 %Gurvan Madec 
    18 %\orcid{0000-0002-6447-4198} \\ 
    19 %Nicolas Martin              \\ 
    20 %S\'{e}bastien Masson 
    21 %\orcid{0000-0002-1694-8117} \\ 
    22 %Pierre Mathiot              \\ 
    23 %Silvia Mocavero 
    24 %\orcid{0000-0002-6309-8282} \\ 
    25 %Simon M\"{u}ller            \\ 
    26 %George Nurser               \\ 
    27 %Guillaume Samson 
    28 %\orcid{0000-0001-7481-6369} \\ 
    29 %Dave Storkey 
     1%% ================================================================================================= 
     2%% Authors 
     3%% ================================================================================================= 
    304 
     5\orcid{0000-0002-6447-4198} Gurvan Madec                \\ 
     6                            Mike Bell                   \\ 
    317\orcid{0000-0002-8742-3289} Romain Bourdall\'{e}-Badie  \\ 
    32                             Mike Bell                   \\ 
    338                            J\'{e}r\^{o}me Chanut       \\ 
    349\orcid{0000-0002-5752-1849} Emanuela Clementi           \\ 
     
    3914                            Dan Lea                     \\ 
    4015\orcid{0000-0003-2518-6692} Claire L\'{e}vy             \\ 
    41 \orcid{0000-0002-6447-4198} Gurvan Madec                \\ 
    4216                            Nicolas Martin              \\ 
    4317\orcid{0000-0002-1694-8117} S\'{e}bastien Masson        \\ 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/main/bibliography.bib

    • Property svn:eol-style set to native
    r14116 r14644  
    119119  issn          = "0148-0227", 
    120120  doi           = "10.1029/2001jc000922" 
     121} 
     122 
     123@Article{         Asaydavis2016, 
     124  author        = {Asay-Davis, X. S. and Cornford, S. L. and Durand, G. and Galton-Fenzi, B. K. and Gladstone, R. M. and Gudmundsson, G. H. and Hattermann, T. and Holland, D. M. and Holland, D. and Holland, P. R. and Martin, D. F. and Mathiot, P. and Pattyn, F. and Seroussi, H.}, 
     125  title         = {Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP$+$), ISOMIP v. 2 (ISOMIP$+$) and MISOMIP v. 1 (MISOMIP1)}, 
     126  journal       = {Geoscientific Model Development}, 
     127  volume        = {9}, 
     128  year          = {2016}, 
     129  number        = {7}, 
     130  pages         = {2471--2497}, 
     131  url           = {https://www.geosci-model-dev.net/9/2471/2016/}, 
     132  doi           = {10.5194/gmd-9-2471-2016} 
    121133} 
    122134 
     
    878890} 
    879891 
     892@Article{         favier2019, 
     893  author        = {Favier, L. and Jourdain, N. C. and Jenkins, A. and Merino, N. and Durand, G. and Gagliardini, O. and Gillet-Chaulet, F. and Mathiot, P.}, 
     894  title         = {Assessment of sub-shelf melting parameterisations using the ocean--ice-sheet coupled model NEMO(v3.6)--Elmer/Ice(v8.3)}, 
     895  journal       = {Geoscientific Model Development}, 
     896  volume        = {12}, 
     897  year          = {2019}, 
     898  number        = {6}, 
     899  pages         = {2255--2283}, 
     900  url           = {https://www.geosci-model-dev.net/12/2255/2019/}, 
     901  doi           = {10.5194/gmd-12-2255-2019} 
     902} 
     903 
    880904@article{         flather_JPO94, 
    881905  title         = "A storm surge prediction model for the northern Bay of 
     
    11861210} 
    11871211 
     1212@article{         grosfeld1997, 
     1213author          = {Grosfeld, K. and Gerdes, R. and Determann, J.}, 
     1214title           = {Thermohaline circulation and interaction between ice shelf cavities and the adjacent open ocean}, 
     1215journal         = {Journal of Geophysical Research: Oceans}, 
     1216 
     1217volume          = {102}, 
     1218number          = {C7}, 
     1219pages           = {15595-15610}, 
     1220doi             = {10.1029/97JC00891}, 
     1221url             = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JC00891}, 
     1222year            = {1997} 
     1223} 
     1224 
    11881225@article{         guilyardi.madec.ea_CD01, 
    11891226  title         = "The role of lateral ocean physics in the upper ocean 
     
    14141451  issn          = "0148-0227", 
    14151452  doi           = "10.1029/91jc01842" 
     1453} 
     1454 
     1455@article{         jenkins2001, 
     1456  author        = {Jenkins, Adrian and Hellmer, Hartmut H. and Holland, David M.}, 
     1457  title         = {The Role of Meltwater Advection in the Formulation of Conservative Boundary Conditions at an Ice–Ocean Interface}, 
     1458  journal       = {Journal of Physical Oceanography}, 
     1459  volume        = {31}, 
     1460  number        = {1}, 
     1461  pages         = {285-296}, 
     1462  year          = {2001}, 
     1463  doi           = {10.1175/1520-0485(2001)031<0285:TROMAI>2.0.CO;2}, 
     1464  url           = {https://doi.org/10.1175/1520-0485(2001)031<0285:TROMAI>2.0.CO;2} 
     1465} 
     1466 
     1467@article{         jourdain2017, 
     1468  author        = {Jourdain, Nicolas C. and Mathiot, Pierre and Merino, Nacho and Durand, Gaël and Le Sommer, Julien and Spence, Paul and Dutrieux, Pierre and Madec, Gurvan}, 
     1469  title         = {Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea}, 
     1470  journal       = {Journal of Geophysical Research: Oceans}, 
     1471  volume        = {122}, 
     1472  number        = {3}, 
     1473  pages         = {2550-2573}, 
     1474  keywords      = {Amundsen Sea, ice shelf, efficiency, circumpolar deep water, ocean circulation, sea ice}, 
     1475  doi           = {10.1002/2016JC012509}, 
     1476  url           = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JC012509}, 
     1477  year          = {2017} 
    14161478} 
    14171479 
     
    22262288} 
    22272289 
     2290@article{Merino_OM2016, 
     2291title = "Antarctic icebergs melt over the Southern Ocean: Climatology and impact on sea ice", 
     2292journal = "Ocean Modelling", 
     2293volume = "104", 
     2294pages = "99 - 110", 
     2295year = "2016", 
     2296issn = "1463-5003", 
     2297doi = "https://doi.org/10.1016/j.ocemod.2016.05.001", 
     2298url = "http://www.sciencedirect.com/science/article/pii/S1463500316300300", 
     2299author = "Nacho Merino and Julien {Le Sommer} and Gael Durand and Nicolas C. Jourdain and Gurvan Madec and Pierre Mathiot and Jean Tournadre", 
     2300keywords = "Icebergs, Southern Ocean, Sea ice, Freshwater fluxes", 
     2301abstract = "Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux." 
     2302} 
     2303 
    22282304@article{         merryfield.holloway.ea_JPO99, 
    22292305  title         = "A Global Ocean Model with Double-Diffusive Mixing", 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/main/chapters.tex

    r14113 r14644  
    1 \subfile{../subfiles/chap_model_basics}   %% 1. 
    2 \subfile{../subfiles/chap_time_domain}    %% 2.  Time discretisation (time stepping strategy) 
    3 \subfile{../subfiles/chap_DOM}            %% 3.  Space discretisation 
    4 \subfile{../subfiles/chap_TRA}            %% 4.  Tracer advection/diffusion equation 
    5 \subfile{../subfiles/chap_DYN}            %% 5.  Dynamics : momentum equation 
    6 \subfile{../subfiles/chap_SBC}            %% 6.  Surface Boundary Conditions 
    7 \subfile{../subfiles/chap_LBC}            %% 7.  Lateral Boundary Conditions 
    8 \subfile{../subfiles/chap_LDF}            %% 8.  Lateral diffusion 
    9 \subfile{../subfiles/chap_ZDF}            %% 9.  Vertical diffusion 
    10 \subfile{../subfiles/chap_DIA}            %% 10. Outputs and Diagnostics 
    11 \subfile{../subfiles/chap_OBS}            %% 11. Observation operator 
    12 \subfile{../subfiles/chap_ASM}            %% 12. Assimilation increments 
    13 \subfile{../subfiles/chap_STO}            %% 13. Stochastic param. 
    14 \subfile{../subfiles/chap_misc}           %% 14. Miscellaneous topics 
    15 \subfile{../subfiles/chap_cfgs}           %% 15. Predefined configurations 
     1%% ================================================================================================= 
     2%% Chapters 
     3%% ================================================================================================= 
     4 
     5\subfile{../subfiles/chap_model_basics} %% Continuous equations and assumptions 
     6\subfile{../subfiles/chap_time_domain}  %% Time discretisation (time stepping strategy) 
     7\subfile{../subfiles/chap_DOM}          %% Space discretisation 
     8\subfile{../subfiles/chap_TRA}          %% Tracer advection/diffusion equation 
     9\subfile{../subfiles/chap_DYN}          %% Dynamics : momentum equation 
     10\subfile{../subfiles/chap_SBC}          %% Surface Boundary Conditions 
     11\subfile{../subfiles/chap_LBC}          %% Lateral Boundary Conditions 
     12\subfile{../subfiles/chap_LDF}          %% Lateral diffusion 
     13\subfile{../subfiles/chap_ZDF}          %% Vertical diffusion 
     14\subfile{../subfiles/chap_DIA}          %% Outputs and Diagnostics 
     15\subfile{../subfiles/chap_OBS}          %% Observation operator 
     16\subfile{../subfiles/chap_ASM}          %% Assimilation increments 
     17\subfile{../subfiles/chap_STO}          %% Stochastic param. 
     18\subfile{../subfiles/chap_misc}         %% Miscellaneous topics 
     19\subfile{../subfiles/chap_cfgs}         %% Predefined configurations 
    1620 
    1721%% Not included 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/main/introduction.tex

    r11543 r14644  
    1  
    21\chapter*{Introduction} 
    3  
    4 %\chaptertoc 
    5  
    6 %\paragraph{Changes record} ~\\ 
    7  
    8 %\thispagestyle{plain} 
    9  
    10 %{\footnotesize 
    11 %  \begin{tabularx}{\textwidth}{l||X|X} 
    12 %    Release & Author(s) & Modifications \\ 
    13 %    \hline 
    14 %    {\em x.x} & {\em ...} & {\em ...}   \\ 
    15 %    {\em ...} & {\em ...} & {\em ...}   \\ 
    16 %  \end{tabularx} 
    17 %} 
    18  
    19 %\clearpage 
    202 
    213The \textbf{N}ucleus for \textbf{E}uropean \textbf{M}odelling of the \textbf{O}cean (\NEMO) is 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/main/settings.tex

    r11591 r14644  
    1 %% Engine (subfolder name) 
    2 \def \engine{NEMO} 
     1%% Engine 
     2\def\eng{NEMO} 
    33 
    4 %% Cover page settings 
    5 \def \spacetop{  \vspace*{1.85cm} } 
    6 \def \heading{NEMO ocean engine} 
    7 %\def \subheading{} 
    8 \def \spacedown{ \vspace*{0.75cm } } 
    9 \def \authorswidth{ 0.3\linewidth} 
    10 \def \rulelenght{270pt} 
    11 \def \abstractwidth{0.6\linewidth} 
     4%% Cover page 
     5\def\spcup{\vspace*{2.15cm}} 
     6\def\hdg{NEMO ocean engine} 
     7%\def\shdg{} %% No subheading 
     8\def\spcdn{\vspace*{1.00cm}} 
     9\def\autwd{0.25\linewidth}\def\lnlg{270pt}\def\abswd{0.65\linewidth} 
    1210 
    13 %% Manual color (frontpage banner, links and chapter boxes) 
    14 \def \setmanualcolor{ \definecolor{manualcolor}{cmyk}{1, .60, 0, .4} } 
     11%% Color in cmyk model for manual theme (frontpage banner, links and chapter boxes) 
     12\def\clr{1.0,0.6,0.0,0.4} 
    1513 
    1614%% IPSL publication number 
    17 \def \ipslnum{27} 
     15\def\ipsl{27} 
    1816 
    19 %% Zenodo ID, i.e. doi:10.5281/zenodo.\([0-9]*\) 
    20 \def \zid{1464816} 
     17%% Zenodo ID, i.e. doi:10.5281/zenodo.\zid 
     18\def\zid{1464816} 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles

    • Property svn:ignore
      •  

        old new  
         1*.aux 
         2*.bbl 
         3*.blg 
         4*.fdb* 
         5*.fls 
         6*.idx 
         7*.ilg 
        18*.ind 
        2 *.ilg 
         9*.lo* 
         10*.out 
         11*.pdf 
         12*.pyg 
         13*.tdo 
         14*.toc 
         15*.xdv 
         16cache* 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/apdx_DOMAINcfg.tex

    r14200 r14644  
    66\label{apdx:DOMCFG} 
    77 
    8 %    {\em 4.0} & {\em Andrew Coward} & {\em Created at v4.0 from materials removed from chap\_DOM that are still relevant to the \forcode{DOMAINcfg} tool and which illustrate and explain the choices to be made by the user when setting up new domains }  \\ 
    9  
    10 \thispagestyle{plain} 
    11  
    128\chaptertoc 
    139 
     
    1612{\footnotesize 
    1713  \begin{tabularx}{\textwidth}{l||X|X} 
    18     Release & Author(s) & Modifications \\ 
    19     \hline 
    20     {\em   4.0} & {\em ...} & {\em ...} \\ 
    21     {\em   3.6} & {\em ...} & {\em ...} \\ 
    22     {\em   3.4} & {\em ...} & {\em ...} \\ 
    23     {\em <=3.4} & {\em ...} & {\em ...} 
     14    Release     & Author(s)            & Modifications                                                \\ 
     15    \hline 
     16    {\em  next} & {\em Pierre Mathiot} & {\em Add ice shelf and closed sea option description        } \\ 
     17    {\em   4.0} & {\em  Andrew Coward} & {\em Creation from materials removed from \autoref{chap:DOM} 
     18                                              that are still relevant to the DOMAINcfg tool 
     19                                              when setting up new domains                            } 
    2420  \end{tabularx} 
    2521} 
     
    4642 
    4743\begin{listing} 
    48 %  \nlst{namdom_domcfg} 
    4944  \begin{forlines} 
    5045!----------------------------------------------------------------------- 
     
    9186 \item [{\np{jphgr_mesh}{jphgr\_mesh}=0}]  The most general curvilinear orthogonal grids. 
    9287  The coordinates and their first derivatives with respect to $i$ and $j$ are provided 
    93   in a input file (\ifile{coordinates}), read in \rou{hgr\_read} subroutine of the domhgr module. 
     88  in a input file (\textit{coordinates.nc}), read in \rou{hgr\_read} subroutine of the domhgr module. 
    9489  This is now the only option available within \NEMO\ itself from v4.0 onwards. 
    9590\item [{\np{jphgr_mesh}{jphgr\_mesh}=1 to 5}] A few simple analytical grids are provided (see below). 
     
    156151The reference coordinate transformation $z_0(k)$ defines the arrays $gdept_0$ and 
    157152$gdepw_0$ for $t$- and $w$-points, respectively. See \autoref{sec:DOMCFG_sco} for the 
    158 S-coordinate options.  As indicated on \autoref{fig:DOM_index_vert} \jp{jpk} is the number of 
    159 $w$-levels.  $gdepw_0(1)$ is the ocean surface.  There are at most \jp{jpk}-1 $t$-points 
     153S-coordinate options.  As indicated on \autoref{fig:DOM_index_vert} \texttt{jpk} is the number of 
     154$w$-levels.  $gdepw_0(1)$ is the ocean surface.  There are at most \texttt{jpk}-1 $t$-points 
    160155inside the ocean, the additional $t$-point at $jk = jpk$ is below the sea floor and is not 
    161156used.  The vertical location of $w$- and $t$-levels is defined from the analytic 
     
    167162 
    168163It is possible to define a simple regular vertical grid by giving zero stretching 
    169 (\np[=0]{ppacr}{ppacr}).  In that case, the parameters \jp{jpk} (number of $w$-levels) 
     164(\np[=0]{ppacr}{ppacr}).  In that case, the parameters \texttt{jpk} (number of $w$-levels) 
    170165and \np{pphmax}{pphmax} (total ocean depth in meters) fully define the grid. 
    171166 
     
    179174\end{gather} 
    180175 
    181 where $k = 1$ to \jp{jpk} for $w$-levels and $k = 1$ to $k = 1$ for $t-$levels.  Such an 
     176where $k = 1$ to \texttt{jpk} for $w$-levels and $k = 1$ to $k = 1$ for $t-$levels.  Such an 
    182177expression allows us to define a nearly uniform vertical location of levels at the ocean 
    183178top and bottom with a smooth hyperbolic tangent transition in between (\autoref{fig:DOMCFG_zgr}). 
     
    227222\end{equation} 
    228223 
    229 With the choice of the stretching $h_{cr} = 3$ and the number of levels \jp{jpk}~$= 31$, 
     224With the choice of the stretching $h_{cr} = 3$ and the number of levels \texttt{jpk}~$= 31$, 
    230225the four coefficients $h_{sur}$, $h_0$, $h_1$, and $h_{th}$ in 
    231226\autoref{eq:DOMCFG_zgr_ana_2} have been determined such that \autoref{eq:DOMCFG_zgr_coef} 
     
    245240  Values from $3$ to $10$ are usual. 
    246241\item \np{ppkth}{ppkth}~$= h_{th}$: is approximately the model level at which maximum stretching occurs 
    247   (nondimensional, usually of order 1/2 or 2/3 of \jp{jpk}) 
     242  (nondimensional, usually of order 1/2 or 2/3 of \texttt{jpk}) 
    248243\item \np{ppdzmin}{ppdzmin}: minimum thickness for the top layer (in meters). 
    249244\item \np{pphmax}{pphmax}: total depth of the ocean (meters). 
     
    251246 
    252247As an example, for the $45$ layers used in the DRAKKAR configuration those parameters are: 
    253 \jp{jpk}~$= 46$, \np{ppacr}{ppacr}~$= 9$, \np{ppkth}{ppkth}~$= 23.563$, \np{ppdzmin}{ppdzmin}~$= 6~m$, 
     248\texttt{jpk}~$= 46$, \np{ppacr}{ppacr}~$= 9$, \np{ppkth}{ppkth}~$= 23.563$, \np{ppdzmin}{ppdzmin}~$= 6~m$, 
    254249\np{pphmax}{pphmax}~$= 5750~m$. 
    255250 
     
    346341  This is meant for the "EEL-R5" configuration, a periodic or open boundary channel with a seamount. 
    347342\item [{\np[=1]{nn_bathy}{nn\_bathy}}]: read a bathymetry and ice shelf draft (if needed). 
    348   The \ifile{bathy\_meter} file (Netcdf format) provides the ocean depth (positive, in meters) at 
     343  The \textit{bathy\_meter.nc} file (Netcdf format) provides the ocean depth (positive, in meters) at 
    349344  each grid point of the model grid. 
    350345  The bathymetry is usually built by interpolating a standard bathymetry product (\eg\ ETOPO2) onto 
     
    352347  Defining the bathymetry also defines the coastline: where the bathymetry is zero, 
    353348  no wet levels are defined (all levels are masked). 
    354  
    355   The \ifile{isfdraft\_meter} file (Netcdf format) provides the ice shelf draft (positive, in meters) at 
    356   each grid point of the model grid. 
    357   This file is only needed if \np[=.true.]{ln_isfcav}{ln\_isfcav}. 
    358   Defining the ice shelf draft will also define the ice shelf edge and the grounding line position. 
    359349\end{description} 
    360350 
     
    396386bathymetry varies by less than one level thickness from one grid point to the next).  The 
    397387reference layer thicknesses $e_{3t}^0$ have been defined in the absence of bathymetry. 
    398 With partial steps, layers from 1 to \jp{jpk}-2 can have a thickness smaller than 
     388With partial steps, layers from 1 to \texttt{jpk-2} can have a thickness smaller than 
    399389$e_{3t}(jk)$. 
    400390 
    401 The model deepest layer (\jp{jpk}-1) is allowed to have either a smaller or larger 
     391The model deepest layer (\texttt{jpk-1}) is allowed to have either a smaller or larger 
    402392thickness than $e_{3t}(jpk)$: the maximum thickness allowed is $2*e_{3t}(jpk - 1)$. 
    403393 
     
    418408 
    419409\begin{listing} 
    420 %  \nlst{namzgr_sco_domcfg} 
    421410  \caption{\forcode{&namzgr_sco_domcfg}} 
    422411  \label{lst:namzgr_sco_domcfg} 
     
    592581This option is described in the Report by Levier \textit{et al.} (2007), available on the \NEMO\ web site. 
    593582 
     583\section{Ice shelf cavity definition} 
     584\label{subsec:zgrisf} 
     585 
     586  If the under ice shelf seas are opened (\np{ln_isfcav}{ln\_isfcav}), the depth of the ice shelf/ocean interface has to be include in  
     587  the \textit{isfdraft\_meter} file (Netcdf format). This file need to include the \textit{isf\_draft} variable.  
     588  A positive value will mean ice shelf/ocean or ice shelf bedrock interface below the reference 0m ssh.  
     589  The exact shape of the ice shelf cavity (grounding line position and minimum thickness of the water column under an ice shelf, ...) can be specify in \nam{zgr_isf}{zgr\_isf}. 
     590 
     591\begin{listing} 
     592  \caption{\forcode{&namzgr_isf}} 
     593  \label{lst:namzgr_isf} 
     594  \begin{forlines} 
     595!----------------------------------------------------------------------- 
     596&namzgr_isf    !   isf cavity geometry definition                       (default: OFF) 
     597!----------------------------------------------------------------------- 
     598   rn_isfdep_min    = 10.         ! minimum isf draft tickness (if lower, isf draft set to this value) 
     599   rn_glhw_min      = 1.e-3       ! minimum water column thickness to define the grounding line 
     600   rn_isfhw_min     = 10          ! minimum water column thickness in the cavity once the grounding line defined. 
     601   ln_isfchannel    = .false.     ! remove channel (based on 2d mask build from isfdraft-bathy) 
     602   ln_isfconnect    = .false.     ! force connection under the ice shelf (based on 2d mask build from isfdraft-bathy) 
     603      nn_kisfmax       = 999         ! limiter in level on the previous condition. (if change larger than this number, get back to value before we enforce the connection) 
     604      rn_zisfmax       = 7000.       ! limiter in m     on the previous condition. (if change larger than this number, get back to value before we enforce the connection) 
     605   ln_isfcheminey   = .false.     ! close cheminey 
     606   ln_isfsubgl      = .false.     ! remove subglacial lake created by the remapping process 
     607      rn_isfsubgllon   =    0.0      !  longitude of the seed to determine the open ocean 
     608      rn_isfsubgllat   =    0.0      !  latitude  of the seed to determine the open ocean 
     609/ 
     610  \end{forlines} 
     611\end{listing} 
     612 
     613   The options available to define the shape of the under ice shelf cavities are listed in \nam{zgr_isf}{zgr\_isf} (\texttt{DOMAINcfg} only, \autoref{lst:namzgr_isf}). 
     614 
     615\subsection{Model ice shelf draft definition} 
     616\label{subsec:zgrisf_isfd} 
     617 
     618First of all, the tool make sure, the ice shelf draft ($h_{isf}$) is sensible and compatible with the bathymetry. 
     619There are 3 compulsory steps to achieve this: 
     620 
     621\begin{description} 
     622\item{\np{rn_isfdep_min}{rn\_isfdep\_min}:} this is the minimum ice shelf draft. This is to make sure there is no ridiculous thin ice shelf. If \np{rn_isfdep_min}{rn\_isfdep\_min} is smaller than the surface level, \np{rn_isfdep_min}{rn\_isfdep\_min} is set to $e3t\_1d(1)$.  
     623  Where $h_{isf} < MAX(e3t\_1d(1),rn\_isfdep\_min)$, $h_{isf}$ is set to \np{rn_isfdep_min}{rn\_isfdep\_min}. 
     624 
     625\item{\np{rn_glhw_min}{rn\_glhw\_min}:} This parameter is used to define the grounding line position. 
     626  Where the difference between the bathymetry and the ice shelf draft is smaller than \np{rn_glhw_min}{rn\_glhw\_min}, the cell are grounded (ie masked).  
     627  This step is needed to take into account possible small mismatch between ice shelf draft value and bathymetry value (sources are coming from different grid, different data processes, rounding error, ...). 
     628 
     629\item{\np{rn_isfhw_min}{rn\_isfhw\_min}:} This parameter is the minimum water column thickness in the cavity.  
     630  Where the water column thickness is lower than \np{rn_isfhw_min}{rn\_isfhw\_min}, the ice shelf draft is adjusted to match this criterion.  
     631  If for any reason, this adjustement break the minimum ice shelf draft allowed (\np{rn_isfdep_min}{rn\_isfdep\_min}), the cell is masked. 
     632\end{description} 
     633 
     634Once all these adjustements are made, if the water column thickness contains one cell wide channels, these channels can be closed using \np{ln_isfchannel}{ln\_isfchannel}.   
     635  
     636\subsection{Model top level definition} 
     637After the definition of the ice shelf draft, the tool defines the top level.  
     638The compulsory criterion is that the water column needs at least 2 wet cells in the water column at U- and V-points. 
     639To do so, if there one cell wide water column, the tools adjust the ice shelf draft to fillful the requierement.\\ 
     640 
     641The process is the following: 
     642\begin{description} 
     643\item{step 1:} The top level is defined in the same way as the bottom level is defined. 
     644\item{step 2:} The isolated grid point in the bathymetry are filled (as it is done in a domain without ice shelf) 
     645\item{step 3:} The tools make sure, the top level is above or equal to the bottom level 
     646\item{step 4:} If the water column at a U- or V- point is one wet cell wide, the ice shelf draft is adjusted. So the actual top cell become fully open and the new 
     647  top cell thickness is set to the minimum cell thickness allowed (following the same logic as for the bottom partial cell). This step is iterated 4 times to ensure the condition is fullfill along the 4 sides of the cell. 
     648\end{description} 
     649 
     650In case of steep slope and shallow water column, it likely that 2 cells are disconnected (bathymetry above its neigbourging ice shelf draft).  
     651The option \np{ln_isfconnect}{ln\_isfconnect} allow the tool to force the connection between these 2 cells. 
     652Some limiters in meter or levels on the digging allowed by the tool are available (respectively, \np{rn_zisfmax}{rn\_zisfmax} or \np{rn_kisfmax}{rn\_kisfmax}). 
     653This will prevent the formation of subglacial lakes at the expense of long vertical pipe to connect cells at very different levels. 
     654 
     655\subsection{Subglacial lakes} 
     656Despite careful setting of your ice shelf draft and bathymetry input file as well as setting described in \autoref{subsec:zgrisf_isfd}, some situation are unavoidable. 
     657For exemple if you setup your ice shelf draft and bathymetry to do ocean/ice sheet coupling,  
     658you may decide to fill the whole antarctic with a bathymetry and an ice shelf draft value (ice/bedrock interface depth when grounded).  
     659If you do so, the subglacial lakes will show up (Vostock for example). An other possibility is with coarse vertical resolution, some ice shelves could be cut in 2 parts:  
     660one connected to the main ocean and an other one closed which can be considered as a subglacial sea be the model.\\ 
     661 
     662The namelist option \np{ln_isfsubgl}{ln\_isfsubgl} allow you to remove theses subglacial lakes. 
     663This may be useful for esthetical reason or for stability reasons: 
     664 
     665\begin{description} 
     666\item $\bullet$ In a subglacial lakes, in case of very weak circulation (often the case), the only heat flux is the conductive heat flux through the ice sheet.  
     667  This will lead to constant freezing until water reaches -20C.  
     668  This is one of the defitiency of the 3 equation melt formulation (for details on this formulation, see: \autoref{sec:isf}). 
     669\item $\bullet$ In case of coupling with an ice sheet model,  
     670  the ssh in the subglacial lakes and the main ocean could be very different (ssh initial adjustement for example),  
     671  and so if for any reason both a connected at some point, the model is likely to fall over.\\ 
     672\end{description} 
     673 
     674\section{Closed sea definition} 
     675\label{sec:clocfg} 
     676 
     677\begin{listing} 
     678  \caption{\forcode{&namclo}} 
     679  \label{lst:namdom_clo} 
     680  \begin{forlines} 
     681!----------------------------------------------------------------------- 
     682&namclo ! (closed sea : need ln_domclo = .true. in namcfg) 
     683!----------------------------------------------------------------------- 
     684   rn_lon_opnsea = -2.0     ! longitude seed of open ocean 
     685   rn_lat_opnsea = -2.0     ! latitude  seed of open ocean 
     686   nn_closea = 8           ! number of closed seas ( = 0; only the open_sea mask will be computed) 
     687   !                name   ! lon_src ! lat_src ! lon_trg ! lat_trg ! river mouth area   ! net evap/precip correction scheme ! radius tgt   ! id trg 
     688   !                       ! (degree)! (degree)! (degree)! (degree)! local/coast/global ! (glo/rnf/emp)                     !     (m)      ! 
     689   ! North American lakes 
     690   sn_lake(1) = 'superior' ,  -86.57 ,  47.30  , -66.49  , 50.45   , 'local'            , 'rnf'                             ,   550000.0 , 2     
     691   sn_lake(2) = 'michigan' ,  -87.06 ,  42.74  , -66.49  , 50.45   , 'local'            , 'rnf'                             ,   550000.0 , 2     
     692   sn_lake(3) = 'huron'    ,  -82.51 ,  44.74  , -66.49  , 50.45   , 'local'            , 'rnf'                             ,   550000.0 , 2     
     693   sn_lake(4) = 'erie'     ,  -81.13 ,  42.25  , -66.49  , 50.45   , 'local'            , 'rnf'                             ,   550000.0 , 2     
     694   sn_lake(5) = 'ontario'  ,  -77.72 ,  43.62  , -66.49  , 50.45   , 'local'            , 'rnf'                             ,   550000.0 , 2     
     695   ! African Lake 
     696   sn_lake(6) = 'victoria' ,   32.93 ,  -1.08  ,  30.44  , 31.37   , 'coast'            , 'emp'                             ,   100000.0 , 3     
     697   ! Asian Lakes 
     698   sn_lake(7) = 'caspian'  ,   50.0  ,  44.0   ,   0.0   ,  0.0    , 'global'           , 'glo'                             ,        0.0 , 1      
     699   sn_lake(8) = 'aral'     ,   60.0  ,  45.0   ,   0.0   ,  0.0    , 'global'           , 'glo'                             ,        0.0 , 1     
     700/ 
     701   \end{forlines} 
     702\end{listing} 
     703 
     704The options available to define the closed seas and how closed sea net fresh water input will be redistributed by NEMO are listed in \nam{dom_clo}{dom\_clo} (\texttt{DOMAINcfg} only). 
     705The individual definition of each closed sea is managed by \np{sn_lake}{sn\_lake}. In this fields the user needs to define:\\ 
     706   \begin{description} 
     707   \item $\bullet$    the name of the closed sea (print output purposes). 
     708   \item $\bullet$    the seed location to define the area of the closed sea (if seed on land because not present in this configuration, this closed sea will be ignored).\\ 
     709   \item $\bullet$    the seed location for the target area. 
     710   \item $\bullet$    the type of target area ('local','coast' or 'global'). See point 6 for definition of these cases. 
     711   \item $\bullet$    the type of redistribution scheme for the net fresh water flux over the closed sea (as a runoff in a target area, as emp in a target area, as emp globally). For the runoff case, if the net fwf is negative, it will be redistribut globally. 
     712   \item $\bullet$    the radius of the target area (not used for the 'global' case). So the target defined by a 'local' target area of a radius of 100km, for example, correspond to all the wet points within this radius. The coastal case will return only the coastal point within the specifid radius. 
     713   \item $\bullet$    the target id. This target id is used to group multiple lakes into the same river ouflow (Great Lakes for example). 
     714   \end{description} 
     715 
     716The closed sea module defines a number of masks in the \textit{domain\_cfg} output: 
     717   \begin{description} 
     718   \item[\textit{mask\_opensea}:] a mask of the main ocean without all the closed seas closed. This mask is defined by a flood filling algorithm with an initial seed (localisation defined by \np{rn_lon_opnsea}{rn\_lon\_opnsea} and \np{rn_lat_opnsea}{rn\_lat\_opnsea}). 
     719   \item[\textit{mask\_csglo}, \textit{mask\_csrnf}, \textit{mask\_csemp}:] a mask of all the closed seas defined in the namelist by \np{sn_lake}{sn\_lake} for each redistribution scheme. The total number of defined closed seas has to be defined in \np{nn_closea}{nn\_closea}. 
     720   \item[\textit{mask\_csgrpglo}, \textit{mask\_csgrprnf}, \textit{mask\_csgrpemp}:] a mask of all the closed seas and targets grouped by target id for each type of redistribution scheme. 
     721   \item[\textit{mask\_csundef}:] a mask of all the closed sea not defined in \np{sn_lake}{sn\_lake}. This will allows NEMO to mask them if needed or to inform the user of potential minor issues in its bathymetry. 
     722   \end{description} 
     723    
    594724\subinc{\input{../../global/epilogue}} 
    595725 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/apdx_algos.tex

    r11693 r14644  
    55\chapter{Note on some algorithms} 
    66\label{apdx:ALGOS} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/apdx_diff_opers.tex

    r11693 r14644  
    55\chapter{Diffusive Operators} 
    66\label{apdx:DIFFOPERS} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/apdx_invariants.tex

    r11693 r14644  
    55\chapter{Discrete Invariants of the Equations} 
    66\label{apdx:INVARIANTS} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/apdx_s_coord.tex

    r11693 r14644  
    88%    {\em 4.0} & {\em Mike Bell} & {\em review}  \\ 
    99%    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\ 
    10  
    11 \thispagestyle{plain} 
    1210 
    1311\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/apdx_triads.tex

    r14113 r14644  
    22 
    33\begin{document} 
    4  
    5 %% Local cmds 
    6 \newcommand{\rML}[1][i]{\ensuremath{_{\mathrm{ML}\,#1}}} 
    7 \newcommand{\rMLt}[1][i]{\tilde{r}_{\mathrm{ML}\,#1}} 
    8 %% Move to ../../global/new_cmds.tex to avoid error with \listoffigures 
    9 %\newcommand{\triad}[6][]{\ensuremath{{}_{#2}^{#3}{\mathbb{#4}_{#1}}_{#5}^{\,#6}} 
    10 \newcommand{\triadd}[5]{\ensuremath{{}_{#1}^{#2}{\mathbb{#3}}_{#4}^{\,#5}}} 
    11 \newcommand{\triadt}[5]{\ensuremath{{}_{#1}^{#2}{\tilde{\mathbb{#3}}}_{#4}^{\,#5}}} 
    12 \newcommand{\rtriad}[2][]{\ensuremath{\triad[#1]{i}{k}{#2}{i_p}{k_p}}} 
    13 \newcommand{\rtriadt}[1]{\ensuremath{\triadt{i}{k}{#1}{i_p}{k_p}}} 
    144 
    155\chapter{Iso-Neutral Diffusion and Eddy Advection using Triads} 
    166\label{apdx:TRIADS} 
    17  
    18 \thispagestyle{plain} 
    197 
    208\chaptertoc 
     
    3624 
    3725%% ================================================================================================= 
    38 \section[Choice of \forcode{namtra\_ldf} namelist parameters]{Choice of \protect\nam{tra_ldf}{tra\_ldf} namelist parameters} 
     26\section[Choice of \forcode{namtra_ldf} namelist parameters]{Choice of \protect\nam{tra_ldf}{tra\_ldf} namelist parameters} 
    3927 
    4028Two scheme are available to perform the iso-neutral diffusion. 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_ASM.tex

    r11693 r14644  
    88%    {\em 4.0} & {\em D. J. Lea} & {\em \NEMO\ 4.0 updates}  \\ 
    99%    {\em 3.4} & {\em D. J. Lea, M. Martin, K. Mogensen, A. Weaver} & {\em Initial version}  \\ 
    10  
    11 \thispagestyle{plain} 
    1210 
    1311\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_DIA.tex

    r13970 r14644  
    1111%    {\em 3.4} & {\em Gurvan Madec, Rachid Benshila, Andrew Coward } & {\em }  \\ 
    1212%    {\em }      & {\em Christian Ethe, Sebastien Masson } & {\em }  \\ 
    13  
    14 \thispagestyle{plain} 
    1513 
    1614\chaptertoc 
     
    666664\end{forlines} 
    667665 
    668 \noindent will give the following file name radical: \ifile{myfile\_ORCA2\_19891231\_freq1d} 
     666\noindent will give the following file name radical: \textit{myfile\_ORCA2\_19891231\_freq1d} 
    669667 
    670668%% ================================================================================================= 
     
    19421940When \np[=.true.]{ln_subbas}{ln\_subbas}, transports and stream function are computed for the Atlantic, Indian, 
    19431941Pacific and Indo-Pacific Oceans (defined north of 30\deg{S}) as well as for the World Ocean. 
    1944 The sub-basin decomposition requires an input file (\ifile{subbasins}) which contains three 2D mask arrays, 
     1942The sub-basin decomposition requires an input file (\textit{subbasins}) which contains three 2D mask arrays, 
    19451943the Indo-Pacific mask been deduced from the sum of the Indian and Pacific mask (\autoref{fig:DIA_mask_subasins}). 
    19461944 
    19471945\begin{listing} 
    1948   \nlst{namptr} 
     1946%  \nlst{namptr} 
    19491947  \caption{\forcode{&namptr}} 
    19501948  \label{lst:namptr} 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_DIU.tex

    r11693 r14644  
    55\chapter{Diurnal SST Models (DIU)} 
    66\label{chap:DIU} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
     
    5250 
    5351This namelist contains only two variables: 
     52 
    5453\begin{description} 
    5554\item [{\np{ln_diurnal}{ln\_diurnal}}] A logical switch for turning on/off both the cool skin and warm layer. 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_DOM.tex

    r11693 r14644  
    1414% -    domclo: closed sea and lakes.... 
    1515%              management of closea sea area: specific to global cfg, both forced and coupled 
    16  
    17 \thispagestyle{plain} 
    1816 
    1917\chaptertoc 
     
    368366\label{subsec:DOM_size} 
    369367 
    370 The total size of the computational domain is set by the parameters \jp{jpiglo}, \jp{jpjglo} and 
    371 \jp{jpkglo} for the $i$, $j$ and $k$ directions, respectively. 
     368The total size of the computational domain is set by the parameters \texttt{jpiglo}, \texttt{jpjglo} and 
     369\texttt{jpkglo} for the $i$, $j$ and $k$ directions, respectively. 
    372370Note, that the variables \texttt{jpi} and \texttt{jpj} refer to 
    373371the size of each processor subdomain when the code is run in parallel using domain decomposition 
     
    379377in which case \np{cn_cfg}{cn\_cfg} and \np{nn_cfg}{nn\_cfg} are set from these values accordingly). 
    380378 
    381 The global lateral boundary condition type is selected from 8 options using parameter \jp{jperio}. 
     379The global lateral boundary condition type is selected from 8 options using parameters \texttt{l\_Iperio}, \texttt{l\_Jperio}, \texttt{l\_NFold} and \texttt{c\_NFtype}. 
    382380See \autoref{sec:LBC_jperio} for details on the available options and 
    383 the corresponding values for \jp{jperio}. 
     381the corresponding values for \texttt{l\_Iperio}, \texttt{l\_Jperio}, \texttt{l\_NFold} and \texttt{c\_NFtype}. 
    384382 
    385383%% ================================================================================================= 
     
    396394 
    397395\begin{clines} 
    398 int    jpiglo, jpjglo, jpkglo     /* global domain sizes                                    */ 
    399 int    jperio                     /* lateral global domain b.c.                             */ 
    400 double glamt, glamu, glamv, glamf /* geographic longitude (t,u,v and f points respectively) */ 
    401 double gphit, gphiu, gphiv, gphif /* geographic latitude                                    */ 
    402 double e1t, e1u, e1v, e1f         /* horizontal scale factors                               */ 
    403 double e2t, e2u, e2v, e2f         /* horizontal scale factors                               */ 
     396integer   Ni0glo, NjOglo, jpkglo       /* global domain sizes (without MPI halos)                */ 
     397logical   l\_Iperio, l\_Jperio         /* lateral global domain b.c.: i- j-periodicity           */ 
     398logical   l\_NFold                     /* lateral global domain b.c.: North Pole folding         */ 
     399char(1)   c\_NFtype                    /*    type of North pole Folding: T or F point            */ 
     400real      glamt, glamu, glamv, glamf   /* geographic longitude (t,u,v and f points respectively) */ 
     401real      gphit, gphiu, gphiv, gphif   /* geographic latitude                                    */ 
     402real      e1t, e1u, e1v, e1f           /* horizontal scale factors                               */ 
     403real      e2t, e2u, e2v, e2f           /* horizontal scale factors                               */ 
    404404\end{clines} 
    405405 
     
    465465\begin{enumerate} 
    466466\item the bathymetry given in meters; 
    467 \item the number of levels of the model (\jp{jpk}); 
     467\item the number of levels of the model (\texttt{jpk}); 
    468468\item the analytical transformation $z(i,j,k)$ and the vertical scale factors 
    469469  (derivatives of the transformation); and 
     
    575575every gridcell in the model regardless of the choice of vertical coordinate. 
    576576With constant z-levels, e3 metrics will be uniform across each horizontal level. 
    577 In the partial step case each e3 at the \jp{bottom\_level} 
    578 (and, possibly, \jp{top\_level} if ice cavities are present) 
     577In the partial step case each e3 at the \texttt{bottom\_level} 
     578(and, possibly, \texttt{top\_level} if ice cavities are present) 
    579579may vary from its horizontal neighbours. 
    580580And, in s-coordinates, variations can occur throughout the water column. 
     
    585585those arising from a flat sea surface with zero elevation. 
    586586 
    587 The \jp{bottom\_level} and \jp{top\_level} 2D arrays define 
    588 the \jp{bottom\_level} and top wet levels in each grid column. 
    589 Without ice cavities, \jp{top\_level} is essentially a land mask (0 on land; 1 everywhere else). 
    590 With ice cavities, \jp{top\_level} determines the first wet point below the overlying ice shelf. 
     587The \texttt{bottom\_level} and \texttt{top\_level} 2D arrays define 
     588the \texttt{bottom\_level} and top wet levels in each grid column. 
     589Without ice cavities, \texttt{top\_level} is essentially a land mask (0 on land; 1 everywhere else). 
     590With ice cavities, \texttt{top\_level} determines the first wet point below the overlying ice shelf. 
    591591 
    592592%% ================================================================================================= 
     
    594594\label{subsec:DOM_msk} 
    595595 
    596 From \jp{top\_level} and \jp{bottom\_level} fields, the mask fields are defined as follows: 
     596From \texttt{top\_level} and \texttt{bottom\_level} fields, the mask fields are defined as follows: 
    597597\begin{align*} 
    598598  tmask(i,j,k) &= 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_DYN.tex

    r14200 r14644  
    55\chapter{Ocean Dynamics (DYN)} 
    66\label{chap:DYN} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_LBC.tex

    r14200 r14644  
    55\chapter{Lateral Boundary Condition (LBC)} 
    66\label{chap:LBC} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
     
    161159 
    162160%% ================================================================================================= 
    163 \section[Model domain boundary condition (\forcode{jperio})]{Model domain boundary condition (\protect\jp{jperio})} 
     161\section{Model domain boundary condition} 
    164162\label{sec:LBC_jperio} 
    165163 
     
    170168 
    171169%% ================================================================================================= 
    172 \subsection[Closed, cyclic (\forcode{=0,1,2,7})]{Closed, cyclic (\protect\jp{jperio}\forcode{=0,1,2,7})} 
     170\subsection{Closed, cyclic (\forcode{l_Iperio,l_jperio})} 
    173171\label{subsec:LBC_jperio012} 
    174172 
    175173The choice of closed or cyclic model domain boundary condition is made by 
    176 setting \jp{jperio} to 0, 1, 2 or 7 in namelist \nam{cfg}{cfg}. 
     174setting \forcode{l_Iperio,l_jperio} to true or false in namelist \nam{cfg}{cfg}. 
    177175Each time such a boundary condition is needed, it is set by a call to routine \mdl{lbclnk}. 
    178176The computation of momentum and tracer trends proceeds from $i=2$ to $i=jpi-1$ and from $j=2$ to $j=jpj-1$, 
     
    183181\begin{description} 
    184182 
    185 \item [For closed boundary (\jp{jperio}\forcode{=0})], solid walls are imposed at all model boundaries: 
     183\item [For closed boundary (\forcode{l_Iperio = .false.,l_jperio = .false.})], solid walls are imposed at all model boundaries: 
    186184  first and last rows and columns are set to zero. 
    187185 
    188 \item [For cyclic east-west boundary (\jp{jperio}\forcode{=1})], first and last rows are set to zero (closed) whilst the first column is set to 
     186\item [For cyclic east-west boundary (\forcode{l_Iperio = .true.,l_jperio = .false.})], first and last rows are set to zero (closed) whilst the first column is set to 
    189187  the value of the last-but-one column and the last column to the value of the second one 
    190188  (\autoref{fig:LBC_jperio}-a). 
    191189  Whatever flows out of the eastern (western) end of the basin enters the western (eastern) end. 
    192190 
    193 \item [For cyclic north-south boundary (\jp{jperio}\forcode{=2})], first and last columns are set to zero (closed) whilst the first row is set to 
     191\item [For cyclic north-south boundary (\forcode{l_Iperio = .false.,l_jperio = .true.})], first and last columns are set to zero (closed) whilst the first row is set to 
    194192  the value of the last-but-one row and the last row to the value of the second one 
    195193  (\autoref{fig:LBC_jperio}-a). 
    196194  Whatever flows out of the northern (southern) end of the basin enters the southern (northern) end. 
    197195 
    198 \item [Bi-cyclic east-west and north-south boundary (\jp{jperio}\forcode{=7})] combines cases 1 and 2. 
     196\item [Bi-cyclic east-west and north-south boundary (\forcode{l_Iperio = .true.,l_jperio = .true.})] combines cases 1 and 2. 
    199197 
    200198\end{description} 
     
    209207 
    210208%% ================================================================================================= 
    211 \subsection[North-fold (\forcode{=3,6})]{North-fold (\protect\jp{jperio}\forcode{=3,6})} 
     209\subsection{North-fold (\forcode{l_NFold = .true.})} 
    212210\label{subsec:LBC_north_fold} 
    213211 
     
    222220  \includegraphics[width=0.66\textwidth]{LBC_North_Fold_T} 
    223221  \caption[North fold boundary in ORCA 2\deg, 1/4\deg and 1/12\deg]{ 
    224     North fold boundary with a $T$-point pivot and cyclic east-west boundary condition ($jperio=4$), 
     222    North fold boundary with a $T$-point pivot and cyclic east-west boundary condition ($c\_NFtype='T'$), 
    225223    as used in ORCA 2\deg, 1/4\deg and 1/12\deg. 
    226224    Pink shaded area corresponds to the inner domain mask (see text).} 
     
    288286Each processor is independent and without message passing or synchronous process, programs run alone and access just its own local memory. 
    289287For this reason, 
    290 the main model dimensions are now the local dimensions of the subdomain (pencil) that are named \jp{jpi}, \jp{jpj}, \jp{jpk}. 
     288the main model dimensions are now the local dimensions of the subdomain (pencil) that are named \texttt{jpi}, \texttt{jpj}, \texttt{jpk}. 
    291289These dimensions include the internal domain and the overlapping rows. 
    292 The number of rows to exchange (known as the halo) is usually set to one (nn\_hls=1, in \mdl{par\_oce}, 
     290The number of rows to exchange (known as the halo) is usually set to one (\forcode{nn_hls=1}, in \mdl{par\_oce}, 
    293291and must be kept to one until further notice). 
    294 The whole domain dimensions are named \jp{jpiglo}, \jp{jpjglo} and \jp{jpk}. 
     292The whole domain dimensions are named \texttt{jpiglo}, \texttt{jpjglo} and \texttt{jpk}. 
    295293The relationship between the whole domain and a sub-domain is: 
    296294\begin{gather*} 
     
    299297\end{gather*} 
    300298 
    301 One also defines variables nldi and nlei which correspond to the internal domain bounds, and the variables nimpp and njmpp which are the position of the (1,1) grid-point in the global domain (\autoref{fig:LBC_mpp}). Note that since the version 4, there is no more extra-halo area as defined in \autoref{fig:LBC_mpp} so \jp{jpi} is now always equal to nlci and \jp{jpj} equal to nlcj. 
     299One also defines variables nldi and nlei which correspond to the internal domain bounds, and the variables nimpp and njmpp which are the position of the (1,1) grid-point in the global domain (\autoref{fig:LBC_mpp}). Note that since the version 4, there is no more extra-halo area as defined in \autoref{fig:LBC_mpp} so \texttt{jpi} is now always equal to nlci and \texttt{jpj} equal to nlcj. 
    302300 
    303301An element of $T_{l}$, a local array (subdomain) corresponds to an element of $T_{g}$, 
     
    309307with $1 \leq i \leq jpi$, $1  \leq j \leq jpj $ , and  $1  \leq k \leq jpk$. 
    310308 
    311 The 1-d arrays $mig(1:\jp{jpi})$ and $mjg(1:\jp{jpj})$, defined in \rou{dom\_glo} routine (\mdl{domain} module), should be used to get global domain indices from local domain indices. The 1-d arrays, $mi0(1:\jp{jpiglo})$, $mi1(1:\jp{jpiglo})$ and $mj0(1:\jp{jpjglo})$, $mj1(1:\jp{jpjglo})$ have the reverse purpose and should be used to define loop indices expressed in global domain indices (see examples in \mdl{dtastd} module).\\ 
     309The 1-d arrays $mig(1:\texttt{jpi})$ and $mjg(1:\texttt{jpj})$, defined in \rou{dom\_glo} routine (\mdl{domain} module), should be used to get global domain indices from local domain indices. The 1-d arrays, $mi0(1:\texttt{jpiglo})$, $mi1(1:\texttt{jpiglo})$ and $mj0(1:\texttt{jpjglo})$, $mj1(1:\texttt{jpjglo})$ have the reverse purpose and should be used to define loop indices expressed in global domain indices (see examples in \mdl{dtastd} module).\\ 
    312310 
    313311The \NEMO\ model computes equation terms with the help of mask arrays (0 on land points and 1 on sea points). It is therefore possible that an MPI subdomain contains only land points. To save ressources, we try to supress from the computational domain as much land subdomains as possible. For example if $N_{mpi}$ processes are allocated to NEMO, the domain decomposition will be given by the following equation: 
     
    372370The number of boundary sets is defined by \np{nb_bdy}{nb\_bdy}. 
    373371Each boundary set can be either defined as a series of straight line segments directly in the namelist 
    374 (\np[=.false.]{ln_coords_file}{ln\_coords\_file}, and a namelist block \forcode{&nambdy_index} must be included for each set) or read in from a file (\np[=.true.]{ln_coords_file}{ln\_coords\_file}, and a ``\ifile{coordinates.bdy}'' file must be provided). 
    375 The coordinates.bdy file is analagous to the usual \NEMO\ ``\ifile{coordinates}'' file. 
     372(\np[=.false.]{ln_coords_file}{ln\_coords\_file}, and a namelist block \forcode{&nambdy_index} must be included for each set) or read in from a file (\np[=.true.]{ln_coords_file}{ln\_coords\_file}, and a ``\textit{coordinates.bdy.nc}'' file must be provided). 
     373The coordinates.bdy file is analagous to the usual \NEMO\ ``\textit{coordinates.nc}'' file. 
    376374In the example above, there are two boundary sets, the first of which is defined via a file and 
    377375the second is defined in the namelist. 
     
    570568 
    571569The boundary geometry for each set may be defined in a namelist \forcode{&nambdy_index} or 
    572 by reading in a ``\ifile{coordinates.bdy}'' file. 
    573 The \texttt{nambdy\_index} namelist defines a series of straight-line segments for north, east, south and west boundaries. 
    574 One \texttt{nambdy\_index} namelist block is needed for each boundary condition defined by indexes. 
     570by reading in a ``\textit{coordinates.bdy.nc}'' file. 
     571The \forcode{&nambdy_index} namelist defines a series of straight-line segments for north, east, south and west boundaries. 
     572One \forcode{&nambdy_index} namelist block is needed for each boundary condition defined by indexes. 
    575573For the northern boundary, \texttt{nbdysegn} gives the number of segments, 
    576 \jp{jpjnob} gives the $j$ index for each segment and \jp{jpindt} and 
    577 \jp{jpinft} give the start and end $i$ indices for each segment with similar for the other boundaries. 
     574\texttt{jpjnob} gives the $j$ index for each segment and \texttt{jpindt} and 
     575\texttt{jpinft} give the start and end $i$ indices for each segment with similar for the other boundaries. 
    578576These segments define a list of $T$ grid points along the outermost row of the boundary ($nbr\,=\, 1$). 
    579577The code deduces the $U$ and $V$ points and also the points for $nbr\,>\, 1$ if \np[>1]{nn_rimwidth}{nn\_rimwidth}. 
    580578 
    581 The boundary geometry may also be defined from a ``\ifile{coordinates.bdy}'' file. 
     579The boundary geometry may also be defined from a ``\textit{coordinates.bdy.nc}'' file. 
    582580\autoref{fig:LBC_nc_header} gives an example of the header information from such a file, based on the description of geometrical setup given above. 
    583581The file should contain the index arrays for each of the $T$, $U$ and $V$ grids. 
     
    633631  \centering 
    634632  \includegraphics[width=0.66\textwidth]{LBC_nc_header} 
    635   \caption[Header for a \protect\ifile{coordinates.bdy} file]{ 
    636     Example of the header for a \protect\ifile{coordinates.bdy} file} 
     633  \caption[Header for a \textit{coordinates.bdy.nc} file]{ 
     634    Example of the header for a \textit{coordinates.bdy.nc} file} 
    637635  \label{fig:LBC_nc_header} 
    638636\end{figure} 
     
    684682\texttt{<constituent>\_z1} and \texttt{<constituent>\_z2} for the real and imaginary parts of 
    685683SSH, respectively, are expected to be available in file 
    686 \ifile{<input>\_grid\_T}, variables \texttt{<constituent>\_u1} and 
     684\textit{<input>\_grid\_T.nc}, variables \texttt{<constituent>\_u1} and 
    687685\texttt{<constituent>\_u2} for the real and imaginary parts of u, respectively, in file 
    688 \ifile{<input>\_grid\_U}, and \texttt{<constituent>\_v1} and 
     686\textit{<input>\_grid\_U.nc}, and \texttt{<constituent>\_v1} and 
    689687\texttt{<constituent>\_v2} for the real and imaginary parts of v, respectively, in file 
    690 \ifile{<input>\_grid\_V}; when data along open boundary segments is used, 
     688\textit{<input>\_grid\_V.nc}; when data along open boundary segments is used, 
    691689variables \texttt{z1} and \texttt{z2} (real and imaginary part of SSH) are 
    692 expected to be available in file \ifile{<input><constituent>\_grid\_T}, 
     690expected to be available in file \textit{<input><constituent>\_grid\_T.nc}, 
    693691variables \texttt{u1} and \texttt{u2} (real and imaginary part of u) in file 
    694 \ifile{<input><constituent>\_grid\_U}, and variables \texttt{v1} and \texttt{v2} 
     692\textit{<input><constituent>\_grid\_U.nc}, and variables \texttt{v1} and \texttt{v2} 
    695693(real and imaginary part of v) in file 
    696 \ifile{<input><constituent>\_grid\_V}.\par 
     694\textit{<input><constituent>\_grid\_V.nc}.\par 
    697695 
    698696Note that the barotropic velocity components are assumed to be defined 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_LDF.tex

    r14113 r14644  
    55\chapter{Lateral Ocean Physics (LDF)} 
    66\label{chap:LDF} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_OBS.tex

    r14200 r14644  
    1414%    {\em --\texttt{"}--} & {\em ... K. Mogensen, A. Vidard, A. Weaver} & {\em ---\texttt{"}---}  \\ 
    1515%\end{tabular} 
    16  
    17 \thispagestyle{plain} 
    1816 
    1917\chaptertoc 
     
    420418 
    421419To use Sea Level Anomaly (SLA) data the mean dynamic topography (MDT) must be provided in a separate file defined on 
    422 the model grid called \ifile{slaReferenceLevel}. 
     420the model grid called \textit{slaReferenceLevel.nc}. 
    423421The MDT is required in order to produce the model equivalent sea level anomaly from the model sea surface height. 
    424422Below is an example header for this file (on the ORCA025 grid). 
     
    915913 
    916914\begin{listing} 
    917 %  \nlst{namsao} 
    918915  \begin{forlines} 
    919916!---------------------------------------------------------------------- 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_SBC.tex

    r14200 r14644  
    55\chapter{Surface Boundary Condition (SBC, SAS, ISF, ICB, TDE)} 
    66\label{chap:SBC} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
     
    1715    \hline 
    1816    {\em  next} & {\em Simon M{\" u}ller} & {\em Update of \autoref{sec:SBC_TDE}; revision of \autoref{subsec:SBC_fwb}}\\[2mm] 
     17    {\em  next} & {\em Pierre Mathiot} & {\em update of the ice shelf section (2019 developments)}\\[2mm]   
    1918    {\em   4.0} & {\em ...} & {\em ...} \\ 
    2019    {\em   3.6} & {\em ...} & {\em ...} \\ 
     
    7473  (\np[=0..3]{nn_ice}{nn\_ice}), 
    7574\item the addition of river runoffs as surface freshwater fluxes or lateral inflow (\np[=.true.]{ln_rnf}{ln\_rnf}), 
    76 \item the addition of ice-shelf melting as lateral inflow (parameterisation) or 
    77   as fluxes applied at the land-ice ocean interface (\np[=.true.]{ln_isf}{ln\_isf}), 
    7875\item the addition of a freshwater flux adjustment in order to avoid a mean sea-level drift 
    7976  (\np[=0..2]{nn_fwb}{nn\_fwb}), 
     
    9996One of these is modification by icebergs (see \autoref{sec:SBC_ICB_icebergs}), 
    10097which act as drifting sources of fresh water. 
    101 Another example of modification is that due to the ice shelf melting/freezing (see \autoref{sec:SBC_isf}), 
    102 which provides additional sources of fresh water. 
    10398 
    10499%% ================================================================================================= 
     
    646641parameters. It is therefore recommended to chose version 3.6 over 3. 
    647642 
    648 \subsection{Cool-skin and warm-layer parametrizations} 
    649 %\subsection[Cool-skin and warm-layer parameterizations (\forcode{ln_skin_cs} \& \forcode{ln_skin_wl})]{Cool-skin and warm-layer parameterizations (\protect\np{ln_skin_cs}{ln\_skin\_cs} \& \np{ln_skin_wl}{ln\_skin\_wl})} 
     643\subsection[Cool-skin and warm-layer parameterizations (   \forcode{ln_skin_cs}               \& \forcode{ln_skin_wl}              )] 
     644           {Cool-skin and warm-layer parameterizations (\protect\np{ln_skin_cs}{ln\_skin\_cs} \&      \np{ln_skin_wl}{ln\_skin\_wl})} 
    650645\label{subsec:SBC_skin} 
    651646 
     
    979974  ocean tide model}: Mf, Mm, Ssa, Mtm, Msf, Msqm, Sa, K1, O1, P1, Q1, J1, S1, 
    980975M2, S2, N2, K2, nu2, mu2, 2N2, L2, T2, eps2, lam2, R2, M3, MKS2, MN4, MS4, M4, 
    981 N4, S4, M6, and M8; see file \hf{tide} and \mdl{tide\_mod} for further 
    982 information and references\footnote{As a legacy option \np{ln_tide_var} can be 
     976N4, S4, M6, and M8; see file \textit{tide.h90} and \mdl{tide\_mod} for further 
     977information and references\footnote{As a legacy option \np{ln_tide_var}{ln\_tide\_var} can be 
    983978  set to \forcode{0}, in which case the 19 tidal constituents (M2, N2, 2N2, S2, 
    984979  K2, K1, O1, Q1, P1, M4, Mf, Mm, Msqm, Mtm, S1, MU2, NU2, L2, and T2; see file 
    985   \hf{tide}) and associated parameters that have been available in NEMO version 
     980  \textit{tide.h90}) and associated parameters that have been available in NEMO version 
    986981  4.0 and earlier are available}. Constituents to be included in the tidal forcing 
    987982(surface and lateral boundaries) are selected by enumerating their respective 
     
    10131008potential). The tidal tilt factor $\gamma = 1 + k - h$ includes the 
    10141009Love numbers $k$ and $h$ \citep{love_PRSL09}; this factor is 
    1015 configurable using \np{rn_tide_gamma} (default value 0.7). Optionally, 
     1010configurable using \np{rn_tide_gamma}{rn\_tide\_gamma} (default value 0.7). Optionally, 
    10161011when \np[=.true.]{ln_tide_ramp}{ln\_tide\_ramp}, the equilibrium tidal 
    10171012forcing can be ramped up linearly from zero during the initial 
     
    11831178 
    11841179%% ================================================================================================= 
    1185 \section[Ice shelf melting (\textit{sbcisf.F90})]{Ice shelf melting (\protect\mdl{sbcisf})} 
     1180\section[Ice Shelf (ISF)]{Interaction with ice shelves (ISF)} 
    11861181\label{sec:SBC_isf} 
    11871182 
    11881183\begin{listing} 
    1189   \nlst{namsbc_isf} 
    1190   \caption{\forcode{&namsbc_isf}} 
    1191   \label{lst:namsbc_isf} 
     1184  \nlst{namisf} 
     1185  \caption{\forcode{&namisf}} 
     1186  \label{lst:namisf} 
    11921187\end{listing} 
    11931188 
    1194 The namelist variable in \nam{sbc}{sbc}, \np{nn_isf}{nn\_isf}, controls the ice shelf representation. 
    1195 Description and result of sensitivity test to \np{nn_isf}{nn\_isf} are presented in \citet{mathiot.jenkins.ea_GMD17}. 
    1196 The different options are illustrated in \autoref{fig:SBC_isf}. 
    1197  
     1189The namelist variable in \nam{isf}{isf}, \np{ln_isf}{ln\_isf}, controls the ice shelf interactions: 
    11981190\begin{description} 
    1199   \item [{\np[=1]{nn_isf}{nn\_isf}}]: The ice shelf cavity is represented (\np[=.true.]{ln_isfcav}{ln\_isfcav} needed). 
    1200   The fwf and heat flux are depending of the local water properties. 
    1201  
    1202   Two different bulk formulae are available: 
     1191   \item $\bullet$ representation of the ice shelf/ocean melting/freezing for opened cavity (cav, \np{ln_isfcav_mlt}{ln\_isfcav\_mlt}). 
     1192   \item $\bullet$ parametrisation of the ice shelf/ocean melting/freezing for closed cavities (par, \np{ln_isfpar_mlt}{ln\_isfpar\_mlt}). 
     1193   \item $\bullet$ coupling with an ice sheet model (\np{ln_isfcpl}{ln\_isfcpl}). 
     1194\end{description} 
     1195 
     1196  \subsection{Ocean/Ice shelf fluxes in opened cavities} 
     1197 
     1198     \np{ln_isfcav_mlt}{ln\_isfcav\_mlt}\forcode{ = .true.} activates the ocean/ice shelf thermodynamics interactions at the ice shelf/ocean interface.  
     1199     If \np{ln_isfcav_mlt}{ln\_isfcav\_mlt}\forcode{ = .false.}, thermodynamics interactions are desctivated but the ocean dynamics inside the cavity is still active. 
     1200     The logical flag \np{ln_isfcav}{ln\_isfcav} control whether or not the ice shelf cavities are closed. \np{ln_isfcav}{ln\_isfcav} is not defined in the namelist but in the domcfg.nc input file.\\ 
     1201 
     1202     3 options are available to represent to ice-shelf/ocean fluxes at the interface: 
     1203     \begin{description} 
     1204        \item[\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = 'spe'}]: 
     1205        The fresh water flux is specified by a forcing fields \np{sn_isfcav_fwf}{sn\_isfcav\_fwf}. Convention of the input file is: positive toward the ocean (i.e. positive for melting and negative for freezing). 
     1206        The latent heat fluxes is derived from the fresh water flux.  
     1207        The heat content flux is derived from the fwf flux assuming a temperature set to the freezing point in the top boundary layer (\np{rn_htbl}{rn\_htbl}) 
     1208 
     1209        \item[\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = 'oasis'}]: 
     1210        The \forcode{'oasis'} is a prototype of what could be a method to spread precipitation on Antarctic ice sheet as ice shelf melt inside the cavity when a coupled model Atmosphere/Ocean is used.  
     1211        It has not been tested and therefore the model will stop if you try to use it.  
     1212        Actions will be undertake in 2020 to build a comprehensive interface to do so for Greenland, Antarctic and ice shelf (cav), ice shelf (par), icebergs, subglacial runoff and runoff. 
     1213 
     1214        \item[\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '2eq'}]: 
     1215        The heat flux and the fresh water flux (negative for melting) resulting from ice shelf melting/freezing are parameterized following \citet{Grosfeld1997}.  
     1216        This formulation is based on a balance between the vertical diffusive heat flux across the ocean top boundary layer (\autoref{eq:ISOMIP1})  
     1217        and the latent heat due to melting/freezing (\autoref{eq:ISOMIP2}): 
     1218 
     1219        \begin{equation} 
     1220        \label{eq:ISOMIP1} 
     1221        \mathcal{Q}_h = \rho c_p \gamma (T_w - T_f) 
     1222        \end{equation} 
     1223        \begin{equation} 
     1224        \label{eq:ISOMIP2} 
     1225        q = \frac{-\mathcal{Q}_h}{L_f} 
     1226        \end{equation} 
     1227         
     1228        where $\mathcal{Q}_h$($W.m^{-2}$) is the heat flux,q($kg.s^{-1}m^{-2}$) the fresh-water flux,  
     1229        $L_f$ the specific latent heat, $T_w$ the temperature averaged over a boundary layer below the ice shelf (explained below),  
     1230        $T_f$ the freezing point using  the  pressure  at  the  ice  shelf  base  and  the  salinity  of the water in the boundary layer,  
     1231        and $\gamma$ the thermal exchange coefficient. 
     1232 
     1233        \item[\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '3eq'}]: 
     1234        For realistic studies, the heat and freshwater fluxes are parameterized following \citep{Jenkins2001}. This formulation is based on three equations:  
     1235        a balance between the vertical diffusive heat flux across the boundary layer  
     1236        , the latent heat due to melting/freezing of ice and the vertical diffusive heat flux into the ice shelf (\autoref{eq:3eq1});  
     1237        a balance between the vertical diffusive salt flux across the boundary layer and the salt source or sink represented by the melting/freezing (\autoref{eq:3eq2});  
     1238        and a linear equation for the freezing temperature of sea water (\autoref{eq:3eq3}, detailed of the linearisation coefficient in \citet{AsayDavis2016}): 
     1239 
     1240        \begin{equation} 
     1241        \label{eq:3eq1} 
     1242        c_p \rho \gamma_T (T_w-T_b) = -L_f q - \rho_i c_{p,i} \kappa \frac{T_s - T_b}{h_{isf}} 
     1243        \end{equation} 
     1244        \begin{equation} 
     1245        \label{eq:3eq2} 
     1246        \rho \gamma_S (S_w - S_b) = (S_i - S_b)q 
     1247        \end{equation} 
     1248        \begin{equation} 
     1249        \label{eq:3eq3} 
     1250        T_b = \lambda_1 S_b + \lambda_2 +\lambda_3 z_{isf} 
     1251        \end{equation} 
     1252 
     1253        where $T_b$ is the temperature at the interface, $S_b$ the salinity at the interface, $\gamma_T$ and $\gamma_S$ the exchange coefficients for temperature and salt, respectively,  
     1254        $S_i$ the salinity of the ice (assumed to be 0), $h_{isf}$ the ice shelf thickness, $z_{isf}$ the ice shelf draft, $\rho_i$ the density of the iceshelf,  
     1255        $c_{p,i}$ the specific heat capacity of the ice, $\kappa$ the thermal diffusivity of the ice  
     1256        and $T_s$ the atmospheric surface temperature (at the ice/air interface, assumed to be -20C).  
     1257        The Liquidus slope ($\lambda_1$), the liquidus intercept ($\lambda_2$) and the Liquidus pressure coefficient ($\lambda_3$)  
     1258        for TEOS80 and TEOS10 are described in \citep{AsayDavis2016} and in \citep{Jourdain2017}. 
     1259        The linear system formed by \autoref{eq:3eq1}, \autoref{eq:3eq2} and the linearised equation for the freezing temperature of sea water (\autoref{eq:3eq3}) can be solved for $S_b$ or $T_b$.  
     1260        Afterward, the freshwater flux ($q$) and the heat flux ($\mathcal{Q}_h$) can be computed. 
     1261 
     1262     \end{description} 
     1263 
     1264     \begin{table}[h] 
     1265        \centering 
     1266        \caption{Description of the parameters hard coded into the ISF module} 
     1267        \label{tab:isf} 
     1268        \begin{tabular}{|l|l|l|l|} 
     1269        \hline 
     1270        Symbol    & Description               & Value              & Unit               \\ 
     1271        \hline 
     1272        $C_p$     & Ocean specific heat       & 3992               & $J.kg^{-1}.K^{-1}$ \\ 
     1273        $L_f$     & Ice latent heat of fusion & $3.34 \times 10^5$ & $J.kg^{-1}$        \\ 
     1274        $C_{p,i}$ & Ice specific heat         & 2000               & $J.kg^{-1}.K^{-1}$ \\ 
     1275        $\kappa$  & Heat diffusivity          & $1.54 \times 10^{-6}$& $m^2.s^{-1}$     \\ 
     1276        $\rho_i$  & Ice density               & 920                & $kg.m^3$           \\ 
     1277        \hline 
     1278        \end{tabular} 
     1279     \end{table} 
     1280 
     1281     Temperature and salinity used to compute the fluxes in \autoref{eq:ISOMIP1}, \autoref{eq:3eq1} and \autoref{eq:3eq2} are the average temperature in the top boundary layer \citep{losch_JGR08}.  
     1282     Its thickness is defined by \np{rn_htbl}{rn\_htbl}. 
     1283     The fluxes and friction velocity are computed using the mean temperature, salinity and velocity in the first \np{rn_htbl}{rn\_htbl} m. 
     1284     Then, the fluxes are spread over the same thickness (ie over one or several cells). 
     1285     If \np{rn_htbl}{rn\_htbl} is larger than top $e_{3}t$, there is no more direct feedback between the freezing point at the interface and the top cell temperature. 
     1286     This can lead to super-cool temperature in the top cell under melting condition. 
     1287     If \np{rn_htbl}{rn\_htbl} smaller than top $e_{3}t$, the top boundary layer thickness is set to the top cell thickness.\\ 
     1288 
     1289     Each melt formula (\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '3eq'} or \np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '2eq'}) depends on an exchange coeficient ($\Gamma^{T,S}$) between the ocean and the ice. 
     1290     Below, the exchange coeficient $\Gamma^{T}$ and $\Gamma^{S}$ are respectively defined by \np{rn_gammat0}{rn\_gammat0} and \np{rn_gammas0}{rn\_gammas0}.  
     1291     There are 3 different ways to compute the exchange velocity: 
     1292 
     1293     \begin{description} 
     1294        \item[\np{cn_gammablk}{cn\_gammablk}\forcode{='spe'}]: 
     1295        The salt and heat exchange coefficients are constant and defined by: 
     1296\[ 
     1297\gamma^{T} = \Gamma^{T} 
     1298\] 
     1299\[ 
     1300\gamma^{S} = \Gamma^{S} 
     1301\]  
     1302        This is the recommended formulation for ISOMIP. 
     1303 
     1304   \item[\np{cn_gammablk}{cn\_gammablk}\forcode{='vel'}]: 
     1305        The salt and heat exchange coefficients are velocity dependent and defined as 
     1306\[ 
     1307\gamma^{T} = \Gamma^{T} \times u_{*}  
     1308\] 
     1309\[ 
     1310\gamma^{S} = \Gamma^{S} \times u_{*} 
     1311\] 
     1312        where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn_htbl}{rn\_htbl} meters). 
     1313        See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application and ISOMIP+/MISOMIP configuration. 
     1314 
     1315   \item[\np{cn_gammablk}{cn\_gammablk}\forcode{'vel\_stab'}]: 
     1316        The salt and heat exchange coefficients are velocity and stability dependent and defined as: 
     1317\[ 
     1318\gamma^{T,S} = \frac{u_{*}}{\Gamma_{Turb} + \Gamma^{T,S}_{Mole}}  
     1319\] 
     1320        where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn_tbl}{rn\_htbl} meters), 
     1321        $\Gamma_{Turb}$ the contribution of the ocean stability and 
     1322        $\Gamma^{T,S}_{Mole}$ the contribution of the molecular diffusion. 
     1323        See \citet{holland.jenkins_JPO99} for all the details on this formulation.  
     1324        This formulation has not been extensively tested in NEMO (not recommended). 
     1325     \end{description} 
     1326 
     1327\subsection{Ocean/Ice shelf fluxes in parametrised cavities} 
    12031328 
    12041329  \begin{description} 
    1205   \item [{\np[=1]{nn_isfblk}{nn\_isfblk}}]: The melt rate is based on a balance between the upward ocean heat flux and 
    1206     the latent heat flux at the ice shelf base. A complete description is available in \citet{hunter_trpt06}. 
    1207   \item [{\np[=2]{nn_isfblk}{nn\_isfblk}}]: The melt rate and the heat flux are based on a 3 equations formulation 
    1208     (a heat flux budget at the ice base, a salt flux budget at the ice base and a linearised freezing point temperature equation). 
    1209     A complete description is available in \citet{jenkins_JGR91}. 
     1330 
     1331     \item[\np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'bg03'}]: 
     1332     The ice shelf cavities are not represented. 
     1333     The fwf and heat flux are computed using the \citet{beckmann.goosse_OM03} parameterisation of isf melting. 
     1334     The fluxes are distributed along the ice shelf edge between the depth of the average grounding line (GL) 
     1335     (\np{sn_isfpar_zmax}{sn\_isfpar\_zmax}) and the base of the ice shelf along the calving front 
     1336     (\np{sn_isfpar_zmin}{sn\_isfpar\_zmin}) as in (\np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'spe'}). 
     1337     The effective melting length (\np{sn_isfpar_Leff}{sn\_isfpar\_Leff}) is read from a file. 
     1338     This parametrisation has not been tested since a while and based on \citet{Favier2019},  
     1339     this parametrisation should probably not be used. 
     1340 
     1341     \item[\np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'spe'}]: 
     1342     The ice shelf cavity is not represented. 
     1343     The fwf (\np{sn_isfpar_fwf}{sn\_isfpar\_fwf}) is prescribed and distributed along the ice shelf edge between 
     1344     the depth of the average grounding line (GL) (\np{sn_isfpar_zmax}{sn\_isfpar\_zmax}) and 
     1345     the base of the ice shelf along the calving front (\np{sn_isfpar_zmin}{sn\_isfpar\_min}). Convention of the input file is positive toward the ocean (i.e. positive for melting and negative for freezing). 
     1346     The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 
     1347 
     1348     \item[\np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'oasis'}]: 
     1349     The \forcode{'oasis'} is a prototype of what could be a method to spread precipitation on Antarctic ice sheet as ice shelf melt inside the cavity when a coupled model Atmosphere/Ocean is used.  
     1350     It has not been tested and therefore the model will stop if you try to use it.  
     1351     Action will be undertake in 2020 to build a comprehensive interface to do so for Greenland, Antarctic and ice shelf (cav), ice shelf (par), icebergs, subglacial runoff and runoff. 
     1352 
    12101353  \end{description} 
    12111354 
    1212   Temperature and salinity used to compute the melt are the average temperature in the top boundary layer \citet{losch_JGR08}. 
    1213   Its thickness is defined by \np{rn_hisf_tbl}{rn\_hisf\_tbl}. 
    1214   The fluxes and friction velocity are computed using the mean temperature, salinity and velocity in the the first \np{rn_hisf_tbl}{rn\_hisf\_tbl} m. 
    1215   Then, the fluxes are spread over the same thickness (ie over one or several cells). 
    1216   If \np{rn_hisf_tbl}{rn\_hisf\_tbl} larger than top $e_{3}t$, there is no more feedback between the freezing point at the interface and the the top cell temperature. 
    1217   This can lead to super-cool temperature in the top cell under melting condition. 
    1218   If \np{rn_hisf_tbl}{rn\_hisf\_tbl} smaller than top $e_{3}t$, the top boundary layer thickness is set to the top cell thickness.\\ 
    1219  
    1220   Each melt bulk formula depends on a exchange coeficient ($\Gamma^{T,S}$) between the ocean and the ice. 
    1221   There are 3 different ways to compute the exchange coeficient: 
    1222   \begin{description} 
    1223   \item [{\np[=0]{nn_gammablk}{nn\_gammablk}}]: The salt and heat exchange coefficients are constant and defined by \np{rn_gammas0}{rn\_gammas0} and \np{rn_gammat0}{rn\_gammat0}. 
    1224     \begin{gather*} 
    1225        % \label{eq:SBC_isf_gamma_iso} 
    1226       \gamma^{T} = rn\_gammat0 \\ 
    1227       \gamma^{S} = rn\_gammas0 
    1228     \end{gather*} 
    1229     This is the recommended formulation for ISOMIP. 
    1230   \item [{\np[=1]{nn_gammablk}{nn\_gammablk}}]: The salt and heat exchange coefficients are velocity dependent and defined as 
    1231     \begin{gather*} 
    1232       \gamma^{T} = rn\_gammat0 \times u_{*} \\ 
    1233       \gamma^{S} = rn\_gammas0 \times u_{*} 
    1234     \end{gather*} 
    1235     where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn_hisf_tbl}{rn\_hisf\_tbl} meters). 
    1236     See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application. 
    1237   \item [{\np[=2]{nn_gammablk}{nn\_gammablk}}]: The salt and heat exchange coefficients are velocity and stability dependent and defined as: 
    1238     \[ 
    1239       \gamma^{T,S} = \frac{u_{*}}{\Gamma_{Turb} + \Gamma^{T,S}_{Mole}} 
    1240     \] 
    1241     where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn_hisf_tbl}{rn\_hisf\_tbl} meters), 
    1242     $\Gamma_{Turb}$ the contribution of the ocean stability and 
    1243     $\Gamma^{T,S}_{Mole}$ the contribution of the molecular diffusion. 
    1244     See \citet{holland.jenkins_JPO99} for all the details on this formulation. 
    1245     This formulation has not been extensively tested in \NEMO\ (not recommended). 
    1246   \end{description} 
    1247 \item [{\np[=2]{nn_isf}{nn\_isf}}]: The ice shelf cavity is not represented. 
    1248   The fwf and heat flux are computed using the \citet{beckmann.goosse_OM03} parameterisation of isf melting. 
    1249   The fluxes are distributed along the ice shelf edge between the depth of the average grounding line (GL) 
    1250   (\np{sn_depmax_isf}{sn\_depmax\_isf}) and the base of the ice shelf along the calving front 
    1251   (\np{sn_depmin_isf}{sn\_depmin\_isf}) as in (\np[=3]{nn_isf}{nn\_isf}). 
    1252   The effective melting length (\np{sn_Leff_isf}{sn\_Leff\_isf}) is read from a file. 
    1253 \item [{\np[=3]{nn_isf}{nn\_isf}}]: The ice shelf cavity is not represented. 
    1254   The fwf (\np{sn_rnfisf}{sn\_rnfisf}) is prescribed and distributed along the ice shelf edge between 
    1255   the depth of the average grounding line (GL) (\np{sn_depmax_isf}{sn\_depmax\_isf}) and 
    1256   the base of the ice shelf along the calving front (\np{sn_depmin_isf}{sn\_depmin\_isf}). 
    1257   The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 
    1258 \item [{\np[=4]{nn_isf}{nn\_isf}}]: The ice shelf cavity is opened (\np[=.true.]{ln_isfcav}{ln\_isfcav} needed). 
    1259   However, the fwf is not computed but specified from file \np{sn_fwfisf}{sn\_fwfisf}). 
    1260   The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 
    1261   As in \np[=1]{nn_isf}{nn\_isf}, the fluxes are spread over the top boundary layer thickness (\np{rn_hisf_tbl}{rn\_hisf\_tbl}) 
    1262 \end{description} 
    1263  
    1264 $\bullet$ \np[=1]{nn_isf}{nn\_isf} and \np[=2]{nn_isf}{nn\_isf} compute a melt rate based on 
     1355\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '2eq'}, \np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = '3eq'} and \np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'bg03'} compute a melt rate based on 
    12651356the water mass properties, ocean velocities and depth. 
    1266 This flux is thus highly dependent of the model resolution (horizontal and vertical), 
    1267 realism of the water masses onto the shelf ...\\ 
    1268  
    1269 $\bullet$ \np[=3]{nn_isf}{nn\_isf} and \np[=4]{nn_isf}{nn\_isf} read the melt rate from a file. 
     1357The resulting fluxes are thus highly dependent of the model resolution (horizontal and vertical) and  
     1358realism of the water masses onto the shelf.\\ 
     1359 
     1360\np{cn_isfcav_mlt}{cn\_isfcav\_mlt}\forcode{ = 'spe'} and \np{cn_isfpar_mlt}{cn\_isfpar\_mlt}\forcode{ = 'spe'} read the melt rate from a file. 
    12701361You have total control of the fwf forcing. 
    12711362This can be useful if the water masses on the shelf are not realistic or 
    12721363the resolution (horizontal/vertical) are too coarse to have realistic melting or 
    1273 for studies where you need to control your heat and fw input.\\ 
    1274  
    1275 The ice shelf melt is implemented as a volume flux as for the runoff. 
    1276 The fw addition due to the ice shelf melting is, at each relevant depth level, added to 
    1277 the horizontal divergence (\textit{hdivn}) in the subroutine \rou{sbc\_isf\_div}, called from \mdl{divhor}. 
    1278 See \autoref{sec:SBC_rnf} for all the details about the divergence correction. 
     1364for studies where you need to control your heat and fw input.  
     1365However, if your forcing is not consistent with the dynamics below you can reach unrealistic low water temperature.\\ 
     1366 
     1367The ice shelf fwf is implemented as a volume flux as for the runoff. 
     1368The fwf addition due to the ice shelf melting is, at each relevant depth level, added to 
     1369the horizontal divergence (\textit{hdivn}) in the subroutine \rou{isf\_hdiv}, called from \mdl{divhor}. 
     1370See the runoff section \autoref{sec:SBC_rnf} for all the details about the divergence correction.\\ 
     1371 
     1372Description and result of sensitivity tests to \np{ln_isfcav_mlt}{ln\_isfcav\_mlt} and \np{ln_isfpar_mlt}{ln\_isfpar\_mlt} are presented in \citet{mathiot.jenkins.ea_GMD17}.  
     1373The different options are illustrated in \autoref{fig:ISF}. 
    12791374 
    12801375\begin{figure}[!t] 
    12811376  \centering 
    1282   \includegraphics[width=0.66\textwidth]{SBC_isf} 
     1377  \includegraphics[width=0.66\textwidth]{SBC_isf_v4.2} 
    12831378  \caption[Ice shelf location and fresh water flux definition]{ 
    12841379    Illustration of the location where the fwf is injected and 
    1285     whether or not the fwf is interactif or not depending of \protect\np{nn_isf}{nn\_isf}.} 
    1286   \label{fig:SBC_isf} 
     1380    whether or not the fwf is interactive or not.} 
     1381  \label{fig:ISF} 
    12871382\end{figure} 
    12881383 
    1289 %% ================================================================================================= 
    1290 \section{Ice sheet coupling} 
    1291 \label{sec:SBC_iscpl} 
    1292  
    1293 \begin{listing} 
    1294   \nlst{namsbc_iscpl} 
    1295   \caption{\forcode{&namsbc_iscpl}} 
    1296   \label{lst:namsbc_iscpl} 
    1297 \end{listing} 
     1384\subsection{Available outputs} 
     1385The following outputs are availables via XIOS: 
     1386\begin{description} 
     1387   \item[for parametrised cavities]: 
     1388      \begin{xmllines} 
     1389 <field id="isftfrz_par"     long_name="freezing point temperature in the parametrization boundary layer" unit="degC"     /> 
     1390 <field id="fwfisf_par"      long_name="Ice shelf melt rate"                           unit="kg/m2/s"  /> 
     1391 <field id="qoceisf_par"     long_name="Ice shelf ocean  heat flux"                    unit="W/m2"     /> 
     1392 <field id="qlatisf_par"     long_name="Ice shelf latent heat flux"                    unit="W/m2"     /> 
     1393 <field id="qhcisf_par"      long_name="Ice shelf heat content flux of injected water" unit="W/m2"     /> 
     1394 <field id="fwfisf3d_par"    long_name="Ice shelf melt rate"                           unit="kg/m2/s"  grid_ref="grid_T_3D" /> 
     1395 <field id="qoceisf3d_par"   long_name="Ice shelf ocean  heat flux"                    unit="W/m2"     grid_ref="grid_T_3D" /> 
     1396 <field id="qlatisf3d_par"   long_name="Ice shelf latent heat flux"                    unit="W/m2"     grid_ref="grid_T_3D" /> 
     1397 <field id="qhcisf3d_par"    long_name="Ice shelf heat content flux of injected water" unit="W/m2"     grid_ref="grid_T_3D" /> 
     1398 <field id="ttbl_par"        long_name="temperature in the parametrisation boundary layer" unit="degC" /> 
     1399 <field id="isfthermald_par" long_name="thermal driving of ice shelf melting"          unit="degC"     /> 
     1400      \end{xmllines} 
     1401   \item[for open cavities]: 
     1402      \begin{xmllines} 
     1403 <field id="isftfrz_cav"     long_name="freezing point temperature at ocean/isf interface"                unit="degC"     /> 
     1404 <field id="fwfisf_cav"      long_name="Ice shelf melt rate"                           unit="kg/m2/s"  /> 
     1405 <field id="qoceisf_cav"     long_name="Ice shelf ocean  heat flux"                    unit="W/m2"     /> 
     1406 <field id="qlatisf_cav"     long_name="Ice shelf latent heat flux"                    unit="W/m2"     /> 
     1407 <field id="qhcisf_cav"      long_name="Ice shelf heat content flux of injected water" unit="W/m2"     /> 
     1408 <field id="fwfisf3d_cav"    long_name="Ice shelf melt rate"                           unit="kg/m2/s"  grid_ref="grid_T_3D" /> 
     1409 <field id="qoceisf3d_cav"   long_name="Ice shelf ocean  heat flux"                    unit="W/m2"     grid_ref="grid_T_3D" /> 
     1410 <field id="qlatisf3d_cav"   long_name="Ice shelf latent heat flux"                    unit="W/m2"     grid_ref="grid_T_3D" /> 
     1411 <field id="qhcisf3d_cav"    long_name="Ice shelf heat content flux of injected water" unit="W/m2"     grid_ref="grid_T_3D" /> 
     1412 <field id="ttbl_cav"        long_name="temperature in Losch tbl"                      unit="degC"     /> 
     1413 <field id="isfthermald_cav" long_name="thermal driving of ice shelf melting"          unit="degC"     /> 
     1414 <field id="isfgammat"       long_name="Ice shelf heat-transfert velocity"             unit="m/s"      /> 
     1415 <field id="isfgammas"       long_name="Ice shelf salt-transfert velocity"             unit="m/s"      /> 
     1416 <field id="stbl"            long_name="salinity in the Losh tbl"                      unit="1e-3"     /> 
     1417 <field id="utbl"            long_name="zonal current in the Losh tbl at T point"      unit="m/s"      /> 
     1418 <field id="vtbl"            long_name="merid current in the Losh tbl at T point"      unit="m/s"      /> 
     1419 <field id="isfustar"        long_name="ustar at T point used in ice shelf melting"    unit="m/s"      /> 
     1420 <field id="qconisf"         long_name="Conductive heat flux through the ice shelf"    unit="W/m2"     /> 
     1421      \end{xmllines} 
     1422\end{description} 
     1423 
     1424%% ================================================================================================= 
     1425\subsection{Ice sheet coupling} 
     1426\label{subsec:ISF_iscpl} 
    12981427 
    12991428Ice sheet/ocean coupling is done through file exchange at the restart step. 
    1300 At each restart step: 
    1301  
    1302 \begin{enumerate} 
    1303 \item the ice sheet model send a new bathymetry and ice shelf draft netcdf file. 
    1304 \item a new domcfg.nc file is built using the DOMAINcfg tools. 
    1305 \item \NEMO\ run for a specific period and output the average melt rate over the period. 
    1306 \item the ice sheet model run using the melt rate outputed in step 4. 
    1307 \item go back to 1. 
    1308 \end{enumerate} 
    1309  
    1310 If \np[=.true.]{ln_iscpl}{ln\_iscpl}, the isf draft is assume to be different at each restart step with 
     1429At each restart step, the procedure is this one: 
     1430 
     1431\begin{description} 
     1432\item[Step 1]: the ice sheet model send a new bathymetry and ice shelf draft netcdf file. 
     1433\item[Step 2]: a new domcfg.nc file is built using the DOMAINcfg tools. 
     1434\item[Step 3]: NEMO run for a specific period and output the average melt rate over the period. 
     1435\item[Step 4]: the ice sheet model run using the melt rate outputed in step 3. 
     1436\item[Step 5]: go back to 1. 
     1437\end{description} 
     1438 
     1439If \np{ln_iscpl}{ln\_iscpl}\forcode{ = .true.}, the isf draft is assume to be different at each restart step with 
    13111440potentially some new wet/dry cells due to the ice sheet dynamics/thermodynamics. 
    1312 The wetting and drying scheme applied on the restart is very simple and described below for the 6 different possible cases: 
     1441The wetting and drying scheme, applied on the restart, is very simple. The 6 different possible cases for the tracer and ssh are: 
    13131442 
    13141443\begin{description} 
    1315 \item [Thin a cell down]: T/S/ssh are unchanged and U/V in the top cell are corrected to keep the barotropic transport (bt) constant 
    1316   ($bt_b=bt_n$). 
    1317 \item [Enlarge  a cell]: See case "Thin a cell down" 
    1318 \item [Dry a cell]: mask, T/S, U/V and ssh are set to 0. 
    1319   Furthermore, U/V into the water column are modified to satisfy ($bt_b=bt_n$). 
    1320 \item [Wet a cell]: mask is set to 1, T/S is extrapolated from neighbours, $ssh_n = ssh_b$ and U/V set to 0. 
    1321   If no neighbours, T/S is extrapolated from old top cell value. 
    1322   If no neighbours along i,j and k (both previous test failed), T/S/U/V/ssh and mask are set to 0. 
    1323 \item [Dry a column]: mask, T/S, U/V are set to 0 everywhere in the column and ssh set to 0. 
    1324 \item [Wet a column]: set mask to 1, T/S is extrapolated from neighbours, ssh is extrapolated from neighbours and U/V set to 0. 
    1325   If no neighbour, T/S/U/V and mask set to 0. 
     1444   \item[Thin a cell]: 
     1445   T/S/ssh are unchanged. 
     1446 
     1447   \item[Enlarge  a cell]: 
     1448   See case "Thin a cell down" 
     1449 
     1450   \item[Dry a cell]: 
     1451   Mask, T/S, U/V and ssh are set to 0. 
     1452 
     1453   \item[Wet a cell]:  
     1454   Mask is set to 1, T/S is extrapolated from neighbours, $ssh_n = ssh_b$. 
     1455   If no neighbours, T/S is extrapolated from old top cell value.  
     1456   If no neighbours along i,j and k (both previous tests failed), T/S/ssh and mask are set to 0. 
     1457 
     1458   \item[Dry a column]: 
     1459   mask, T/S and ssh are set to 0. 
     1460 
     1461   \item[Wet a column]: 
     1462   set mask to 1, T/S/ssh are extrapolated from neighbours. 
     1463   If no neighbour, T/S/ssh and mask set to 0. 
    13261464\end{description} 
     1465 
     1466The method described above will strongly affect the barotropic transport under an ice shelf when the geometry change. 
     1467In order to keep the model stable, an adjustment of the dynamics at the initialisation after the coupling step is needed.  
     1468The idea behind this is to keep $\pd[\eta]{t}$ as it should be without change in geometry at the initialisation.  
     1469This will prevent any strong velocity due to large pressure gradient.  
     1470To do so, we correct the horizontal divergence before $\pd[\eta]{t}$ is computed in the first time step.\\ 
    13271471 
    13281472Furthermore, as the before and now fields are not compatible (modification of the geometry), 
     
    13311475The horizontal extrapolation to fill new cell with realistic value is called \np{nn_drown}{nn\_drown} times. 
    13321476It means that if the grounding line retreat by more than \np{nn_drown}{nn\_drown} cells between 2 coupling steps, 
    1333 the code will be unable to fill all the new wet cells properly. 
     1477the code will be unable to fill all the new wet cells properly and the model is likely to blow up at the initialisation. 
    13341478The default number is set up for the MISOMIP idealised experiments. 
    13351479This coupling procedure is able to take into account grounding line and calving front migration. 
    1336 However, it is a non-conservative processe. 
     1480However, it is a non-conservative proccess.  
    13371481This could lead to a trend in heat/salt content and volume.\\ 
    13381482 
    13391483In order to remove the trend and keep the conservation level as close to 0 as possible, 
    1340 a simple conservation scheme is available with \np[=.true.]{ln_hsb}{ln\_hsb}. 
    1341 The heat/salt/vol. gain/loss is diagnosed, as well as the location. 
    1342 A correction increment is computed and apply each time step during the next \np{rn_fiscpl}{rn\_fiscpl} time steps. 
    1343 For safety, it is advised to set \np{rn_fiscpl}{rn\_fiscpl} equal to the coupling period (smallest increment possible). 
    1344 The corrective increment is apply into the cell itself (if it is a wet cell), the neigbouring cells or the closest wet cell (if the cell is now dry). 
     1484a simple conservation scheme is available with \np{ln_isfcpl_cons}{ln\_isfcpl\_cons}\forcode{ = .true.}. 
     1485The heat/salt/vol. gain/loss are diagnosed, as well as the location. 
     1486A correction increment is computed and applied each time step during the model run. 
     1487The corrective increment are applied into the cells itself (if it is a wet cell), the neigbouring cells or the closest wet cell (if the cell is now dry). 
    13451488 
    13461489%% ================================================================================================= 
     
    13901533which are assumed to propagate with their larger parent and thus delay fluxing into the ocean. 
    13911534Melt water (and other variables on the configuration grid) are written into the main \NEMO\ model output files. 
     1535 
     1536By default, iceberg thermodynamic and dynamic are computed using ocean surface variable (sst, ssu, ssv) and the icebergs are not sensible to the bathymetry (only to land) whatever the iceberg draft.  
     1537\citet{Merino_OM2016} developed an option to use vertical profiles of ocean currents and temperature instead (\np{ln_M2016}{ln\_M2016}). 
     1538Full details on the sensitivity to this parameter in done in \citet{Merino_OM2016}.  
     1539If \np{ln_M2016}{ln\_M2016} activated, \np{ln_icb_grd}{ln\_icb\_grd} activate (or not) an option to prevent thick icebergs to move across shallow bank (ie shallower than the iceberg draft). 
     1540This option need to be used with care as it could required to either change the distribution to prevent generation of icebergs with draft larger than the bathymetry  
     1541or to build a variable \forcode{maxclass} to prevent NEMO filling the icebergs classes too thick for the local bathymetry. 
    13921542 
    13931543Extensive diagnostics can be produced. 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_STO.tex

    r11693 r14644  
    55\chapter{Stochastic Parametrization of EOS (STO)} 
    66\label{chap:STO} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_TRA.tex

    r13476 r14644  
    55\chapter{Ocean Tracers (TRA)} 
    66\label{chap:TRA} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
     
    930928When \np{nn_geoflx}{nn\_geoflx} is set to 2, 
    931929a spatially varying geothermal heat flux is introduced which is provided in 
    932 the \ifile{geothermal\_heating} NetCDF file 
     930the \textit{geothermal\_heating.nc} NetCDF file 
    933931(\autoref{fig:TRA_geothermal}) \citep{emile-geay.madec_OS09}. 
    934932 
     
    11511149\citep{madec.delecluse.ea_JPO96}. 
    11521150 
    1153 For generating \ifile{resto}, 
     1151For generating \textit{resto.nc}, 
    11541152see the documentation for the DMP tools provided with the source code under \path{./tools/DMP_TOOLS}. 
    11551153 
     
    11751173$\gamma$ is initialized as \np{rn_atfp}{rn\_atfp}, its default value is \forcode{10.e-3}. 
    11761174Note that the forcing correction term in the filter is not applied in linear free surface 
    1177 (\jp{ln\_linssh}\forcode{=.true.}) (see \autoref{subsec:TRA_sbc}). 
     1175(\np[=.true.]{ln_linssh}{ln\_linssh}) (see \autoref{subsec:TRA_sbc}). 
    11781176Not also that in constant volume case, the time stepping is performed on $T$, 
    11791177not on its content, $e_{3t}T$. 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r14200 r14644  
    22 
    33\begin{document} 
    4  
    5 %% Custom aliases 
    6 \newcommand{\cf}{\ensuremath{C\kern-0.14em f}} 
    74 
    85\chapter{Vertical Ocean Physics (ZDF)} 
    96\label{chap:ZDF} 
    10  
    11 \thispagestyle{plain} 
    127 
    138\chaptertoc 
     
    10851080  \label{lst:namdrg} 
    10861081\end{listing} 
     1082 
    10871083\begin{listing} 
    10881084  \nlst{namdrg_top} 
     
    10901086  \label{lst:namdrg_top} 
    10911087\end{listing} 
     1088 
    10921089\begin{listing} 
    10931090  \nlst{namdrg_bot} 
     
    11811178These values are assigned in \mdl{zdfdrg}. 
    11821179Note that there is support for local enhancement of these values via an externally defined 2D mask array 
    1183 (\np[=.true.]{ln_boost}{ln\_boost}) given in the \ifile{bfr\_coef} input NetCDF file. 
     1180(\np[=.true.]{ln_boost}{ln\_boost}) given in the \textit{bfr\_coef.nc} input NetCDF file. 
    11841181The mask values should vary from 0 to 1. 
    11851182Locations with a non-zero mask value will have the friction coefficient increased by 
     
    15641561by only a few extra physics choices namely: 
    15651562 
    1566 \begin{verbatim} 
     1563\begin{forlines} 
    15671564     ln_dynldf_OFF = .false. 
    15681565     ln_dynldf_lap = .true. 
     
    15721569        nn_fct_h   =  2 
    15731570        nn_fct_v   =  2 
    1574 \end{verbatim} 
     1571\end{forlines} 
    15751572 
    15761573\noindent which were chosen to provide a slightly more stable and less noisy solution. The 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_cfgs.tex

    r14200 r14644  
    55\chapter{Configurations} 
    66\label{chap:CFGS} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
     
    8583the SI3 model (ORCA-ICE) and possibly with PISCES biogeochemical model (ORCA-ICE-PISCES). 
    8684An appropriate namelist is available in \path{./cfgs/ORCA2_ICE_PISCES/EXPREF/namelist_cfg} for ORCA2. 
    87 The domain of ORCA2 configuration is defined in \ifile{ORCA\_R2\_zps\_domcfg} file, 
     85The domain of ORCA2 configuration is defined in \textit{ORCA\_R2\_zps\_domcfg.nc} file, 
    8886this file is available in tar file on the \NEMO\ community zenodo platform: \\ 
    8987https://doi.org/10.5281/zenodo.2640723 
     
    152150Each of configuration is set through the \textit{domain\_cfg} domain configuration file, 
    153151which sets the grid size and configuration name parameters. 
    154 The \NEMO\ System Team provides only ORCA2 domain input file "\ifile{ORCA\_R2\_zps\_domcfg}" file 
     152The \NEMO\ System Team provides only ORCA2 domain input file "\textit{ORCA\_R2\_zps\_domcfg.nc}" file 
    155153(\autoref{tab:CFGS_ORCA}). 
    156154 
     
    158156  \centering 
    159157  \begin{tabular}{p{4cm} c c c c} 
    160     Horizontal Grid & \jp{ORCA\_index} & \jp{jpiglo} & \jp{jpjglo} \\ 
     158    Horizontal Grid & \texttt{ORCA\_index} & \texttt{jpiglo} & \texttt{jpjglo} \\ 
    161159    \hline \hline 
    162160    % 4   \deg\ &              4   &          92 &          76 \\ 
     
    246244Its horizontal resolution (and thus the size of the domain) is determined by 
    247245setting \np{nn_GYRE}{nn\_GYRE} in \nam{usr_def}{usr\_def}: 
     246 
    248247\begin{align*} 
    249   \jp{jpiglo} = 30 \times \text{\np{nn_GYRE}{nn\_GYRE}} + 2 + 2 \times \text{\np{nn_hls}{nn\_hls}} \\ 
    250   \jp{jpjglo} = 20 \times \text{\np{nn_GYRE}{nn\_GYRE}} + 2 + 2 \times \text{\np{nn_hls}{nn\_hls}} 
     248   jpiglo = 30 \times \text{\np{nn_GYRE}{nn\_GYRE}} + 2 + 2 \times \text{\np{nn_hls}{nn\_hls}} \\ 
     249   jpjglo = 20 \times \text{\np{nn_GYRE}{nn\_GYRE}} + 2 + 2 \times \text{\np{nn_hls}{nn\_hls}} 
    251250\end{align*} 
    252251 
    253252Obviously, the namelist parameters have to be adjusted to the chosen resolution, 
    254253see the Configurations pages on the \NEMO\ web site (\NEMO\ Configurations). 
    255 In the vertical, GYRE uses the default 30 ocean levels (\jp{jpk}\forcode{ = 31}) (\autoref{fig:DOM_zgr_e3}). 
     254In the vertical, GYRE uses the default 30 ocean levels (\forcode{jpk = 31}, \autoref{fig:DOM_zgr_e3}). 
    256255 
    257256\begin{listing} 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_conservation.tex

    r11693 r14644  
    55\chapter{Invariants of the Primitive Equations} 
    66\label{chap:CONS} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_misc.tex

    r14113 r14644  
    66\label{chap:MISC} 
    77 
    8 \thispagestyle{plain} 
    9  
    108\chaptertoc 
    119 
     
    1412{\footnotesize 
    1513  \begin{tabularx}{\textwidth}{l||X|X} 
    16     Release & Author(s) & Modifications \\ 
     14    Release     & Author(s)            & Modifications                      \\ 
    1715    \hline 
    18     {\em   4.0} & {\em ...} & {\em ...} \\ 
    19     {\em   3.6} & {\em ...} & {\em ...} \\ 
    20     {\em   3.4} & {\em ...} & {\em ...} \\ 
    21     {\em <=3.4} & {\em ...} & {\em ...} 
     16    {\em   X.X} & {\em Pierre Mathiot} & {Update of the closed sea section} \\ 
     17    {\em   4.0} & {\em ...           } & {\em ...                         } \\ 
     18    {\em   3.6} & {\em ...           } & {\em ...                         } \\ 
     19    {\em   3.4} & {\em ...           } & {\em ...                         } \\ 
     20    {\em <=3.4} & {\em ...           } & {\em ...                         } 
    2221  \end{tabularx} 
    2322} 
     
    109108\end{figure} 
    110109 
    111 \begin{figure}[!tbp] 
    112   \centering 
    113   \includegraphics[width=0.66\textwidth]{MISC_closea_mask_example} 
    114   \caption[Mask fields for the \protect\mdl{closea} module]{ 
    115     Example of mask fields for the \protect\mdl{closea} module. 
    116     \textit{Left}: a closea\_mask field; 
    117     \textit{Right}: a closea\_mask\_rnf field. 
    118     In this example, if \protect\np{ln_closea}{ln\_closea} is set to \forcode{.true.}, 
    119     the mean freshwater flux over each of the American Great Lakes will be set to zero, 
    120     and the total residual for all the lakes, if negative, will be put into 
    121     the St Laurence Seaway in the area shown.} 
    122   \label{fig:MISC_closea_mask_example} 
    123 \end{figure} 
    124  
    125110%% ================================================================================================= 
    126111\section[Closed seas (\textit{closea.F90})]{Closed seas (\protect\mdl{closea})} 
    127112\label{sec:MISC_closea} 
     113 
     114\begin{listing} 
     115  \nlst{namclo} 
     116  \caption{\forcode{&namclo}} 
     117  \label{lst:namclo} 
     118\end{listing} 
    128119 
    129120Some configurations include inland seas and lakes as ocean 
     
    138129to zero and put the residual flux into the ocean. 
    139130 
    140 Prior to \NEMO\ 4 the locations of inland seas and lakes was set via 
    141 hardcoded indices for various ORCA configurations. From \NEMO\ 4 onwards 
    142 the inland seas and lakes are defined using mask fields in the 
    143 domain configuration file. The options are as follows. 
    144  
    145 \begin{enumerate} 
    146 \item {{\bfseries No ``closea\_mask'' field is included in domain configuration 
    147   file.} In this case the closea module does nothing.} 
    148  
    149 \item {{\bfseries A field called closea\_mask is included in the domain 
    150 configuration file and ln\_closea=.false. in namelist namcfg.} In this 
    151 case the inland seas defined by the closea\_mask field are filled in 
    152 (turned to land points) at run time. That is every point in 
    153 closea\_mask that is nonzero is set to be a land point.} 
    154  
    155 \item {{\bfseries A field called closea\_mask is included in the domain 
    156 configuration file and ln\_closea=.true. in namelist namcfg.} Each 
    157 inland sea or group of inland seas is set to a positive integer value 
    158 in the closea\_mask field (see \autoref{fig:MISC_closea_mask_example} 
    159 for an example). The net surface flux over each inland sea or group of 
     131The inland seas and lakes are defined using mask fields in the 
     132domain configuration file. Special treatment of the closed sea (redistribution of net freshwater or mask those), are defined in \autoref{lst:namclo} and 
     133can be trigger by \np{ln_closea}{ln\_closea}\forcode{=.true.} in namelist namcfg. 
     134 
     135The options available are the following: 
     136\begin{description} 
     137\item[\np{ln_maskcs}{ln\_maskcs}\forcode{ = .true.}] All the closed seas are masked using \textit{mask\_opensea} variable. 
     138\item[\np{ln_maskcs}{ln\_maskcs}\forcode{ = .false.}] The net surface flux over each inland sea or group of 
    160139inland seas is set to zero each timestep and the residual flux is 
    161 distributed over the global ocean (ie. all ocean points where 
    162 closea\_mask is zero).} 
    163  
    164 \item {{\bfseries Fields called closea\_mask and closea\_mask\_rnf are 
    165 included in the domain configuration file and ln\_closea=.true. in 
    166 namelist namcfg.} This option works as for option 3, except that if 
    167 the net surface flux over an inland sea is negative (net 
    168 precipitation) it is put into the ocean at specified runoff points. A 
    169 net positive surface flux (net evaporation) is still spread over the 
    170 global ocean. The mapping from inland seas to runoff points is defined 
    171 by the closea\_mask\_rnf field. Each mapping is defined by a positive 
    172 integer value for the inland sea(s) and the corresponding runoff 
    173 points. An example is given in 
    174 \autoref{fig:MISC_closea_mask_example}. If no mapping is provided for a 
    175 particular inland sea then the residual is spread over the global 
    176 ocean.} 
    177  
    178 \item {{\bfseries Fields called closea\_mask and closea\_mask\_emp are 
    179 included in the domain configuration file and ln\_closea=.true. in 
    180 namelist namcfg.} This option works the same as option 4 except that 
    181 the nonzero net surface flux is sent to the ocean at the specified 
    182 runoff points regardless of whether it is positive or negative. The 
    183 mapping from inland seas to runoff points in this case is defined by 
    184 the closea\_mask\_emp field.} 
    185 \end{enumerate} 
    186  
    187 There is a python routine to create the closea\_mask fields and append 
    188 them to the domain configuration file in the utils/tools/DOMAINcfg directory. 
     140distributed over a target area. 
     141\end{description} 
     142 
     143When \np{ln_maskcs}{ln\_maskcs}\forcode{ = .false.},  
     1443 options are available for the redistribution (set up of these options is done in the tool DOMAINcfg): 
     145\begin{description}[font=$\bullet$ ] 
     146\item[ glo]: The residual flux is redistributed globally. 
     147\item[ emp]: The residual flux is redistributed as emp in a river outflow. 
     148\item[ rnf]: The residual flux is redistributed as rnf in a river outflow if negative. If there is a net evaporation, the residual flux is redistributed globally. 
     149\end{description} 
     150 
     151For each case, 2 masks are needed (\autoref{fig:MISC_closea_mask_example}):  
     152\begin{description} 
     153\item $\bullet$ one describing the 'sources' (ie the closed seas concerned by each options) called \textit{mask\_csglo}, \textit{mask\_csrnf}, \textit{mask\_csemp}.  
     154\item $\bullet$ one describing each group of inland seas (the Great Lakes for example) and the target area (river outflow or world ocean) for each group of inland seas (St Laurence for the Great Lakes for example) called 
     155\textit{mask\_csgrpglo}, \textit{mask\_csgrprnf}, \textit{mask\_csgrpemp}. 
     156\end{description} 
     157 
     158\begin{figure}[!tbp] 
     159  \centering 
     160  \includegraphics[width=0.66\textwidth]{MISC_closea_mask_example} 
     161  \caption[Mask fields for the \protect\mdl{closea} module]{ 
     162    Example of mask fields for the \protect\mdl{closea} module. 
     163    \textit{Left}: a \textit{mask\_csrnf} field; 
     164    \textit{Right}: a \textit{mask\_csgrprnf} field. 
     165    In this example, if \protect\np{ln_closea}{ln\_closea} is set to \forcode{.true.}, 
     166    the mean freshwater flux over each of the American Great Lakes will be set to zero, 
     167    and the total residual for all the lakes, if negative, will be put into 
     168    the St Laurence Seaway in the area shown.} 
     169  \label{fig:MISC_closea_mask_example} 
     170\end{figure} 
     171 
     172Closed sea not defined (because too small, issue in the bathymetry definition ...) are defined in \textit{mask\_csundef}. 
     173These points can be masked using the namelist option \np{ln_mask_csundef}{ln\_mask\_csundef}\forcode{= .true.} or used to correct the bathymetry input file.\\ 
     174 
     175The masks needed for the closed sea can be created using the DOMAINcfg tool in the utils/tools/DOMAINcfg directory. 
     176See \autoref{sec:clocfg} for details on the usage of definition of the closed sea masks. 
    189177 
    190178%% ================================================================================================= 
     
    205193 
    206194\noindent Consider an ORCA1 
    207 configuration using the extended grid domain configuration file: \ifile{eORCA1\_domcfg.nc} 
     195configuration using the extended grid domain configuration file: \textit{eORCA1\_domcfg.nc} 
    208196This file define a horizontal domain of 362x332.  The first row with 
    209197open ocean wet points in the non-isf bathymetry for this set is row 42 (\fortran\ indexing) 
     
    226214\noindent Note that with this option, the j-size of the global domain is (extended 
    227215j-size minus \np{open_ocean_jstart}{open\_ocean\_jstart} + 1 ) and this must match the \texttt{jpjglo} value 
    228 for the configuration. This means an alternative version of \ifile{eORCA1\_domcfg.nc} must 
     216for the configuration. This means an alternative version of \textit{eORCA1\_domcfg.nc} must 
    229217be created for when \np{ln_use_jattr}{ln\_use\_jattr} is active. The \texttt{ncap2} tool provides a 
    230218convenient way of achieving this: 
     
    234222\end{cmds} 
    235223 
    236 The domain configuration file is unique in this respect since it also contains the value of \jp{jpjglo} 
     224The domain configuration file is unique in this respect since it also contains the value of \texttt{jpjglo} 
    237225that is read and used by the model. 
    238226Any other global, 2D and 3D, netcdf, input field can be prepared for use in a reduced domain by adding the 
     
    374362 
    375363When more information is required for monitoring or debugging purposes, the various 
    376 forms of output can be selected via the \np{sn\_cfctl} structure. As well as simple 
     364forms of output can be selected via the \np{sn_cfctl}{sn\_cfctl} structure. As well as simple 
    377365on-off switches this structure also allows selection of a range of processors for 
    378366individual reporting (where appropriate) and a time-increment option to restrict 
     
    449437systems so bug-hunting efforts using this facility should also utilise the \fortran: 
    450438 
    451 \begin{forlines}  
    452    CALL FLUSH(numout) 
    453 \end{forlines} 
     439\forline|CALL FLUSH(numout)| 
    454440 
    455441statement after any additional write statements to ensure that file contents reflect 
     
    482468 
    483469\begin{forlines} 
    484    sn_cfctl%l_glochk = .FALSE.    ! Range sanity checks are local (F) or global (T). Set T for debugging only 
    485    sn_cfctl%l_allon  = .FALSE.    ! IF T activate all options. If F deactivate all unless l_config is T 
    486      sn_cfctl%l_config = .TRUE.     ! IF .true. then control which reports are written with the following 
    487        sn_cfctl%l_runstat = .FALSE. ! switches and which areas produce reports with the proc integer settings. 
    488        sn_cfctl%l_trcstat = .FALSE. ! The default settings for the proc integers should ensure 
    489        sn_cfctl%l_oceout  = .FALSE. ! that  all areas report. 
    490        sn_cfctl%l_layout  = .FALSE. ! 
    491        sn_cfctl%l_prtctl  = .FALSE. ! 
    492        sn_cfctl%l_prttrc  = .FALSE. ! 
    493        sn_cfctl%l_oasout  = .FALSE. ! 
    494        sn_cfctl%procmin   = 0       ! Minimum area number for reporting [default:0] 
    495        sn_cfctl%procmax   = 1000000 ! Maximum area number for reporting [default:1000000] 
    496        sn_cfctl%procincr  = 1       ! Increment for optional subsetting of areas [default:1] 
    497        sn_cfctl%ptimincr  = 1       ! Timestep increment for writing time step progress info 
     470   sn_cfctl%l_glochk  = .false. ! Range sanity checks are local (F) or global (T). Set T for debugging only 
     471   sn_cfctl%l_allon   = .false. ! IF T activate all options. If F deactivate all unless l_config is T 
     472   sn_cfctl%l_config  = .true.  ! IF .true. then control which reports are written with the following 
     473   sn_cfctl%l_runstat = .false. ! switches and which areas produce reports with the proc integer settings. 
     474   sn_cfctl%l_trcstat = .false. ! The default settings for the proc integers should ensure 
     475   sn_cfctl%l_oceout  = .false. ! that  all areas report. 
     476   sn_cfctl%l_layout  = .false. ! 
     477   sn_cfctl%l_prtctl  = .false. ! 
     478   sn_cfctl%l_prttrc  = .false. ! 
     479   sn_cfctl%l_oasout  = .false. ! 
     480   sn_cfctl%procmin   = 0       ! Minimum area number for reporting [default:0] 
     481   sn_cfctl%procmax   = 1000000 ! Maximum area number for reporting [default:1000000] 
     482   sn_cfctl%procincr  = 1       ! Increment for optional subsetting of areas [default:1] 
     483   sn_cfctl%ptimincr  = 1       ! Timestep increment for writing time step progress info 
    498484\end{forlines} 
    499485 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_model_basics.tex

    r14113 r14644  
    55\chapter{Model Basics} 
    66\label{chap:MB} 
    7  
    8 \thispagestyle{plain} 
    97 
    108\chaptertoc 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_model_basics_zstar.tex

    r14200 r14644  
    44 
    55\chapter{ essai \zstar \sstar} 
    6  
    7 \thispagestyle{plain} 
    86 
    97\chaptertoc 
     
    8583 
    8684%\nlst{nam_dynspg} 
     85 
    8786Options are defined through the \nam{_dynspg}{\_dynspg} namelist variables. 
    8887The surface pressure gradient term is related to the representation of the free surface (\autoref{sec:MB_hor_pg}). 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/NEMO/subfiles/chap_time_domain.tex

    r11693 r14644  
    66\label{chap:TD} 
    77 
    8 \thispagestyle{plain} 
    9  
    108\chaptertoc 
    119 
     
    1412{\footnotesize 
    1513  \begin{tabularx}{0.5\textwidth}{l||X|X} 
    16     Release          & Author(s)                                       & 
     14    Release          & Author(s)                                       &  
    1715    Modifications                                                      \\ 
    1816    \hline 
    19     {\em        4.0} & {\em J\'{e}r\^{o}me Chanut \newline Tim Graham} & 
     17    {\em        4.0} & {\em J\'{e}r\^{o}me Chanut \newline Tim Graham} &  
    2018    {\em Review \newline Update                                      } \\ 
    21     {\em        3.6} & {\em Christian \'{E}th\'{e}                   } & 
     19    {\em        3.6} & {\em Christian \'{E}th\'{e}                   } &  
    2220    {\em Update                                                      } \\ 
    23     {\em $\leq$ 3.4} & {\em Gurvan Madec                             } & 
     21    {\em $\leq$ 3.4} & {\em Gurvan Madec                             } &  
    2422    {\em First version                                               } \\ 
    2523  \end{tabularx} 
     
    4644 
    4745The time stepping used in \NEMO\ is a three level scheme that can be represented as follows: 
     46 
    4847\begin{equation} 
    4948  \label{eq:TD} 
    5049  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ \text{RHS}_x^{t - \rdt, \, t, \, t + \rdt} 
    5150\end{equation} 
     51 
    5252where $x$ stands for $u$, $v$, $T$ or $S$; 
    5353RHS is the \textbf{R}ight-\textbf{H}and-\textbf{S}ide of the corresponding time evolution equation; 
     
    9999first designed by \citet{robert_JMSJ66} and more comprehensively studied by \citet{asselin_MWR72}, 
    100100is a kind of laplacian diffusion in time that mixes odd and even time steps: 
     101 
    101102\begin{equation} 
    102103  \label{eq:TD_asselin} 
    103104  x_F^t = x^t + \gamma \, \lt[ x_F^{t - \rdt} - 2 x^t + x^{t + \rdt} \rt] 
    104105\end{equation} 
     106 
    105107where the subscript $F$ denotes filtered values and $\gamma$ is the Asselin coefficient. 
    106108$\gamma$ is initialized as \np{rn_atfp}{rn\_atfp} (namelist parameter). 
     
    134136The conditions for stability of second and fourth order horizontal diffusion schemes are 
    135137\citep{griffies_bk04}: 
     138 
    136139\begin{equation} 
    137140  \label{eq:TD_euler_stability} 
     
    142145  \end{cases} 
    143146\end{equation} 
     147 
    144148where $e$ is the smallest grid size in the two horizontal directions and 
    145149$A^h$ is the mixing coefficient. 
     
    153157To overcome the stability constraint, a backward (or implicit) time differencing scheme is used. 
    154158This scheme is unconditionally stable but diffusive and can be written as follows: 
     159 
    155160\begin{equation} 
    156161  \label{eq:TD_imp} 
     
    170175where RHS is the right hand side of the equation except for the vertical diffusion term. 
    171176We rewrite \autoref{eq:TD_imp} as: 
     177 
    172178\begin{equation} 
    173179  \label{eq:TD_imp_mat} 
    174180  -c(k + 1) \; T^{t + 1}(k + 1) + d(k) \; T^{t + 1}(k) - \; c(k) \; T^{t + 1}(k - 1) \equiv b(k) 
    175181\end{equation} 
     182 
    176183where 
     184 
    177185\[ 
    178186  c(k) = A_w^{vT} (k) \, / \, e_{3w} (k) \text{,} \quad 
     
    241249$Q$ is redistributed over several time step. 
    242250In the modified LF-RA environment, these two formulations have been replaced by: 
     251 
    243252\begin{gather} 
    244253  \label{eq:TD_forcing} 
     
    248257                    - \gamma \, \rdt \, \lt( Q^{t + \rdt / 2} - Q^{t - \rdt / 2} \rt) 
    249258\end{gather} 
     259 
    250260The change in the forcing formulation given by \autoref{eq:TD_forcing} 
    251261(see \autoref{fig:TD_MLF_forcing}) has a significant effect: 
     
    377387  % 
    378388\end{flalign*} 
     389 
    379390\begin{flalign*} 
    380391  \allowdisplaybreaks 
     
    389400  % 
    390401\end{flalign*} 
     402 
    391403\begin{flalign*} 
    392404  \allowdisplaybreaks 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/SI3/build

    • Property svn:ignore
      •  

        old new  
        99*.lo* 
        1010*.out 
         11*.pdf 
         12*.pyg 
         13*.tdo 
        1114*.toc 
        1215*.xdv 
        13 _minted-* 
         16cache* 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/SI3/main/bibliography.bib

    • Property svn:eol-style set to native
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/SI3/main/settings.tex

    r11591 r14644  
    1 %% Engine (folder name) 
    2 \def \engine{SI3} 
     1%% Engine 
     2\def\eng{SI3} 
    33 
    4 %% Title and cover page settings 
    5 \def \spacetop{  \vspace*{1.2cm} } 
    6 \def \heading{Sea Ice modelling Integrated Initiative (SI$^3$)} 
    7 \def \subheading{The NEMO sea ice engine} 
    8 \def \spacedown{ \vspace*{  1cm} } 
    9 \def \authorswidth{0.2\linewidth} 
    10 \def \rulelenght{230pt} 
    11 \def \abstractwidth{0.65\linewidth} 
     4%% Cover page 
     5\def\spcup{\vspace*{1.20cm}} 
     6\def \hdg{Sea Ice modelling Integrated Initiative (SI$^3$)} 
     7\def\shdg{The NEMO sea ice engine                         } 
     8\def\spcdn{\vspace*{1.00cm}} 
     9\def\autwd{0.20\linewidth}\def\lnlg{230pt}\def\abswd{0.65\linewidth} 
    1210 
    13 %% Color for document (frontpage banner, links and chapter boxes) 
    14 \def \setmanualcolor{ \definecolor{manualcolor}{cmyk}{0, 0, 0, 0.4} } 
     11%% Color in cmyk model for manual theme (frontpage banner, links and chapter boxes) 
     12\def\clr{0.0,0.0,0.0,0.4} 
    1513 
    1614%% IPSL publication number 
    17 \def \ipslnum{31} 
     15\def\ipsl{31} 
    1816 
    19 %% Zenodo ID, i.e. doi:10.5281/zenodo.\([0-9]*\) 
    20 \def \zid{1471689} 
     17%% Zenodo ID, i.e. doi:10.5281/zenodo.\zid 
     18\def\zid{1471689} 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/SI3/subfiles

    • Property svn:ignore
      •  

        old new  
         1*.aux 
         2*.bbl 
         3*.blg 
         4*.fdb* 
         5*.fls 
         6*.idx 
         7*.ilg 
        18*.ind 
        2 *.ilg 
         9*.lo* 
         10*.out 
         11*.pdf 
         12*.pyg 
         13*.tdo 
         14*.toc 
         15*.xdv 
         16cache* 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/TOP/build

    • Property svn:ignore
      •  

        old new  
        99*.lo* 
        1010*.out 
         11*.pdf 
         12*.pyg 
         13*.tdo 
        1114*.toc 
        1215*.xdv 
        13 _minted-* 
         16cache* 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/TOP/main/bibliography.bib

    • Property svn:eol-style set to native
    r11171 r14644  
    185185  journal   = {Global Biogeochemical Cycles}, 
    186186  publisher = {American Geophysical Union (AGU)} 
     187} 
     188 
     189@techreport{      gibson_trpt86, 
     190  title         = "Standards for software development and maintenance", 
     191  pages         = "21", 
     192  series        = "ECMWF Technical Memoranda", 
     193  number        = "120", 
     194  author        = "J. K. Gibson", 
     195  institution   = "ECMWF Operations Department; Reading, United Kingdom", 
     196  year          = "1986", 
     197  month         = "aug", 
     198  doi           = "10.21957/gi113q4gn" 
    187199} 
    188200 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/TOP/main/settings.tex

    r11591 r14644  
    1 %% Engine (folder name) 
    2 \def \engine{TOP} 
     1%% Engine 
     2\def\eng{TOP} 
    33 
    4 %% Title and cover page settings 
    5 \def \spacetop{  \vspace*{1.3cm} } 
    6 \def \heading{Tracers in Ocean Paradigm (TOP)} 
    7 \def \subheading{The NEMO passive tracers engine} 
    8 \def \spacedown{ \vspace*{  1cm} } 
    9 \def \authorswidth{0.15\linewidth} 
    10 \def \rulelenght{110pt} 
    11 \def \abstractwidth{0.7\linewidth} 
     4%% Cover page 
     5\def\spcup{\vspace*{1.30cm}} 
     6\def \hdg{Tracers in Ocean Paradigm (TOP)} 
     7\def\shdg{The NEMO passive tracers engine} 
     8\def\spcdn{\vspace*{1.00cm}} 
     9\def\autwd{0.15\linewidth}\def\lnlg{110pt}\def\abswd{0.70\linewidth} 
    1210 
    13 %% Color for document (frontpage banner, links and chapter boxes) 
    14 \def \setmanualcolor{ \definecolor{manualcolor}{cmyk}{1, 0, 1, .4} } 
     11%% Color in cmyk model for manual theme (frontpage banner, links and chapter boxes) 
     12\def\clr{1.0,0.0,1.0,0.4} 
    1513 
    1614%% IPSL publication number 
    17 \def \ipslnum{28} 
     15\def\ipsl{28} 
    1816 
    19 %% Zenodo ID, i.e. doi:10.5281/zenodo.\([0-9]*\) 
    20 \def \zid{1471700} 
     17%% Zenodo ID, i.e. doi:10.5281/zenodo.\zid 
     18\def\zid{1471700} 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/TOP/subfiles

    • Property svn:ignore
      •  

        old new  
         1*.aux 
         2*.bbl 
         3*.blg 
         4*.fdb* 
         5*.fls 
         6*.idx 
        17*.ilg 
        28*.ind 
         9*.lo* 
         10*.out 
         11*.pdf 
         12*.pyg 
         13*.tdo 
         14*.toc 
         15*.xdv 
         16cache* 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/TOP/subfiles/miscellaneous.tex

    r11591 r14644  
    2424% 
    2525\begin{minted}{bash} 
    26     bld::tool::fppkeys   key_iomput key_mpp_mpi key_top 
     26    bld::tool::fppkeys   key_xios key_top 
    2727\end{minted} 
    2828 
     
    4242% 
    4343\begin{minted}{bash} 
    44    bld::tool::fppkeys   key_iomput key_mpp_mpi key_top 
     44   bld::tool::fppkeys   key_xios key_top 
    4545 
    4646   src::MYBGC::initialization         <MYBGCPATH>/initialization 
     
    6060%Note that, the additional lines specific for the BGC model source and build paths, can be written into a separate file, e.g. named MYBGC.fcm, and then simply included in the cpp_NEMO_MYBGC.fcm as follow 
    6161% 
    62 %bld::tool::fppkeys  key_zdftke key_dynspg_ts key_iomput key_mpp_mpi key_top 
     62%bld::tool::fppkeys  key_zdftke key_dynspg_ts key_xios key_top 
    6363%inc <MYBGCPATH>/MYBGC.fcm 
    6464%This will enable a more portable compilation structure for all MYBGC related configurations. 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/TOP/subfiles/model_description.tex

    r14113 r14644  
    99\newcommand{\Dcq}{\Delta ^{14}\mathrm{C}} 
    1010\newcommand{\Rq}{\mathrm{^{14}{R}}} 
    11 \newcommand{\CODE}[1]{\textsc{#1}} 
    12 %\newcommand{\CODE}[1]{\textcolor{black}{\textsc{#1}}\xspace} 
    1311 
    1412\chapter{Model Description} 
     
    2826where expressions of $D^{lC}$ and $D^{vC}$ depend on the choice for the lateral and vertical subgrid scale parameterizations, see equations 5.10 and 5.11 in \citep{nemo_manual} 
    2927 
    30 {S(C)} , the first term on the right hand side of \ref{Eq_tracer}; is the SMS - Source Minus Sink - inherent to the tracer.  In the case of biological tracer such as phytoplankton, {S(C)} is the balance between phytoplankton growth and its decay through mortality and grazing. In the case of a tracer comprising carbon,  {S(C)} accounts for gas exchange, river discharge, flux to the sediments, gravitational sinking and other biological processes. In the case of a radioactive tracer, {S(C)} is simply loss due to radioactive decay. 
    31  
    32 The second term (within brackets) represents the advection of the tracer in the three directions. It can be interpreted as the budget between the incoming and outgoing tracer fluxes in a volume $T$-cells $b_t= e_{1t}\,e_{2t}\,e_{3t}$ 
     28{S(C)} , the first term on the right hand side of \autoref{Eq_tracer}; is the SMS - Source Minus Sink - inherent to the tracer. 
     29In the case of biological tracer such as phytoplankton, {S(C)} is the balance between phytoplankton growth and its decay through mortality and grazing. 
     30In the case of a tracer comprising carbon,  {S(C)} accounts for gas exchange, river discharge, flux to the sediments, gravitational sinking and other biological processes. 
     31In the case of a radioactive tracer, {S(C)} is simply loss due to radioactive decay. 
     32 
     33The second term (within brackets) represents the advection of the tracer in the three directions. 
     34It can be interpreted as the budget between the incoming and outgoing tracer fluxes in a volume $T$-cells $b_t= e_{1t}\,e_{2t}\,e_{3t}$ 
    3335 
    3436The third term  represents the change due to lateral diffusion. 
     
    4648\label{sec:TopInt} 
    4749 
    48 TOP is the NEMO hardwired interface toward biogeochemical models and provide the physical constraints/boundaries for oceanic tracers. It consists of a modular framework to handle multiple ocean tracers, including also a variety of built-in modules. 
     50TOP is the NEMO hardwired interface toward biogeochemical models and provide the physical constraints/boundaries for oceanic tracers. 
     51It consists of a modular framework to handle multiple ocean tracers, including also a variety of built-in modules. 
    4952 
    5053This component of the NEMO framework allows one to exploit available modules  and further develop a range of applications, spanning from the implementation of a dye passive tracer to evaluate dispersion processes (by means of MY\_TRC), track water masses age (AGE module), assess the ocean interior penetration of persistent chemical compounds (e.g., gases like CFC or even PCBs), up to the full set of equations involving marine biogeochemical cycles. 
     
    6164        \item \textbf{AGE}     :    Water age tracking 
    6265        \item \textbf{MY\_TRC}  :   Template for creation of new modules and external BGC models coupling 
    63         \item \textbf{PISCES}    :   Built in BGC model. See \citep{aumont_2015} for a throughout description. 
     66        \item \textbf{PISCES}    :   Built in BGC model. 
     67See \citep{aumont_2015} for a throughout description. 
    6468\end{itemize} 
    6569%  ---------------------------------------------------------- 
     
    6973The passive tracer transport component  shares the same advection/diffusion routines with the dynamics, with specific treatment of some features like the surface boundary conditions, or the positivity of passive tracers concentrations. 
    7074 
    71  \subsection{ Advection} 
     75\subsection{Advection} 
    7276%------------------------------------------namtrc_adv---------------------------------------------------- 
    7377\nlst{namtrc_adv} 
    7478%------------------------------------------------------------------------------------------------------------- 
    75 The advection schemes used for the passive tracers are the same than the ones for $T$ and $S$ and described in section 5.1 of \citep{nemo_manual}. The choice of an advection scheme  can be selected independently and  can differ from the ones used for active tracers. This choice is made in the \textit{namtrc\_adv} namelist, by  setting to \textit{true} one and only one of the logicals \textit{ln\_trcadv\_xxx}, the same way of what is done for dynamics. 
    76 cen2, MUSCL2, and UBS are not \textit{positive} schemes meaning that negative values can appear in an initially strictly positive tracer field which is advected, implying that false extrema are permitted. Their use is not recommended on passive tracers 
    77  
    78  \subsection{ Lateral diffusion} 
     79The advection schemes used for the passive tracers are the same than the ones for $T$ and $S$ and described in section 5.1 of \citep{nemo_manual}. 
     80The choice of an advection scheme  can be selected independently and  can differ from the ones used for active tracers. 
     81This choice is made in the \textit{namtrc\_adv} namelist, by  setting to \textit{true} one and only one of the logicals \textit{ln\_trcadv\_xxx}, the same way of what is done for dynamics. 
     82cen2, MUSCL2, and UBS are not \textit{positive} schemes meaning that negative values can appear in an initially strictly positive tracer field which is advected, implying that false extrema are permitted. 
     83Their use is not recommended on passive tracers 
     84 
     85\subsection{Lateral diffusion} 
    7986%------------------------------------------namtrc_ldf---------------------------------------------------- 
    8087\nlst{namtrc_ldf} 
    8188%------------------------------------------------------------------------------------------------------------- 
    82 In NEMO v4.0, the passive tracer diffusion has necessarily the same form as the active tracer diffusion, meaning that the numerical scheme must be the same. However the passive tracer mixing coefficient can be chosen as a multiple of the active ones by changing the value of \textit{rn\_ldf\_multi} in namelist \textit{namtrc\_ldf}. The choice of numerical scheme is then set  in the \nam{namtra_ldf}{namtra\_ldf} namelist for the dynamic described in section 5.2 of \citep{nemo_manual}. 
    83  
     89In NEMO v4.0, the passive tracer diffusion has necessarily the same form as the active tracer diffusion, meaning that the numerical scheme must be the same. 
     90However the passive tracer mixing coefficient can be chosen as a multiple of the active ones by changing the value of \textit{rn\_ldf\_multi} in namelist \textit{namtrc\_ldf}. 
     91The choice of numerical scheme is then set in the \forcode{&namtra_ldf} namelist for the dynamic described in section 5.2 of \citep{nemo_manual}. 
    8492 
    8593%-----------------We also offers the possibility to increase zonal equatorial diffusion for passive tracers by introducing an enhanced zonal diffusivity coefficent in the equatorial domain which can be defined by the equation below : 
     
    8896%-----------------\end{equation} 
    8997 
    90  \subsection{ Tracer damping} 
     98\subsection{Tracer damping} 
    9199 
    92100%------------------------------------------namtrc_dmp---------------------------------------------------- 
     
    94102%------------------------------------------------------------------------------------------------------------- 
    95103 
    96 The use of newtonian damping  to climatological fields or observations is also coded, sharing the same routine dans active tracers. Boolean variables are defined in the namelist\_top\_ref to select the tracers on which restoring is applied 
    97 Options are defined through the \nam{namtrc_dmp}{namtrc\_dmp} namelist variables. The restoring term is added when the namelist parameter \np{ln\_trcdmp} is set to true. The restoring coefficient is a three-dimensional array read in a file, which name is specified by the namelist variable \np{cn\_resto\_tr}. This netcdf file can be generated using the DMP\_TOOLS tool. 
    98  
    99  \subsection{ Tracer positivity} 
     104The use of newtonian damping  to climatological fields or observations is also coded, sharing the same routine dans active tracers. 
     105Boolean variables are defined in the namelist\_top\_ref to select the tracers on which restoring is applied 
     106Options are defined through the \nam{trc_dmp}{trc\_dmp} namelist variables. 
     107The restoring term is added when the namelist parameter \np{ln\_trcdmp} is set to true. 
     108The restoring coefficient is a three-dimensional array read in a file, which name is specified by the namelist variable \np{cn\_resto\_tr}. 
     109This netcdf file can be generated using the DMP\_TOOLS tool. 
     110 
     111\subsection{Tracer positivity} 
    100112 
    101113%------------------------------------------namtrc_rad---------------------------------------------------- 
     
    103115%------------------------------------------------------------------------------------------------------------- 
    104116 
    105 Sometimes, numerical scheme can generates negative values of passive tracers concentration that must be positive. For exemple,  isopycnal diffusion can created extrema. The trcrad routine artificially corrects negative concentrations with a very crude solution that either sets negative concentration to zero without adjusting the tracer budget, or by removing negative concentration and keeping mass conservation. 
    106 The treatment of negative concentrations is an option and can be selected in the namelist \nam{namtrc_rad}{namtrc\_rad} by setting the parameter \np{ln\_trcrad}  to true. 
     117Sometimes, numerical scheme can generates negative values of passive tracers concentration that must be positive. 
     118For exemple,  isopycnal diffusion can created extrema. 
     119The trcrad routine artificially corrects negative concentrations with a very crude solution that either sets negative concentration to zero without adjusting the tracer budget, or by removing negative concentration and keeping mass conservation. 
     120The treatment of negative concentrations is an option and can be selected in the namelist \nam{trc_rad}{trc\_rad} by setting the parameter \np{ln\_trcrad}  to true. 
    107121 
    108122\section{The SMS modules} 
     
    119133%---------------------------------------------------------------------------------------------------------- 
    120134 
    121  
    122  An `ideal age' tracer is integrated online in TOP when \textit{ln\_age} = \texttt{.true.} in namelist \textit{namtrc}. This tracer marks the length of time in units of years that fluid has spent in the interior of the ocean, insulated from exposure to the atmosphere. Thus, away from the surface for $z<-H_{\mathrm{Age}}$ where $H_{\mathrm{Age}}$ is specified by the \textit{namage} namelist variable \textit{rn\_age\_depth}, whose default value is 10~m, there is a source $\mathrm{SMS_{\mathrm{Age}}}$ of the age tracer $A$: 
     135An `ideal age' tracer is integrated online in TOP when \textit{ln\_age} = \texttt{.true.} in namelist \textit{namtrc}. 
     136This tracer marks the length of time in units of years that fluid has spent in the interior of the ocean, insulated from exposure to the atmosphere. 
     137Thus, away from the surface for $z<-H_{\mathrm{Age}}$ where $H_{\mathrm{Age}}$ is specified by the \textit{namage} namelist variable \textit{rn\_age\_depth}, whose default value is 10~m, there is a source $\mathrm{SMS_{\mathrm{Age}}}$ of the age tracer $A$: 
     138 
    123139\begin{equation} 
    124140  \label{eq:TOP-age-interior} 
    125141  \mathrm{SMS_{\mathrm{Age}}} = 1 \mathrm{yr}\;^{-1} = 1/T_{\mathrm{year}}, 
    126  \end{equation} 
    127  where the length of the current year $T_{\mathrm{year}} = 86400*N_{\mathrm{days\;in\;current\; year}}\;\mathrm{s}$, where $N_{\mathrm{days\;in\;current\; year}}$ may be 366 or 365 depending on whether the current year is a leap year or not. 
    128  Near the surface, for $z>-H_{\mathrm{Age}}$, ideal age is relaxed back to zero: 
     142\end{equation} 
     143 
     144where the length of the current year $T_{\mathrm{year}} = 86400*N_{\mathrm{days\;in\;current\; year}}\;\mathrm{s}$, where $N_{\mathrm{days\;in\;current\; year}}$ may be 366 or 365 depending on whether the current year is a leap year or not. 
     145Near the surface, for $z>-H_{\mathrm{Age}}$, ideal age is relaxed back to zero: 
     146 
    129147\begin{equation} 
    130148  \label{eq:TOP-age-surface} 
    131149   \mathrm{SMS_{\mathrm{Age}}} = -\lambda_{\mathrm{Age}}A, 
    132  \end{equation} 
    133  where the relaxation rate $\lambda_{\mathrm{Age}}$  (units $\mathrm{s}\;^{-1}$) is specified by the \textit{namage} namelist variable \textit{rn\_age\_kill\_rate} and has a default value of 1/7200~s. Since this relaxation is applied explicitly, this relaxation rate in principle should not exceed $1/\Delta t$, where $\Delta t$ is the time step used to step forward passive tracers (2 * \textit{nn\_dttrc * rn\_rdt} when the default  leapfrog time-stepping scheme is employed). 
    134  
    135  Currently the 1-dimensional reference depth of the grid boxes is used rather than the dynamically evolving depth to determine whether the age tracer is incremented or relaxed to zero. This means that the tracer only works correctly in z-coordinates. To ensure that the forcing is independent of the level thicknesses, where the tracer cell at level $k$ has its upper face $z=-depw(k)$ above the depth $-H_{\mathrm{Age}}$, but its lower face $z=-depw(k+1)$ below that depth, then the age source 
    136  \begin{equation} 
     150\end{equation} 
     151 
     152where the relaxation rate $\lambda_{\mathrm{Age}}$  (units $\mathrm{s}\;^{-1}$) is specified by the \textit{namage} namelist variable \textit{rn\_age\_kill\_rate} and has a default value of 1/7200~s. 
     153Since this relaxation is applied explicitly, this relaxation rate in principle should not exceed $1/\Delta t$, where $\Delta t$ is the time step used to step forward passive tracers (2 * \textit{nn\_dttrc * rn\_rdt} when the default  leapfrog time-stepping scheme is employed). 
     154 
     155Currently the 1-dimensional reference depth of the grid boxes is used rather than the dynamically evolving depth to determine whether the age tracer is incremented or relaxed to zero. 
     156This means that the tracer only works correctly in z-coordinates. 
     157To ensure that the forcing is independent of the level thicknesses, where the tracer cell at level $k$ has its upper face $z=-depw(k)$ above the depth $-H_{\mathrm{Age}}$, but its lower face $z=-depw(k+1)$ below that depth, then the age source 
     158 
     159\begin{equation} 
    137160  \label{eq:TOP-age-mixed} 
    138161   \mathrm{SMS_{\mathrm{Age}}} = -f_{\mathrm{kill}}\lambda_{\mathrm{Age}}A +f_{\mathrm{add}}/T_{\mathrm{year}} , 
    139  \end{equation} 
    140  where 
    141  \begin{align} 
     162\end{equation} 
     163 
     164where 
     165 
     166\begin{align} 
    142167    f_{\mathrm{kill}} &= e3t_k^{-1}(H_{\mathrm{Age}} - depw(k)) , \\ 
    143168    f_{\mathrm{add}} &= 1 - f_{\mathrm{kill}}. 
    144  \end{align} 
    145  
    146  
    147  This implementation was first used in the CORE-II intercomparison runs described e.g.\ in \citet{danabasoglu_2014}. 
     169\end{align} 
     170 
     171 
     172This implementation was first used in the CORE-II intercomparison runs described e.g.\ in \citet{danabasoglu_2014}. 
    148173 
    149174\subsection{Inert carbons tracer} 
     
    155180 
    156181Chlorofluorocarbons 11 and 12 (CFC-11 and CFC-12), and sulfur hexafluoride (SF6), are synthetic chemicals manufactured for industrial and domestic applications from the early 20th century onwards. 
    157 CFC-11 (CCl$_{3}$F) is a volatile liquid at room temperature, and was widely used in refrigeration. CFC-12 (CCl$_{2}$F$_{2}$) is a gas at room temperature, and, like CFC-11, was widely used as a refrigerant, 
    158 and additionally as an aerosol propellant. SF6 (SF$_{6}$) is also a gas at room temperature, with a range of applications based around its property as an excellent electrical insulator (often replacing more toxic alternatives). 
    159 All three are relatively inert chemicals that are both non-toxic and non-flammable, and their wide use has led to their accumulation within the Earth's atmosphere. Large-scale production of CFC-11 and CFC-12 began in the 1930s, while production of SF6 began in the 1950s, and their atmospheric concentration time-histories are shown in Figure \ref{img_cfcatm}. 
     182CFC-11 (CCl$_{3}$F) is a volatile liquid at room temperature, and was widely used in refrigeration. 
     183CFC-12 (CCl$_{2}$F$_{2}$) is a gas at room temperature, and, like CFC-11, was widely used as a refrigerant, 
     184and additionally as an aerosol propellant. 
     185SF6 (SF$_{6}$) is also a gas at room temperature, with a range of applications based around its property as an excellent electrical insulator (often replacing more toxic alternatives). 
     186All three are relatively inert chemicals that are both non-toxic and non-flammable, and their wide use has led to their accumulation within the Earth's atmosphere. 
     187Large-scale production of CFC-11 and CFC-12 began in the 1930s, while production of SF6 began in the 1950s, and their atmospheric concentration time-histories are shown in Figure \autoref{img_cfcatm}. 
    160188As can be seen in the figure, while the concentration of SF6 continues to rise to the present  day, the concentrations of both CFC-11 and CFC-12 have levelled off and declined since around the 1990s. 
    161189These declines have been driven by the Montreal Protocol (effective since August 1989), which has banned the production of CFC-11 and CFC-12 (as well as other CFCs) because of their role in the depletion of 
    162 stratospheric ozone (O$_{3}$), critical in decreasing the flux of ultraviolet radiation to the Earth's surface. Separate to this role in ozone-depletion, all three chemicals are significantly more potent greenhouse gases 
     190stratospheric ozone (O$_{3}$), critical in decreasing the flux of ultraviolet radiation to the Earth's surface. 
     191Separate to this role in ozone-depletion, all three chemicals are significantly more potent greenhouse gases 
    163192than CO$_{2}$ (especially SF6), although their relatively low atmospheric concentrations limit their role in climate change. \\ 
    164193 
     
    171200% This release began in the 1930s for CFC-11 and CFC-12, and the 1950s for SF6, and 
    172201% regularly increasing their atmospheric concentration until the 1090s, 2000s for respectively CFC11, CFC12, 
    173 % and is still increasing, and SF6 (see Figure \ref{img_cfcatm}).  \\ 
     202% and is still increasing, and SF6 (see Figure \autoref{img_cfcatm}).  \\ 
    174203 
    175204The ocean is a notable sink for all three gases, and their relatively recent occurrence in the atmosphere, coupled to the ease of making high precision measurements of their dissolved concentrations, has made them 
     
    177206Because they only enter the ocean via surface air-sea exchange, and are almost completely chemically and biologically inert, their distribution within the ocean interior reveals its ventilation via transport and mixing. 
    178207Measuring the dissolved concentrations of the gases -- as well as the mixing ratios between them -- shows circulation pathways within the ocean as well as water mass ages (i.e. the time since last contact with the 
    179 atmosphere). This feature of the gases has made them valuable across a wide range of oceanographic problems. One use lies in ocean modelling, where they can be used to evaluate the realism of the circulation and 
     208atmosphere). 
     209This feature of the gases has made them valuable across a wide range of oceanographic problems. 
     210One use lies in ocean modelling, where they can be used to evaluate the realism of the circulation and 
    180211ventilation of models, key for understanding the behaviour of wider modelled marine biogeochemistry (e.g. \citep{dutay_2002,palmieri_2015}). \\ 
    181212 
    182 Modelling these gases (henceforth CFCs) in NEMO is done within the passive tracer transport module, TOP, using the conservation state equation \ref{Eq_tracer} 
     213Modelling these gases (henceforth CFCs) in NEMO is done within the passive tracer transport module, TOP, using the conservation state equation \autoref{Eq_tracer} 
    183214 
    184215Advection and diffusion of the CFCs in NEMO are calculated by the physical module, OPA, 
     
    198229\end{eqnarray} 
    199230 
    200 Where $K_{w}$ is the piston velocity (in m~s$^{-1}$), as defined in Equation \ref{equ_Kw}; 
    201 $C_{sat}$ is the saturation concentration of the CFC tracer, as defined in Equation \ref{equ_C_sat}; 
     231Where $K_{w}$ is the piston velocity (in m~s$^{-1}$), as defined in Equation \autoref{equ_Kw}; 
     232$C_{sat}$ is the saturation concentration of the CFC tracer, as defined in Equation \autoref{equ_C_sat}; 
    202233$C_{surf}$ is the local surface concentration of the CFC tracer within the model (in mol~m$^{-3}$); 
    203234and $f_{i}$ is the fractional sea-ice cover of the local ocean (ranging between 0.0 for ice-free ocean, 
     
    211242\end{eqnarray} 
    212243 
    213 Where $Sol$ is the gas solubility in mol~m$^{-3}$~pptv$^{-1}$, as defined in Equation \ref{equ_Sol_CFC}; 
     244Where $Sol$ is the gas solubility in mol~m$^{-3}$~pptv$^{-1}$, as defined in Equation \autoref{equ_Sol_CFC}; 
    214245and $P_{cfc}$ is the atmosphere concentration of the CFC (in parts per trillion by volume, pptv). 
    215246This latter concentration is provided to the model by the historical time-series of \citet{bullister_2017}. 
     
    231262$a$ is a constant re-estimated by \citet{wanninkhof_2014} to 0.251 (in $\frac{cm~h^{-1}}{(m~s^{-1})^{2}}$); 
    232263and $u$ is the 10~m wind speed in m~s$^{-1}$ from either an atmosphere model or reanalysis atmospheric forcing. 
    233 $Sc$ is the Schmidt number, and is calculated as follow, using coefficients from \citet{wanninkhof_2014} (see Table \ref{tab_Sc}). 
     264$Sc$ is the Schmidt number, and is calculated as follow, using coefficients from \citet{wanninkhof_2014} (see Table \autoref{tab_Sc}). 
    234265 
    235266\begin{eqnarray} 
     
    238269\end{eqnarray} 
    239270 
    240 The solubility, $Sol$, used in Equation \ref{equ_C_sat} is calculated in mol~l$^{-1}$~atm$^{-1}$, 
     271The solubility, $Sol$, used in Equation \autoref{equ_C_sat} is calculated in mol~l$^{-1}$~atm$^{-1}$, 
    241272and is specific for each gas. 
    242273It has been experimentally estimated by \citet{warner_1985} as a function of temperature 
     
    260291 
    261292Where $T_{X}$ is $\frac{T + 273.16}{100}$, a function of temperature; 
    262 and the $a_{x}$ and $b_{x}$ coefficients are specific for each gas (see Table \ref{tab_ref_CFC}). 
     293and the $a_{x}$ and $b_{x}$ coefficients are specific for each gas (see Table \autoref{tab_ref_CFC}). 
    263294This is then converted to mol~m$^{-3}$~pptv$^{-1}$ assuming a constant atmospheric surface pressure of 1~atm. 
    264295The solubility of CFCs thus decreases with rising $T$ while being relatively insensitive to salinity changes. 
    265 Consequently, this translates to a pattern of solubility where it is greatest in cold, polar regions (see Figure \ref{img_cfcsol}). 
     296Consequently, this translates to a pattern of solubility where it is greatest in cold, polar regions (see Figure \autoref{img_cfcsol}). 
    266297 
    267298% AXY: not 100% sure about the units below; they might be in nanomol, or in seconds or years 
    268299 
    269300The standard outputs of the CFC module are seawater CFC concentrations (in mol~m$^{-3}$), the net air-sea flux (in mol~m$^{-2}$~d$^{-1}$) and the cumulative net air-sea flux (in mol~m$^{-2}$). 
    270 Using XIOS, it is possible to obtain outputs such as the vertical integral of CFC concentrations (in mol~m$^{-2}$; see Figure \ref{img_cfcinv}). 
     301Using XIOS, it is possible to obtain outputs such as the vertical integral of CFC concentrations (in mol~m$^{-2}$; see Figure \autoref{img_cfcinv}). 
    271302This property, when divided by the surface CFC concentration, estimates the local penetration depth (in m) of the CFC. 
    272303 
     
    285316 
    286317\begin{table}[!t] 
    287 \caption{Coefficients for fit of the CFCs solubility (Eq. \ref{equ_Sol_CFC}).} 
     318\caption{Coefficients for fit of the CFCs solubility (Eq. \autoref{equ_Sol_CFC}).} 
    288319\vskip4mm 
    289320\centering 
     
    302333 
    303334\begin{table}[!t] 
    304 \caption{Coefficients for fit of the CFCs Schmidt number (Eq. \ref{equ_Sc}). } 
     335\caption{Coefficients for fit of the CFCs Schmidt number (Eq. \autoref{equ_Sc}). } 
    305336\vskip4mm 
    306337\centering 
     
    353384%---------------------------------------------------------------------------------------------------------- 
    354385 
    355 The C14 package implemented in NEMO by Anne Mouchet models ocean $\Dcq$. It offers several possibilities: $\Dcq$ as a physical tracer of the ocean ventilation (natural $\cq$), assessment of bomb radiocarbon uptake, as well as transient studies of paleo-historical ocean radiocarbon distributions. 
     386The C14 package implemented in NEMO by Anne Mouchet models ocean $\Dcq$. 
     387It offers several possibilities: $\Dcq$ as a physical tracer of the ocean ventilation (natural $\cq$), assessment of bomb radiocarbon uptake, as well as transient studies of paleo-historical ocean radiocarbon distributions. 
    356388 
    357389\subsubsection{Method} 
    358390 
    359  Let  $\Rq$ represent the ratio of $\cq$ atoms to the total number of carbon atoms in the sample, i.e. $\cq/\mathrm{C}$. Then, radiocarbon anomalies are reported as 
     391Let  $\Rq$ represent the ratio of $\cq$ atoms to the total number of carbon atoms in the sample, i.e. $\cq/\mathrm{C}$. 
     392Then, radiocarbon anomalies are reported as 
     393 
    360394\begin{equation} 
    361395\Dcq = \left( \frac{\Rq}{\Rq_\mathrm{ref}} - 1 \right) 10^3, \label{eq:c14dcq} 
    362396\end{equation} 
    363 where $\Rq_{\textrm{ref}}$ is a reference ratio. For the purpose of ocean ventilation studies $\Rq_{\textrm{ref}}$ is set to one. 
     397 
     398where $\Rq_{\textrm{ref}}$ is a reference ratio. 
     399For the purpose of ocean ventilation studies $\Rq_{\textrm{ref}}$ is set to one. 
    364400 
    365401Here we adopt the approach of \cite{fiadeiro_1982} and \cite{toggweiler_1989a,toggweiler_1989b} in which  the ratio $\Rq$ is transported rather than the individual concentrations C and $\cq$. 
    366 This approach calls for a strong assumption, i.e., that of a homogeneous and constant dissolved inorganic carbon (DIC) field \citep{toggweiler_1989a,mouchet_2013}. While in terms of 
    367 oceanic $\Dcq$, it yields similar results to approaches involving carbonate chemistry, it underestimates the bomb radiocarbon inventory because it assumes a constant air-sea $\cd$ disequilibrium (Mouchet, 2013). Yet, field reconstructions of the ocean bomb $\cq$ inventory are also biased low \citep{naegler_2009} since they assume that the anthropogenic perturbation did not affect ocean DIC since the pre-bomb epoch. For these reasons, bomb $\cq$ inventories obtained with the present method are directly comparable to reconstructions based on field measurements. 
    368  
    369 This simplified approach also neglects the effects of fractionation (e.g.,  air-sea exchange) and of biological processes. Previous studies by \cite{bacastow_1990} and \cite{joos_1997} resulted in nearly identical $\Dcq$ distributions among experiments considering biology or not. 
     402This approach calls for a strong assumption, i.e., that of a homogeneous and constant dissolved inorganic carbon (DIC) field \citep{toggweiler_1989a,mouchet_2013}. 
     403While in terms of 
     404oceanic $\Dcq$, it yields similar results to approaches involving carbonate chemistry, it underestimates the bomb radiocarbon inventory because it assumes a constant air-sea $\cd$ disequilibrium (Mouchet, 2013). 
     405Yet, field reconstructions of the ocean bomb $\cq$ inventory are also biased low \citep{naegler_2009} since they assume that the anthropogenic perturbation did not affect ocean DIC since the pre-bomb epoch. 
     406For these reasons, bomb $\cq$ inventories obtained with the present method are directly comparable to reconstructions based on field measurements. 
     407 
     408This simplified approach also neglects the effects of fractionation (e.g.,  air-sea exchange) and of biological processes. 
     409Previous studies by \cite{bacastow_1990} and \cite{joos_1997} resulted in nearly identical $\Dcq$ distributions among experiments considering biology or not. 
    370410Since observed $\Rq$ ratios are corrected for the isotopic fractionation when converted to the standard $\Dcq$ notation \citep{stuiver_1977} the model results are directly comparable to observations. 
    371411 
     
    373413 
    374414The equation governing the transport of $\Rq$  in the ocean is 
     415 
    375416\begin{equation} 
    376417\frac{\partial}{\partial t} {\Rq} =  - \bigtriangledown \cdot ( \mathbf{u} \Rq - \mathbf{K} \cdot \bigtriangledown \Rq )  - \lambda \Rq, \label{eq:quick} 
    377418\end{equation} 
     419 
    378420where $\lambda$ is the radiocarbon decay rate, ${\mathbf{u}}$ the 3-D velocity field, and $\mathbf{K}$ the diffusivity tensor. 
    379421 
    380 At the air-sea interface a Robin boundary condition \citep{haine_2006} is applied to \eqref{eq:quick}, i.e., the flux 
     422At the air-sea interface a Robin boundary condition \citep{haine_2006} is applied to \autoref{eq:quick}, i.e., the flux 
    381423through the interface is proportional to the difference in the ratios between 
    382424the ocean and the atmosphere 
     425 
    383426\begin{equation} 
    384427\mathcal{\!F} =  \kappa_{R}  (\Rq  - \Rq_{a} ), \label{eq:BCR} 
    385428\end{equation} 
    386 where $\mathcal{\!F}$ is the flux out of the ocean, and $\Rq_{a}$ is the atmospheric $\cq/\mathrm{C}$ ratio. The transfer velocity $ \kappa_{R} $ for the radiocarbon ratio in \eqref{eq:BCR} is computed as 
     429 
     430where $\mathcal{\!F}$ is the flux out of the ocean, and $\Rq_{a}$ is the atmospheric $\cq/\mathrm{C}$ ratio. 
     431The transfer velocity $ \kappa_{R} $ for the radiocarbon ratio in \autoref{eq:BCR} is computed as 
     432 
    387433\begin{equation} 
    388434 \kappa_{R} =  \frac{\kappa_{\cd} K_0}{\overline{\Ct}} \, \pacd   \label{eq:Rspeed} 
    389435\end{equation} 
     436 
    390437with $\kappa_{\cd}$ the carbon dioxide transfer or piston velocity, $K_0$ the $\cd$ solubility in seawater, $\pacd$ the atmospheric $\cd$ pressure at sea level, and $\overline{\Ct}$ the average sea-surface dissolved inorganic carbon concentration. 
    391438 
    392  
    393 The $\cd$ transfer velocity is based on the empirical formulation of \cite{wanninkhof_1992} with chemical enhancement \citep{wanninkhof_1996,wanninkhof_2014}. The original formulation is modified to account for the reduction of the  air-sea exchange rate in the presence of sea ice. Hence 
     439The $\cd$ transfer velocity is based on the empirical formulation of \cite{wanninkhof_1992} with chemical enhancement \citep{wanninkhof_1996,wanninkhof_2014}. 
     440The original formulation is modified to account for the reduction of the  air-sea exchange rate in the presence of sea ice. 
     441Hence 
     442 
    394443\begin{equation} 
    395444\kappa_\cd=\left( K_W\,\mathrm{w}^2 + b  \right)\, (1-f_\mathrm{ice})\,\sqrt{660/Sc}, \label{eq:wanc14} 
    396445\end{equation} 
    397446with $\mathrm{w}$ the wind magnitude, $f_\mathrm{ice}$ the fractional ice cover, and $Sc$ the Schmidt number. 
    398 $K_W$ in \eqref{eq:wanc14} is an empirical coefficient with dimension of an inverse velocity. 
     447$K_W$ in \autoref{eq:wanc14} is an empirical coefficient with dimension of an inverse velocity. 
    399448The chemical enhancement term $b$ is represented as a function of temperature $T$ \citep{wanninkhof_1992} 
    400449\begin{equation} 
     
    402451\end{equation} 
    403452 
    404 %We compare the results of equilibrium and transient experiments obtained with both methods in section \ref{sec:UNDEU}. 
     453%We compare the results of equilibrium and transient experiments obtained with both methods in section \autoref{sec:UNDEU}. 
    405454 
    406455% 
     
    413462\label{sec:param} 
    414463 % 
    415 The radiocarbon decay rate (\CODE{rlam14}; in \texttt{trcnam\_c14} module) is set to $\lambda=(1/8267)$ yr$^{-1}$ \citep{stuiver_1977}, which corresponds to a half-life of 5730 yr.\\[1pt] 
    416 % 
    417 The Schmidt number $Sc$, Eq. \eqref{eq:wanc14}, is calculated with the help of the formulation of \cite{wanninkhof_2014}. The $\cd$ solubility $K_0$ in \eqref{eq:Rspeed} is taken from \cite{weiss_1974}. $K_0$ and $Sc$ are computed with the OGCM temperature and salinity fields (\texttt{trcsms\_c14} module).\\[1pt] 
     464The radiocarbon decay rate (\forcode{rlam14}; in \texttt{trcnam\_c14} module) is set to $\lambda=(1/8267)$ yr$^{-1}$ \citep{stuiver_1977}, which corresponds to a half-life of 5730 yr.\\[1pt] 
     465% 
     466The Schmidt number $Sc$, Eq. \autoref{eq:wanc14}, is calculated with the help of the formulation of \cite{wanninkhof_2014}. 
     467The $\cd$ solubility $K_0$ in \autoref{eq:Rspeed} is taken from \cite{weiss_1974}. $K_0$ and $Sc$ are computed with the OGCM temperature and salinity fields (\texttt{trcsms\_c14} module).\\[1pt] 
    418468% 
    419469The following parameters intervening in the air-sea exchange rate are set in \texttt{namelist\_c14}: 
     470 
    420471\begin{itemize} 
    421 \item The reference DIC concentration $\overline{\Ct}$ (\CODE{xdicsur}) intervening in \eqref{eq:Rspeed} is classically set to 2 mol m$^{-3}$ \citep{toggweiler_1989a,orr_2001,butzin_2005}. 
    422 % 
    423 \item The value of the empirical coefficient $K_W$ (\CODE{xkwind}) in \eqref{eq:wanc14} depends on the wind field and on the model upper ocean mixing rate \citep{toggweiler_1989a,wanninkhof_1992,naegler_2009,wanninkhof_2014}. 
     472\item The reference DIC concentration $\overline{\Ct}$ (\forcode{xdicsur}) intervening in \autoref{eq:Rspeed} is classically set to 2 mol m$^{-3}$ \citep{toggweiler_1989a,orr_2001,butzin_2005}. 
     473% 
     474\item The value of the empirical coefficient $K_W$ (\forcode{xkwind}) in \autoref{eq:wanc14} depends on the wind field and on the model upper ocean mixing rate \citep{toggweiler_1989a,wanninkhof_1992,naegler_2009,wanninkhof_2014}. 
    424475It should be adjusted so that the globally averaged $\cd$ piston velocity is $\kappa_\cd = 16.5\pm 3.2$ cm/h \citep{naegler_2009}. 
    425 %The sensitivity to this parametrization is discussed in section \ref{sec:result}. 
    426 % 
    427 \item Chemical enhancement (term $b$  in Eq. \ref{eq:wanchem}) may be set on/off by means of the logical variable \CODE{ln\_chemh}. 
     476%The sensitivity to this parametrization is discussed in section \autoref{sec:result}. 
     477% 
     478\item Chemical enhancement (term $b$  in Eq. \autoref{eq:wanchem}) may be set on/off by means of the logical variable \forcode{ln\_chemh}. 
    428479\end{itemize} 
    429480 
    430481% 
    431482\paragraph{Experiment type} 
    432 The type of experiment is determined by the value given to \CODE{kc14typ} in \texttt{namelist\_c14}. There are three possibilities: 
     483The type of experiment is determined by the value given to \forcode{kc14typ} in \texttt{namelist\_c14}. 
     484There are three possibilities: 
     485 
    433486\begin{enumerate} 
    434 \item natural $\Dcq$: \CODE{kc14typ}=0 
    435 \item bomb $\Dcq$: \CODE{kc14typ}=1 
    436 \item transient paleo-historical $\Dcq$: \CODE{kc14typ}=2 
     487\item natural                    $\Dcq$: \forcode{kc14typ}=0 
     488\item bomb                       $\Dcq$: \forcode{kc14typ}=1 
     489\item transient paleo-historical $\Dcq$: \forcode{kc14typ}=2 
    437490\end{enumerate} 
    438 % 
     491 
     492%  
    439493\textbf{Natural or Equilibrium radiocarbon} 
    440 \CODE{kc14typ}=0 
    441  
    442 Unless otherwise specified in \texttt{namelist\_c14}, the atmospheric $\Rq_a$ (\CODE{rc14at}) is set to one, the atmospheric $\cd$ (\CODE{pco2at}) to 280 ppm, and the ocean $\Rq$ is initialized with \CODE{rc14init=0.85}, i.e., $\Dcq=$-150\textperthousand  \cite[typical for deep-ocean, Fig 6 in][]{key_2004}. 
    443  
    444 Equilibrium experiment should last until 98\% of the ocean volume exhibit a drift of less than 0.001\textperthousand/year \citep{orr_2000}; this is usually achieved after few kyr (Fig. \ref{fig:drift}). 
    445 % 
     494\forcode{kc14typ}=0 
     495 
     496Unless otherwise specified in \texttt{namelist\_c14}, the atmospheric $\Rq_a$ (\forcode{rc14at}) is set to one, the atmospheric $\cd$ (\forcode{pco2at}) to 280 ppm, and the ocean $\Rq$ is initialized with \forcode{rc14init=0.85}, i.e., $\Dcq=$-150\textperthousand \cite[typical for deep-ocean, Fig 6 in][]{key_2004}. 
     497 
     498Equilibrium experiment should last until 98\% of the ocean volume exhibit a drift of less than 0.001\textperthousand/year \citep{orr_2000}; this is usually achieved after few kyr (Fig. \autoref{fig:drift}). 
     499% 
     500 
    446501\begin{figure}[!h] 
    447502\begin{center} 
     
    449504\end{center} 
    450505\vspace{-4ex} 
    451 \caption{ Time evolution of $\Rq$ inventory anomaly for equilibrium run with homogeneous ocean initial state. The anomaly (or drift) is given in \%  change in total ocean inventory per 50 years. Time on x-axis is in simulation year.\label{fig:drift} } 
     506\caption{ Time evolution of $\Rq$ inventory anomaly for equilibrium run with homogeneous ocean initial state. 
     507The anomaly (or drift) is given in \%  change in total ocean inventory per 50 years. 
     508Time on x-axis is in simulation year.\label{fig:drift} } 
    452509\end{figure} 
    453510 
    454511\textbf{Transient: Bomb} 
    455512\label{sec:bomb} 
    456 \CODE{kc14typ}=1 
     513\forcode{kc14typ}=1 
    457514 
    458515\begin{figure}[!h] 
     
    461518\end{center} 
    462519\vspace{-4ex} 
    463 \caption{Atmospheric $\Dcq$ (solid; left axis) and $\cd$ (dashed; right axis)  forcing for the $\cq$-bomb experiments. The $\Dcq$ is illustrated for the three zonal bands (upper, middle, and lower curves correspond to latitudes $> 20$N, $\in [20\mathrm{S},20\mathrm{N}]$, and $< 20$S, respectively.} \label{fig:bomb} 
     520\caption{Atmospheric $\Dcq$ (solid; left axis) and $\cd$ (dashed; right axis)  forcing for the $\cq$-bomb experiments. 
     521The $\Dcq$ is illustrated for the three zonal bands (upper, middle, and lower curves correspond to latitudes $> 20$N, $\in [20\mathrm{S},20\mathrm{N}]$, and $< 20$S, respectively.} \label{fig:bomb} 
    464522\end{figure} 
    465523 
    466 Performing this type of experiment requires that a pre-industrial equilibrium run be performed beforehand (\CODE{ln\_rsttr} should be set to \texttt{.TRUE.}). 
    467  
    468 An exception to this rule is when wishing to perform a perturbation bomb experiment as was possible with the package \texttt{C14b}. It is still possible to easily set-up that type of transient experiment for which no previous run is needed.  In addition to the instructions as given in this section it is however necessary to adapt the \texttt{atmc14.dat} file so that it does no longer contain any negative $\Dcq$ values (Suess effect in the pre-bomb period). 
    469  
    470 The model  is integrated from a given initial date following the observed records provided from 1765 AD on ( Fig. \ref{fig:bomb}). 
    471 The file \texttt{atmc14.dat}  \cite[][\& I. Levin, personal comm.]{enting_1994} provides atmospheric $\Dcq$ for three latitudinal bands: 90S-20S,    20S-20N \&    20N-90N. 
    472 Atmospheric $\cd$ in the file \texttt{splco2.dat} is obtained from a spline fit through ice core data and direct atmospheric measurements \cite[][\& J. Orr, personal comm.]{orr_2000}. 
     524Performing this type of experiment requires that a pre-industrial equilibrium run be performed beforehand (\forcode{ln\_rsttr} should be set to \texttt{.TRUE.}). 
     525 
     526An exception to this rule is when wishing to perform a perturbation bomb experiment as was possible with the package \texttt{C14b}. 
     527It is still possible to easily set-up that type of transient experiment for which no previous run is needed. 
     528In addition to the instructions as given in this section it is however necessary to adapt the \texttt{atmc14.dat} file so that it does no longer contain any negative $\Dcq$ values (Suess effect in the pre-bomb period). 
     529 
     530The model  is integrated from a given initial date following the observed records provided from 1765 AD on ( Fig. \autoref{fig:bomb}). 
     531The file \texttt{atmc14.dat}  \cite[][\& I. 
     532Levin, personal comm.]{enting_1994} provides atmospheric $\Dcq$ for three latitudinal bands: 90S-20S,    20S-20N \&    20N-90N. 
     533Atmospheric $\cd$ in the file \texttt{splco2.dat} is obtained from a spline fit through ice core data and direct atmospheric measurements \cite[][\& J. 
     534Orr, personal comm.]{orr_2000}. 
    473535Dates in these forcing files are expressed as yr AD. 
    474536 
    475537To ensure that the atmospheric forcing is applied properly as well as that output files contain consistent dates and inventories the experiment should be set up carefully: 
     538 
    476539\begin{itemize} 
    477 \item Specify the starting date of the experiment: \CODE{nn\_date0} in \texttt{namelist}.  \CODE{nn\_date0} is written as Year0101 where Year may take any positive value (AD). 
    478 \item Then the parameters \CODE{nn\_rstctl} in  \texttt{namelist} (on-line) and \CODE{nn\_rsttr} in \texttt{namelist\_top} (off-line)  must be \textbf{set to 0} at the start of the experiment (force the date to \CODE{nn\_date0} for the \textbf{first} experiment year). 
    479 \item These two parameters (\CODE{nn\_rstctl} and \CODE{nn\_rsttr}) have then to be \textbf{set to 2} for the following years (the date must be read in the restart file). 
     540\item Specify the starting date of the experiment: \forcode{nn\_date0} in \texttt{namelist}.  \forcode{nn\_date0} is written as Year0101 where Year may take any positive value (AD). 
     541\item Then the parameters \forcode{nn\_rstctl} in  \texttt{namelist} (on-line) and \forcode{nn\_rsttr} in \texttt{namelist\_top} (off-line)  must be \textbf{set to 0} at the start of the experiment (force the date to \forcode{nn\_date0} for the \textbf{first} experiment year). 
     542\item These two parameters (\forcode{nn\_rstctl} and \forcode{nn\_rsttr}) have then to be \textbf{set to 2} for the following years (the date must be read in the restart file). 
    480543\end{itemize} 
    481  If the experiment date is outside the data time span then the first or last atmospheric concentrations are prescribed depending on whether the date is earlier or later. Note that \CODE{tyrc14\_beg} (\texttt{namelist\_c14}) is not used in this context. 
     544 
     545If the experiment date is outside the data time span then the first or last atmospheric concentrations are prescribed depending on whether the date is earlier or later. 
     546Note that \forcode{tyrc14\_beg} (\texttt{namelist\_c14}) is not used in this context. 
    482547 
    483548% 
    484549\textbf{Transient: Past} 
    485 \CODE{kc14typ}=2 
     550\forcode{kc14typ}=2 
    486551% 
    487552\begin{figure}[!h] 
     
    490555\end{center} 
    491556\vspace{-4ex} 
    492 \caption{Atmospheric $\Dcq$ (solid) and $\cd$ (dashed)  forcing for the Paleo experiments. The $\cd$ scale is given on the right axis.} \label{fig:paleo} 
     557\caption{Atmospheric $\Dcq$ (solid) and $\cd$ (dashed)  forcing for the Paleo experiments. 
     558The $\cd$ scale is given on the right axis.} \label{fig:paleo} 
    493559\end{figure} 
    494560 
    495 This experiment type does not need a previous equilibrium run. It should start 5--6 kyr earlier than the period to be analyzed. 
    496 Atmospheric $\Rq_a$ and $\cd$ are prescribed from forcing files. The ocean $\Rq$ is initialized with the value attributed to \CODE{rc14init} in \texttt{namelist\_c14}. 
     561This experiment type does not need a previous equilibrium run. 
     562It should start 5--6 kyr earlier than the period to be analyzed. 
     563Atmospheric $\Rq_a$ and $\cd$ are prescribed from forcing files. 
     564The ocean $\Rq$ is initialized with the value attributed to \forcode{rc14init} in \texttt{namelist\_c14}. 
    497565 
    498566The file \texttt{intcal13.14c} \citep{reimer_2013} contains atmospheric $\Dcq$ from 0 to 50 kyr cal BP\footnote{cal BP: number of years before 1950 AD}. 
    499 The $\cd$ forcing is provided in file \texttt{ByrdEdcCO2.txt}. The content of this file is based on  the high resolution record from EPICA Dome C \citep{monnin_2004} for the Holocene and the Transition, and on Byrd Ice Core CO2 Data for 20--90 kyr BP  \citep{ahn_2008}. These atmospheric values are reproduced in Fig. \ref{fig:paleo}. Dates in these files are expressed as yr BP. 
     567The $\cd$ forcing is provided in file \texttt{ByrdEdcCO2.txt}. 
     568The content of this file is based on  the high resolution record from EPICA Dome C \citep{monnin_2004} for the Holocene and the Transition, and on Byrd Ice Core CO2 Data for 20--90 kyr BP  \citep{ahn_2008}. 
     569These atmospheric values are reproduced in Fig. \autoref{fig:paleo}. 
     570Dates in these files are expressed as yr BP. 
    500571 
    501572To ensure that the atmospheric forcing is applied properly as well as that output files contain consistent dates and inventories the experiment should be set up carefully. 
    502 The true experiment starting date is given by \CODE{tyrc14\_beg} (in yr BP) in \texttt{namelist\_c14}. In consequence, \CODE{nn\_date0} in \texttt{namelist} MUST be set to 00010101.\\ 
    503 Then the parameters \CODE{nn\_rstctl} in  \texttt{namelist} (on-line) and \CODE{nn\_rsttr} in \texttt{namelist\_top} (off-line)  must be set to 0 at the start of the experiment (force the date to \CODE{nn\_date0} for the first experiment year). These two parameters have then to be set to 2 for the following years (read the date in the restart file). \\ 
    504  If the experiment date is outside the data time span then the first or last atmospheric concentrations are prescribed depending on whether the date is earlier or later. 
     573The true experiment starting date is given by \forcode{tyrc14\_beg} (in yr BP) in \texttt{namelist\_c14}. 
     574In consequence, \forcode{nn\_date0} in \texttt{namelist} MUST be set to 00010101.\\ 
     575Then the parameters \forcode{nn\_rstctl} in  \texttt{namelist} (on-line) and \forcode{nn\_rsttr} in \texttt{namelist\_top} (off-line)  must be set to 0 at the start of the experiment (force the date to \forcode{nn\_date0} for the first experiment year). 
     576These two parameters have then to be set to 2 for the following years (read the date in the restart file). \\ 
     577If the experiment date is outside the data time span then the first or last atmospheric concentrations are prescribed depending on whether the date is earlier or later. 
    505578 
    506579% 
    507580\paragraph{Model output} 
    508581\label{sec:output} 
    509 All output fields in Table \ref{tab:out} are routinely computed. It depends on the actual settings in \texttt{iodef.xml} whether they are stored or not. 
     582 
     583All output fields in Table \autoref{tab:out} are routinely computed. 
     584It depends on the actual settings in \texttt{iodef.xml} whether they are stored or not. 
    510585% 
    511586\begin{table}[!h] 
    512587\begin{center} 
    513 \caption{Standard output fields for the C14 package \label{tab:out}. 
    514 } 
     588\caption{Standard output fields for the C14 package \label{tab:out}.} 
    515589%\begin{small} 
    516590\renewcommand{\arraystretch}{1.3}% 
    517591\begin{tabular}[h]{|l*{3}{|c}|l|} 
    518592\hline 
    519 Field & Type & Dim & Units & Description \\ \hline 
    520 RC14 & ptrc & 3-D & -        & Radiocarbon ratio \\ 
    521 DeltaC14 & diad & 3-D & \textperthousand & $\Dcq$\\ 
    522 C14Age & diad & 3-D & yr &   Radiocarbon age \\ 
    523 RAge & diad & 2-D & yr & Reservoir age\\ 
    524 qtr\_c14 &  diad & 2-D & m$^{-2}$ yr$^{-1}$ & Air-to-sea net $\Rq$ flux\\ 
    525 qint\_c14 & diad & 2-D &   m$^{-2}$ &  Cumulative air-to-sea $\Rq$ flux \\ 
    526 AtmCO2 & scalar & 0-D & ppm & Global atmospheric $\cd$ \\ 
    527 AtmC14 & scalar & 0-D & \textperthousand  & Global atmospheric $\Dcq$\\ 
    528 K\_CO2 & scalar & 0-D & cm h$^{-1}$  & Global $\cd$ piston velocity ($ \overline{\kappa_{\cd}}$) \\ 
    529 K\_C14 & scalar & 0-D &m yr$^{-1}$ & Global $\Rq$ transfer velocity  ($ \overline{\kappa_R}$)\\ 
    530 C14Inv & scalar & 0-D & $10^{26}$ atoms & Ocean radiocarbon inventory \\ \hline 
     593Field     & Type   & Dim & Units              & Description                                              \\ \hline 
     594RC14      & ptrc   & 3-D & -                  & Radiocarbon ratio                                        \\ 
     595DeltaC14  & diad   & 3-D & \textperthousand   & $\Dcq$                                                    \\ 
     596C14Age    & diad   & 3-D & yr                 & Radiocarbon age                                          \\ 
     597RAge      & diad   & 2-D & yr                 & Reservoir age                                             \\ 
     598qtr\_c14  & diad   & 2-D & m$^{-2}$ yr$^{-1}$ & Air-to-sea net $\Rq$ flux                                 \\ 
     599qint\_c14 & diad   & 2-D & m$^{-2}$           & Cumulative air-to-sea $\Rq$ flux                          \\ 
     600AtmCO2    & scalar & 0-D & ppm                & Global atmospheric $\cd$                                  \\ 
     601AtmC14    & scalar & 0-D & \textperthousand   & Global atmospheric $\Dcq$                                 \\ 
     602K\_CO2    & scalar & 0-D & cm h$^{-1}$        & Global $\cd$ piston velocity ($ \overline{\kappa_{\cd}}$) \\ 
     603K\_C14    & scalar & 0-D & m yr$^{-1}$        & Global $\Rq$ transfer velocity  ($ \overline{\kappa_R}$)  \\ 
     604C14Inv    & scalar & 0-D & $10^{26}$ atoms    & Ocean radiocarbon inventory                              \\ \hline 
    531605\end{tabular} 
    532606%\end{small} 
     
    539613The radiocarbon age is computed as  $(-1/\lambda) \ln{ \left( \Rq \right)}$, with zero age corresponding to $\Rq=1$. 
    540614 
    541 The reservoir age is the age difference between the ocean uppermost layer and the atmosphere. It is usually reported as conventional radiocarbon age; i.e., computed by means of the Libby radiocarbon mean life \cite[8033 yr;][]{stuiver_1977} 
     615The reservoir age is the age difference between the ocean uppermost layer and the atmosphere. 
     616It is usually reported as conventional radiocarbon age; i.e., computed by means of the Libby radiocarbon mean life \cite[8033 yr;][]{stuiver_1977} 
     617 
    542618\begin{align} 
    543619{^{14}\tau_\mathrm{c}}= -8033 \; \ln \left(1 + \frac{\Dcq}{10^3}\right), \label{eq:convage} 
    544620\end{align} 
    545 where ${^{14}\tau_\mathrm{c}}$ is expressed in years B.P. Here we do not use that convention and compute reservoir ages with the mean lifetime $1/\lambda$. Conversion from one scale to the other is readily performed. The conventional radiocarbon age is lower than the radiocarbon age by $\simeq3\%$. 
     621 
     622where ${^{14}\tau_\mathrm{c}}$ is expressed in years B.P. 
     623Here we do not use that convention and compute reservoir ages with the mean lifetime $1/\lambda$. 
     624Conversion from one scale to the other is readily performed. 
     625The conventional radiocarbon age is lower than the radiocarbon age by $\simeq3\%$. 
    546626 
    547627The ocean radiocarbon  inventory is computed as 
     628 
    548629\begin{equation} 
    549630N_A \Rq_\mathrm{oxa} \overline{\Ct} \left( \int_\Omega \Rq d\Omega \right) /10^{26}, \label{eq:inv} 
    550631\end{equation} 
    551 where $N_A$ is the Avogadro's number ($N_A=6.022\times10^{23}$ at/mol), $\Rq_\mathrm{oxa}$ is the oxalic acid radiocarbon standard \cite[$\Rq_\mathrm{oxa}=1.176\times10^{-12}$;][]{stuiver_1977}, and $\Omega$ is the ocean volume.  Bomb $\cq$ inventories are traditionally reported in units of $10^{26}$ atoms, hence the denominator in \eqref{eq:inv}. 
    552  
    553 All transformations from second to year, and inversely, are performed with the help of the physical constant \CODE{rsiyea} the sideral year length expressed in seconds\footnote{The variable (\CODE{nyear\_len}) which reports the length in days of the previous/current/future year (see \textrm{oce\_trc.F90}) is not a constant. }. 
     632 
     633where $N_A$ is the Avogadro's number ($N_A=6.022\times10^{23}$ at/mol), $\Rq_\mathrm{oxa}$ is the oxalic acid radiocarbon standard \cite[$\Rq_\mathrm{oxa}=1.176\times10^{-12}$;][]{stuiver_1977}, and $\Omega$ is the ocean volume. 
     634Bomb $\cq$ inventories are traditionally reported in units of $10^{26}$ atoms, hence the denominator in \autoref{eq:inv}. 
     635 
     636All transformations from second to year, and inversely, are performed with the help of the physical constant \forcode{rsiyea} the sideral year length expressed in seconds\footnote{The variable (\forcode{nyear\_len}) which reports the length in days of the previous/current/future year (see \textrm{oce\_trc.F90}) is not a constant. }. 
    554637 
    555638The global transfer velocities represent time-averaged\footnote{the actual duration is set in \texttt{iodef.xml}} global integrals of the transfer rates: 
    556  \begin{equation} 
     639 
     640\begin{equation} 
    557641 \overline{\kappa_{\cd}}= \int_\mathcal{S} \kappa_{\cd} d\mathcal{S}  \text{ and } \overline{\kappa_R}= \int_\mathcal{S} \kappa_R d\mathcal{S} 
    558642\end{equation} 
     
    561645\subsection{PISCES biogeochemical model} 
    562646 
    563 PISCES is a biogeochemical model which simulates the lower trophic levels of marine ecosystem (phytoplankton, microzooplankton and mesozooplankton) and the biogeochemical cycles of carbonand of the main nutrients (P, N, Fe, and Si). The  model is intended to be used for both regional and global configurations at high or low spatial resolutions as well as for  short-term (seasonal, interannual) and long-term (climate change, paleoceanography) analyses. 
     647PISCES is a biogeochemical model which simulates the lower trophic levels of marine ecosystem (phytoplankton, microzooplankton and mesozooplankton) and the biogeochemical cycles of carbonand of the main nutrients (P, N, Fe, and Si). 
     648The  model is intended to be used for both regional and global configurations at high or low spatial resolutions as well as for  short-term (seasonal, interannual) and long-term (climate change, paleoceanography) analyses. 
    564649Two versions of PISCES are available in NEMO v4.0 : 
    565650 
    566 PISCES-v2, by setting in namelist\_pisces\_ref  \np{ln\_p4z} to true,  can be seen as one of the many Monod models \citep{monod_1958}. It assumes a constant Redfield ratio and phytoplankton growth depends on the external concentration in nutrients. There are twenty-four prognostic variables (tracers) including two phytoplankton compartments  (diatoms and nanophytoplankton), two zooplankton size-classes (microzooplankton and  mesozooplankton) and a description of the carbonate chemistry. Formulations in PISCES-v2 are based on a mixed Monod/Quota formalism: On one hand, stoichiometry of C/N/P is fixed and growth rate of phytoplankton is limited by the external availability in N, P and Si. On the other hand, the iron and silicium quotas are variable and growth rate of phytoplankton is limited by the internal availability in Fe. Various parameterizations can be activated in PISCES-v2, setting for instance the complexity of iron chemistry or the description of particulate organic materials. 
    567  
    568 PISCES-QUOTA has been built on the PISCES-v2 model described in \citet{aumont_2015}. PISCES-QUOTA has thirty-nine prognostic compartments. Phytoplankton growth can be controlled by five modeled limiting nutrients: Nitrate and Ammonium, Phosphate, Silicate and Iron. Five living compartments are represented: Three phytoplankton size classes/groups corresponding to picophytoplankton, nanophytoplankton and diatoms, and two zooplankton size classes which are microzooplankton and mesozooplankton. For phytoplankton, the prognostic variables are the carbon, nitrogen, phosphorus,  iron, chlorophyll and silicon biomasses (the latter only for diatoms). This means that the N/C, P/C, Fe/C and Chl/C ratios of both phytoplankton groups as well as the Si/C ratio of diatoms are prognostically predicted  by the model. Zooplankton are assumed to be strictly homeostatic \citep[e.g.,][]{sterner_2003,woods_2013,meunier_2014}. As a consequence, the C/N/P/Fe ratios of these groups are maintained constant and are not allowed to vary. In PISCES, the Redfield ratios C/N/P are set to 122/16/1 \citep{takahashi_1985} and the -O/C ratio is set to 1.34 \citep{kortzinger_2001}. No silicified zooplankton is assumed. The bacterial pool is not yet explicitly modeled. 
    569  
    570 There are three non-living compartments: Semi-labile dissolved organic matter, small sinking particles, and large sinking particles. As a consequence of the variable stoichiometric ratios of phytoplankton and of the stoichiometric regulation of zooplankton, elemental ratios in organic matter cannot be supposed constant anymore as that was the case in PISCES-v2. Indeed, the nitrogen, phosphorus, iron, silicon and calcite pools of the particles are now all explicitly modeled. The sinking speed of the particles is not altered by their content in calcite and biogenic silicate (''The ballast effect'', \citep{honjo_1996,armstrong_2001}). The latter particles are assumed to sink at the same speed as the large organic matter particles. All the non-living compartments experience aggregation due to turbulence and differential settling as well as Brownian coagulation for DOM. 
    571  
     651PISCES-v2, by setting in namelist\_pisces\_ref  \np{ln\_p4z} to true,  can be seen as one of the many Monod models \citep{monod_1958}. 
     652It assumes a constant Redfield ratio and phytoplankton growth depends on the external concentration in nutrients. 
     653There are twenty-four prognostic variables (tracers) including two phytoplankton compartments  (diatoms and nanophytoplankton), two zooplankton size-classes (microzooplankton and  mesozooplankton) and a description of the carbonate chemistry. 
     654Formulations in PISCES-v2 are based on a mixed Monod/Quota formalism: On one hand, stoichiometry of C/N/P is fixed and growth rate of phytoplankton is limited by the external availability in N, P and Si. 
     655On the other hand, the iron and silicium quotas are variable and growth rate of phytoplankton is limited by the internal availability in Fe. 
     656Various parameterizations can be activated in PISCES-v2, setting for instance the complexity of iron chemistry or the description of particulate organic materials. 
     657 
     658PISCES-QUOTA has been built on the PISCES-v2 model described in \citet{aumont_2015}. 
     659PISCES-QUOTA has thirty-nine prognostic compartments. 
     660Phytoplankton growth can be controlled by five modeled limiting nutrients: Nitrate and Ammonium, Phosphate, Silicate and Iron. 
     661Five living compartments are represented: Three phytoplankton size classes/groups corresponding to picophytoplankton, nanophytoplankton and diatoms, and two zooplankton size classes which are microzooplankton and mesozooplankton. 
     662For phytoplankton, the prognostic variables are the carbon, nitrogen, phosphorus,  iron, chlorophyll and silicon biomasses (the latter only for diatoms). 
     663This means that the N/C, P/C, Fe/C and Chl/C ratios of both phytoplankton groups as well as the Si/C ratio of diatoms are prognostically predicted  by the model. 
     664Zooplankton are assumed to be strictly homeostatic \citep[e.g.,][]{sterner_2003,woods_2013,meunier_2014}. 
     665As a consequence, the C/N/P/Fe ratios of these groups are maintained constant and are not allowed to vary. 
     666In PISCES, the Redfield ratios C/N/P are set to 122/16/1 \citep{takahashi_1985} and the -O/C ratio is set to 1.34 \citep{kortzinger_2001}. 
     667No silicified zooplankton is assumed. 
     668The bacterial pool is not yet explicitly modeled. 
     669 
     670There are three non-living compartments: Semi-labile dissolved organic matter, small sinking particles, and large sinking particles. 
     671As a consequence of the variable stoichiometric ratios of phytoplankton and of the stoichiometric regulation of zooplankton, elemental ratios in organic matter cannot be supposed constant anymore as that was the case in PISCES-v2. 
     672Indeed, the nitrogen, phosphorus, iron, silicon and calcite pools of the particles are now all explicitly modeled. 
     673The sinking speed of the particles is not altered by their content in calcite and biogenic silicate (''The ballast effect'', \citep{honjo_1996,armstrong_2001}). 
     674The latter particles are assumed to sink at the same speed as the large organic matter particles. 
     675All the non-living compartments experience aggregation due to turbulence and differential settling as well as Brownian coagulation for DOM. 
    572676 
    573677\subsection{MY\_TRC interface for coupling external BGC models} 
    574678\label{Mytrc} 
    575679 
    576 The NEMO-TOP has only one built-in biogeochemical model - PISCES - but there are several BGC models - MEDUSA, ERSEM, BFM or ECO3M - which are meant to be coupled with the NEMO dynamics. Therefore it was necessary to provide to the users a framework for easily add their own BGCM model, that can be a single passive tracer. 
    577 The generalized interface is pivoted on MY\_TRC module that contains template files to build the coupling between NEMO and any external BGC model. The call to MY\_TRC is activated by setting  \textit{ln\_my\_trc} = \texttt{.true.} in namelist \textit{namtrc} 
     680The NEMO-TOP has only one built-in biogeochemical model - PISCES - but there are several BGC models - MEDUSA, ERSEM, BFM or ECO3M - which are meant to be coupled with the NEMO dynamics. 
     681Therefore it was necessary to provide to the users a framework for easily add their own BGCM model, that can be a single passive tracer. 
     682The generalized interface is pivoted on MY\_TRC module that contains template files to build the coupling between NEMO and any external BGC model. 
     683The call to MY\_TRC is activated by setting  \textit{ln\_my\_trc} = \texttt{.true.} in namelist \textit{namtrc} 
    578684 
    579685The following 6 fortran files are available in MY\_TRC with the specific purposes here described. 
     
    581687\begin{itemize} 
    582688   \item \textit{par\_my\_trc.F90} :  This module allows to define additional arrays and public variables to be used within the MY\_TRC interface 
    583    \item \textit{trcini\_my\_trc.F90} :  Here are initialized user defined namelists and the call to the external BGC model initialization procedures to populate general tracer array (trn and trb). Here are also likely to be defined suport arrays related to system metrics that could be needed by the BGC model. 
     689   \item \textit{trcini\_my\_trc.F90} :  Here are initialized user defined namelists and the call to the external BGC model initialization procedures to populate general tracer array (trn and trb). 
     690Here are also likely to be defined suport arrays related to system metrics that could be needed by the BGC model. 
    584691  \item \textit{trcnam\_my\_trc.F90} :  This routine is called at the beginning of trcini\_my\_trc and should contain the initialization of additional namelists for the BGC model or user-defined code. 
    585   \item \textit{trcsms\_my\_trc.F90} :  The routine performs the call to Boundary Conditions and its main purpose is to contain the Source-Minus-Sinks terms due to the biogeochemical processes of the external model. Be aware that lateral boundary conditions are applied in trcnxt routine. IMPORTANT: the routines to compute the light penetration along the water column and the tracer vertical sinking should be defined/called in here, as generalized modules are still missing in the code. 
    586  \item \textit{trcice\_my\_trc.F90} : Here it is possible to prescribe the tracers concentrations in the seaice that will be used as boundary conditions when ice melting occurs (nn\_ice\_tr =1 in namtrc\_ice). See e.g. the correspondent PISCES subroutine. 
    587  \item \textit{trcwri\_my\_trc.F90} : This routine performs the output of the model tracers using IOM module (see Manual Chapter Output and Diagnostics). It is possible to place here the output of additional variables produced by the model, if not done elsewhere in the code, using the call to \textit{iom\_put}. 
     692  \item \textit{trcsms\_my\_trc.F90} :  The routine performs the call to Boundary Conditions and its main purpose is to contain the Source-Minus-Sinks terms due to the biogeochemical processes of the external model. 
     693Be aware that lateral boundary conditions are applied in trcnxt routine. 
     694IMPORTANT: the routines to compute the light penetration along the water column and the tracer vertical sinking should be defined/called in here, as generalized modules are still missing in the code. 
     695 \item \textit{trcice\_my\_trc.F90} : Here it is possible to prescribe the tracers concentrations in the seaice that will be used as boundary conditions when ice melting occurs (nn\_ice\_tr =1 in namtrc\_ice). 
     696See e.g. the correspondent PISCES subroutine. 
     697 \item \textit{trcwri\_my\_trc.F90} : This routine performs the output of the model tracers using IOM module (see Manual Chapter Output and Diagnostics). 
     698It is possible to place here the output of additional variables produced by the model, if not done elsewhere in the code, using the call to \textit{iom\_put}. 
    588699\end{itemize} 
    589  
    590700 
    591701\section{The Offline Option} 
     
    596706%------------------------------------------------------------------------------------------------------------- 
    597707 
    598 Coupling passive tracers offline with NEMO requires precomputed  physical fields from OGCM. Those fields are read from files and interpolated on-the-fly at each model time step 
     708Coupling passive tracers offline with NEMO requires precomputed  physical fields from OGCM. 
     709Those fields are read from files and interpolated on-the-fly at each model time step 
    599710At least the following dynamical parameters should be absolutely passed to the transport : ocean velocities, temperature, salinity, mixed layer depth and for ecosystem models like PISCES, sea ice concentration, short wave radiation at the ocean surface, wind speed (or at least, wind stress). 
    600711The so-called offline mode is useful since it has lower computational costs for example to perform very longer simulations - about 3000 years - to reach equilibrium of CO2 sinks for climate-carbon studies. 
    601712 
    602 The offline interface is located in the code repository : \path{<repository>/src/OFF/}. It is activated by adding the CPP key  \textit{key\_offline} to the CPP keys list. There are two specifics routines for the Offline code : 
     713The offline interface is located in the code repository : \path{<repository>/src/OFF/}. 
     714It is activated by adding the CPP key  \textit{key\_offline} to the CPP keys list. 
     715There are two specifics routines for the Offline code : 
    603716 
    604717\begin{itemize} 
     
    606719   \item \textit{nemogcm.F90} :  a degraded version of the main nemogcm.F90 code of NEMO to manage the time-stepping 
    607720\end{itemize} 
    608  
    609721 
    610722%- 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global

    • Property svn:ignore set to
      *.aux
      *.bbl
      *.blg
      *.fdb*
      *.fls
      *.idx
      *.ilg
      *.ind
      *.lo*
      *.out
      *.toc
      *.xdv
      cache*
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/document.tex

    r14113 r14644  
    1  
    21%% ================================================================================================= 
    3 %% Template structure for reference manuals 
     2%% Manual structure 
    43%% ================================================================================================= 
    54 
    6 %% NEMO release version 
    7 \def \version{trunk} 
    8  
    9 %% Preamble 
     5%% Preamble: global configuration 
    106%% ================================================================================================= 
    117 
    12 %% Document layout 
    13 \documentclass[fontsize = 10pt, twoside, abstract]{scrreprt} 
     8%% Layout 
     9\documentclass[fontsize=10pt,twoside,abstract,draft]{scrreprt} 
     10%\documentclass[fontsize=10pt,twoside,abstract      ]{scrreprt} 
    1411 
    15 %% Load manual configuration 
    16 \input{../../global/prologue} 
     12%% Overall configuration  
     13\input{../../global/preamble} 
    1714 
    18 %% End of common preamble between main and sub-files 
    19 %% Override custom cmds for full manual compilation 
    20 \newcommand{\subinc}[1]{#1} 
    21 \newcommand{\subexc}[1]{} 
     15%% Special cmds around to {in,ex}clude content only in subfile 
     16  \newcommand{\subinc}[1]{#1} 
     17  \newcommand{\subexc}[1]{  } 
    2218 
    2319\begin{document} 
    2420 
    25 \renewcommand{\subinc}[1]{} 
     21\renewcommand{\subinc}[1]{  } 
    2622\renewcommand{\subexc}[1]{#1} 
    2723 
    28  
    29 %% Frontmatter 
     24%% Frontmatter: covers 
     25%% ({sub}title, DOI, authors, abstract and color theme are specific to each manual) 
    3026%% ================================================================================================= 
    3127 
     28%\frontmatter %% Not recognized in 'scrreprt' document class 
    3229\pagenumbering{gobble}   %% Disable page numbering temporarily 
     30\pagestyle{empty} 
    3331 
    34 %% Title page 
    3532\input{../../global/frontpage} 
    36  
    37 %% Footer for introductory parts (no header by cleaning default) 
    38 \ofoot[]{\engine\ Reference Manual} \ifoot[]{\pagemark} 
    39  
    40 %% Information page (2nd page) 
    4133\input{../../global/info_page} 
    4234 
     35\cleardoublepage 
     36 
     37\pagenumbering{Roman} %% Reactivate page numbering (uppercase roman numbers) 
     38\pagestyle{plain} 
     39%\lastpageref{pagesLTS.0} 
     40 
     41\tableofcontents 
    4342\listoffigures 
    4443\listoflistings 
    4544\listoftables 
     45%\listoftodos 
     46%\lastpageref{pagesLTS.Roman} 
    4647 
    47 \clearpage 
     48\cleardoublepage 
    4849 
    49 \pagenumbering{roman} 
    50 \ofoot[]{\engine\ Reference Manual} \ifoot[]{\pagemark} 
     50%% Mainmatter: toc, lists, introduction and primary chapters 
     51%% ================================================================================================= 
     52 
     53%\mainmatter %% Not recognized in 'scrreprt' document class 
     54\pagenumbering{arabic} %% Standard page numbering 
     55\pagestyle{plain} 
    5156 
    5257\input{introduction} 
    5358 
    54 %% Table of Contents 
    55 \tableofcontents 
     59\cleardoublepage 
    5660 
    57 \clearpage 
     61\pagestyle{scrheadings} 
     62\renewcommand{\chapterpagestyle}{empty} 
    5863 
     64\input{chapters} 
    5965 
    60 %% Mainmatter 
     66%% Appendix: subordinate chapters 
    6167%% ================================================================================================= 
    6268 
    63 %% Headings for document body 
    64 \pagenumbering{arabic} 
    65 \lohead{Chap.\ \thechapter\ \leftmark} \rehead{Sect.\ \thesection\ \rightmark} 
    66 \ifoot[]{Page\ \pagemark\ of \pageref*{LastPage}} 
     69\appendix %% Chapter numbering with letters by now 
     70\lohead{Apdx \thechapter\ \leftmark} 
    6771 
    68 \include{chapters} 
     72\input{appendices} 
    6973 
     74\input{../../global/coding_rules} %% Add coding rules on every manual 
    7075 
    71 %% Appendix 
     76%\lastpageref{pagesLTS.arabic} 
     77\cleardoublepage 
     78 
     79%% Backmatter: bibliography, glossaries and indices 
    7280%% ================================================================================================= 
    7381 
    74 \appendix   %% Chapter numbering with letters by now 
    75 \lohead{Apdx\ \thechapter\ \leftmark} 
    76 \include{appendices} 
     82%\backmatter %% Not recognized in 'scrreprt' document class 
     83\pagenumbering{roman} %% Lowercase roman numbers 
     84\pagestyle{plain} 
    7785 
    78 %% Append coding rules for every manual 
    79 \input{../../global/coding_rules} 
    80  
    81  
    82 %% Backmatter 
    83 %% ================================================================================================= 
    84  
    85 %% Bibliography and indexes 
    8686\input{../../global/epilogue} 
    8787 
     88%\lastpageref{pagesLTS.roman} 
     89 
    8890\end{document} 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/epilogue.tex

    r14113 r14644  
    1  
    2 \clearpage 
     1%% ================================================================================================= 
     2%% Backmatter 
     3%% ================================================================================================= 
    34 
    45%% Bibliography 
     6%% ================================================================================================= 
     7 
    58\phantomsection 
    69\addcontentsline{toc}{chapter}{Bibliography} 
    7 \lohead{Bibliography} \rehead{Bibliography} 
     10\lohead{Bibliography} 
     11\rehead{Bibliography} 
    812\bibliography{../main/bibliography} 
    913 
    1014\clearpage 
    1115 
    12 %% Indexes 
     16%% Indices 
     17%% ================================================================================================= 
     18 
    1319\phantomsection 
    14 \addcontentsline{toc}{chapter}{Indexes} 
    15 \lohead{Indexes} \rehead{Indexes} 
     20\addcontentsline{toc}{chapter}{Indices} 
     21\lohead{Indices} 
     22\rehead{Indices} 
    1623\printindex[blocks] 
    1724\printindex[keys] 
     
    1926\printindex[parameters] 
    2027\printindex[subroutines] 
     28 
     29\clearpage 
     30 
     31%% Glossary 
     32%% ================================================================================================= 
     33 
     34%\phantomsection 
     35%\addcontentsline{toc}{chapter}{Glossary} 
     36%\lohead{Glossary}\rehead{Glossary} 
     37%\printglossaries 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/frontpage.tex

    r14113 r14644  
     1%% ================================================================================================= 
     2%% Front cover 
     3%% ================================================================================================= 
    14 
    25\begin{titlepage} 
    3 \newgeometry{hmargin = 1.5cm, vmargin = 3cm} 
    4   \setlength{\parindent}{0pt} 
     6 \newgeometry{hmargin=1.5cm,vmargin=3cm} 
     7   \setlength{\parindent}{0pt} 
    58 
    6   \begin{center} 
    7     \begin{minipage}{0.3\textwidth} 
    8       \includegraphics[height=1.5cm]{logos/NEMO_grey} 
    9     \end{minipage}\begin{minipage}{0.6\textwidth} 
    10       \begin{center} 
    11       \Large\slshape 
    12       \textbf{N}ucleus for \textbf{E}uropean \textbf{M}odelling of the \textbf{O}cean \\ 
     9   \begin{center} 
     10 
     11      \begin{minipage}{0.3\textwidth} 
     12         \includegraphics[height=1.5cm]{NEMO_grey} 
     13      \end{minipage} %% Don't insert void line between `minipage` envs 
     14      \begin{minipage}{0.6\textwidth} 
     15         \begin{center} 
     16            \Large\slshape 
     17            \textbf{N}ucleus for \textbf{E}uropean \textbf{M}odelling of the \textbf{O}cean \\ 
     18            \medskip 
     19            \hyperref[resources]{ 
     20               \faWordpress \hspace{1cm} \faCodeFork      \hspace{1cm} 
     21               \faGithub    \hspace{1cm} \faCloudDownload \hspace{1cm} \faEnvelope 
     22            } 
     23         \end{center} 
     24      \end{minipage} 
     25 
     26   \end{center} 
     27 
     28   \spcup 
     29   \textcolor{white}{\fontsize{0.8cm}{0.8cm}\selectfont\textbf{\hdg}} 
     30   \ifdef{\shdg}{\medskip\par\textcolor{white}{\Huge\shdg}}{} 
     31   \spcdn 
     32 
     33   \begin{center} 
     34      \LARGE Version {\ver} - {\today} \\ 
    1335      \medskip 
    14       \hyperref[resources]{\textcolor{black}{ 
    15           \faWordpress \hspace{0.75cm} \faCodeFork      \hspace{0.75cm} 
    16           \faGithub    \hspace{0.75cm} \faCloudDownload \hspace{0.75cm} \faEnvelope 
    17         } 
    18       } 
    19       \end{center} 
    20     \end{minipage} 
    21   \end{center} 
     36      \href{http://doi.org/10.5281/zenodo.\zid}{\includegraphics{zenodo.\zid}} 
     37   \end{center} 
    2238 
    23   \spacetop 
    24   \textcolor{white}{\fontsize{0.8cm}{0.8cm}\selectfont\textbf{\heading}} 
    25   \ifdef{\subheading}{ 
    26     \medskip 
    27     \par 
    28     \textcolor{white}{\Huge \subheading} 
    29   }{} 
    30   \spacedown 
     39   \vfill 
    3140 
    32   \begin{center} 
    33     \LARGE Version \version\ -\ \today \\ 
    34     \medskip 
    35     \href{http://doi.org/10.5281/zenodo.\zid}{ \includegraphics{badges/zenodo.\zid} } 
    36   \end{center} 
     41   \begin{minipage}{\autwd} 
     42      \raggedleft\input{authors} 
     43   \end{minipage} 
     44   \hspace{15pt} %% Don't insert void line between `minipage` envs 
     45   \begin{minipage}{0.02\linewidth} 
     46      \rule{1pt}{\lnlg} 
     47   \end{minipage} 
     48   \hspace{ 5pt} %%   "     ""    ""   ""     "        ""      "" 
     49   \begin{minipage}{\abswd} 
     50      \begin{abstract} 
     51         \input{abstract} 
     52      \end{abstract} 
     53   \end{minipage} 
    3754 
    38   \vfill 
     55   \vfill 
    3956 
    40   \begin{minipage}{\authorswidth} 
    41     \raggedleft 
    42     \input{authors} 
    43   \end{minipage}\hspace{15pt}\begin{minipage}{0.02\linewidth} 
    44     \rule{1pt}{\rulelenght} 
    45   \end{minipage}\hspace{ 5pt}\begin{minipage}{\abstractwidth} 
    46     \begin{abstract} 
    47       \input{abstract} 
    48     \end{abstract} 
    49   \end{minipage} 
    50  
    51   \vfill 
    52  
    53   \begin{center} 
    54     \Large 
    55     \href{http://www.cmcc.it          }{ \includegraphics[height=1cm]{logos/CMCC} } \hspace{0.25cm} 
    56     \href{http://www.cnrs.fr          }{ \includegraphics[height=1cm]{logos/CNRS} } \hspace{0.25cm} 
    57     \href{http://www.mercator-ocean.fr}{ \includegraphics[height=1cm]{logos/MOI}  } \hspace{0.25cm} 
    58     \href{http://www.metoffice.gov.uk }{ \includegraphics[height=1cm]{logos/UKMO} } \hspace{0.25cm} 
    59     \href{http://nerc.ukri.org        }{ \includegraphics[height=1cm]{logos/NERC} } \\ 
    60     \medskip 
    61     \slshape 
    62     {C}ommunity \hspace{1.5em} {O}cean \hspace{1.5em} {M}odel \\ 
    63   \end{center} 
     57   \begin{center} 
     58      \Large 
     59      \CMCC{\includegraphics[height=1cm]{CMCC}} \hspace{0.25cm} 
     60      \CNRS{\includegraphics[height=1cm]{CNRS}} \hspace{0.25cm} 
     61       \MOI{\includegraphics[height=1cm]{MOI} } \hspace{0.25cm} 
     62      \UKMO{\includegraphics[height=1cm]{UKMO}} \hspace{0.25cm} 
     63      \NERC{\includegraphics[height=1cm]{NERC}}                 \\ 
     64      \medskip 
     65      \slshape 
     66         {C}ommunity \hspace{1.5em} {O}cean \hspace{1.5em} {M}odel 
     67   \end{center} 
    6468 
    6569\end{titlepage} 
    6670 
    67 \restoregeometry 
     71%\restoregeometry 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/highlighting.tex

    r14113 r14644  
     1%% ================================================================================================= 
    12%% Syntax highlighting configuration 
    2 %% ============================================================================== 
    3  
    4 \usepackage[outputdir=../build, chapter, newfloat]{minted} 
     3%% ================================================================================================= 
    54 
    65%% Global highlighting style 
    7 \definecolor{bg}{HTML}{f8f8f8} 
     6\definecolor{bg}{HTML}{f8f8f8} %% ? 
    87\usemintedstyle{emacs} 
    9 \setminted{bgcolor=bg, fontsize=\scriptsize, breaklines} 
    10 \setminted[xml]{style=borland} %% Specific per language 
     8\setminted{bgcolor=bg,fontsize=\scriptsize,breaklines} 
     9\setminted[xml]{style=borland} %% Specific style for XML 
     10 
     11%% Inline 
     12\newmintinline[forcode]{fortran}{bgcolor=,fontsize=auto} %% \forcode{...} 
     13\newmintinline[xmlcode]{xml}{    bgcolor=,fontsize=auto} %% \xmlcode{...} 
     14\newmintinline[snippet]{console}{bgcolor=,fontsize=auto} %% \snippet{...} 
    1115 
    1216%% Oneliner 
    13 \newmint[forline]{fortran}{}   % \forline|...| 
    14 \newmint[xmlline]{xml}{}       % \xmlline|...| 
    15 \newmint[cmd]{console}{}       % \cmd|...| 
     17\newmint[forline]{fortran}{} %% \forline|...| 
     18\newmint[xmlline]{xml    }{} %% \xmlline|...| 
     19\newmint[cmd]{    console}{} %% \cmd|...| 
    1620 
    1721%% Multi-lines 
    18 \newminted[forlines]{fortran}{}   % \begin{forlines} 
    19 \newminted[xmllines]{xml}{}       % \begin{xmllines} 
    20 \newminted[cmds]{console}{}       % \begin{cmds} 
    21 \newminted[clines]{c}{}           % \begin{clines} 
     22\newminted[forlines]{fortran}{} %% \begin{forlines} 
     23\newminted[xmllines]{xml    }{} %% \begin{xmllines} 
     24\newminted[cmds]{    console}{} %% \begin{cmds} 
     25\newminted[clines]{  c      }{} %% \begin{clines} 
    2226 
    23 %% File 
     27%% File (namelist or module) 
    2428\newmintedfile[forfile]{fortran}{} 
    25  
    26 %% Inline 
    27 \newmintinline[forcode]{fortran}{bgcolor=, fontsize=auto}   % \forcode{...} 
    28 \newmintinline[xmlcode]{xml}{    bgcolor=, fontsize=auto}   % \xmlcode{...} 
    29 \newmintinline[snippet]{console}{bgcolor=, fontsize=auto}   % \snippet{...} 
    3029 
    3130%% Namelists inclusion 
    3231\newcommand{\nlst}[1]{\forfile{../../../namelists/#1}} 
     32 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/info_page.tex

    r14113 r14644  
     1%% ================================================================================================= 
     2%% Back cover 
     3%% ================================================================================================= 
    14 
    2 \thispagestyle{plain} 
     5%% Disclaimer 
     6%% ================================================================================================= 
    37 
    4 %% ================================================================ 
    5 %% Disclaimer 
    6 %% ================================================================ 
    78\subsubsection*{Disclaimer} 
    89 
    910Like all components of the modelling framework, 
    10 the \engine\ core engine is developed under the \href{http://www.cecill.info}{CECILL license}, 
     11the \eng\ core engine is developed under the \href{http://www.cecill.info}{CECILL license}, 
    1112which is a French adaptation of the GNU GPL (\textbf{G}eneral \textbf{P}ublic \textbf{L}icense). 
    1213Anyone may use it freely for research purposes, and is encouraged to 
     
    2021The authors assume no responsibility for problems, errors, or incorrect usage of \NEMO. 
    2122 
    22 %% ================================================================ 
    2323%% External resources 
    24 %% ================================================================ 
     24%% ================================================================================================= 
     25 
    2526\subsubsection*{Other resources} 
    2627\label{resources} 
    2728 
    2829Additional information can be found on: 
     30 
    2931\begin{itemize} 
    30 \item \faWordpress\ the \href{http://www.nemo-ocean.eu}{website} of the project detailing several 
    31   associated applications and an exhaustive users bibliography 
    32 \item \faCodeFork\ the \href{http://forge.ipsl.jussieu.fr/nemo}{development platform} of 
    33   the model with the code repository for the shared reference and some main resources 
    34   (wiki, ticket system, forums, \ldots) \\ 
    35   \faGithub\ the \href{http://github.com/NEMO-ocean/NEMO-examples} 
    36   {repository of the demonstration cases} for research or training 
    37 \item \faCloudDownload\ the \href{http://zenodo.org/communities/nemo-ocean}{online archive} 
    38   delivering the publications issued by the consortium (manuals, reports, datasets, \ldots) 
    39 \item \faEnvelope\ two mailing lists: 
    40   the \href{http://listes.ipsl.fr/sympa/info/nemo-newsletter}{newsletter} for 
    41   top-down communications from the project 
    42   (announcements, calls, job opportunities, \ldots) 
    43   and the \href{http://listes.ipsl.fr/sympa/info/nemo-forge}{forge updates} 
    44   (commits, tickets and forums) 
     32   \item \faWordpress\ the \href{http://www.nemo-ocean.eu}{website} of the project detailing 
     33      several associated applications and an exhaustive users bibliography 
     34   \item \faCodeFork\ the \href{http://forge.ipsl.jussieu.fr/nemo}{development platform} of 
     35      the model with the code repository for the shared reference and some main resources 
     36      (wiki, ticket system, forums, \ldots) \\ 
     37      \faGithub\ the \href{http://github.com/NEMO-ocean/NEMO-examples} 
     38      {repository of the demonstration cases} for research or training 
     39   \item \faCloudDownload\ the \href{http://zenodo.org/communities/nemo-ocean}{online archive} 
     40      delivering the publications issued by the consortium (manuals, reports, datasets, \ldots) 
     41   \item \faEnvelope\ two mailing lists: 
     42      the \href{http://listes.ipsl.fr/sympa/info/nemo-newsletter}{newsletter} for 
     43      top-down communications from the project (announcements, calls, job opportunities, \ldots) 
     44      and the \href{http://listes.ipsl.fr/sympa/info/nemo-forge}{forge updates} 
     45      (commits, tickets and forums) 
    4546\end{itemize} 
    4647 
    47 %% ================================================================ 
    4848%% Citation 
    49 %% ================================================================ 
     49%% ================================================================================================= 
     50 
    5051\subsubsection*{Citation} 
    5152 
     
    5556 
    5657\begin{sloppypar} 
    57   ``{\bfseries \heading}\ifdef{\subheading}{ -- \subheading}{}'', 
    58   {\em Scientific Notes of Climate Modelling Center}, \textbf{\ipslnum} --- ISSN 1288-1619, 
    59   Institut Pierre-Simon Laplace (IPSL), 
    60   \href{https://doi.org/10.5281/zenodo.\zid}{doi:10.5281/zenodo.\zid} 
     58   ``{\bfseries \hdg}\ifdef{\shdg}{ -- \shdg}{}'', 
     59   {\em Scientific Notes of Climate Modelling Center}, \textbf{\ipsl} --- ISSN 1288-1619, 
     60   Institut Pierre-Simon Laplace (IPSL), 
     61   \href{https://doi.org/10.5281/zenodo.\zid}{doi:10.5281/zenodo.\zid} 
    6162\end{sloppypar} 
    6263 
    6364\begin{figure}[b] 
    64   \begin{minipage}[c]{0.7\textwidth} 
    65     \small 
    66     \ttfamily{ 
    67       Scientific Notes of Climate Modelling Center \\ 
    68       ISSN 1288-1619                               \\ 
    69       Institut Pierre-Simon Laplace (IPSL) 
    70     } 
    71   \end{minipage} 
    72   \hfill 
    73   \begin{minipage}[c]{0.25\textwidth} 
    74     \href{http://www.cmc.ipsl.fr}{\includegraphics[width=\textwidth]{logos/IPSL_master}} 
    75   \end{minipage} 
     65 
     66   \begin{minipage}[c]{0.7\textwidth} 
     67      \small 
     68      \ttfamily{ 
     69         Scientific Notes of Climate Modelling Center \\ 
     70         ISSN 1288-1619                               \\ 
     71         Institut Pierre-Simon Laplace (IPSL) 
     72      } 
     73   \end{minipage} 
     74   \hfill %% Don't insert void line between `minipage` envs 
     75   \begin{minipage}[c]{0.25\textwidth} 
     76      \href{http://www.cmc.ipsl.fr}{\includegraphics[width=\textwidth]{IPSL_master}} 
     77   \end{minipage} 
     78 
    7679\end{figure} 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/latexmk.pl

    r14113 r14644  
     1## Defaults 
     2#$silent   = 1; 
     3$pdf_mode = 5; 
    14 
    2 ## Defaults 
    3 $do_cd    = 1;   ## Change to the directory of the main source file 
    4 $silent   = 1;   ## Less verbosity 
     5## Using relative paths 
     6$ENV{'openout_any'} = 'a'       ; 
     7$do_cd              = 1         ; 
     8$out_dir            = '../build'; 
    59 
    6 ## Use of 'build' relative directory 
    7 $ENV{'openout_any'}='a'; 
    8 $out_dir = '../build'; 
    9  
    10 ## Global option 
    11 set_tex_cmds( '-shell-escape' ); 
    12  
    13 $makeindex = "makeindex %O -s ../../global/index -o $out_dir/%D $out_dir/%S"; 
     10## Custom cmds 
     11set_tex_cmds('-shell-escape -file-line-error -interaction=nonstopmode'); 
     12#set_tex_cmds('-shell-escape -file-line-error'); 
     13$makeindex = 'makeindex %O -s %R.ist -o %D %S'; 
     14## %D: Destination file (.ind for index) 
     15## %O: Options 
     16## %R: Root filename (${model}_manual) 
     17## %S: Source file      (.idx for index) 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/new_cmds.tex

    r14113 r14644  
    1 %% Global custom commands: \newcommand{<name>}[<args>][<first argument value>]{<code>} 
    2 %% ============================================================================== 
     1%% ================================================================================================= 
     2%% Global custom commands 
     3%% ================================================================================================= 
    34 
    4 %% Same slanted font for NEMO and its core engines 
    5 \newcommand{\NEMO  }{\textsl{NEMO}} 
    6 \newcommand{\OPA   }{\textsl{OPA}} 
    7 \newcommand{\SIcube}{\textsl{SI$^3$}} 
    8 \newcommand{\TOP   }{\textsl{TOP}} 
    9 \newcommand{\PISCES}{\textsl{PISCES}} 
     5%% \newcommand{<name>}[<args>][<first argument value>]{<code>} 
     6 
     7%% Same font for NEMO and its core engines 
     8\newcommand{\NEMO   }{\textsl{NEMO}} 
     9\newcommand{\OPA    }{\textsl{OPA}} 
     10\newcommand{\SIcube }{\textsl{SI$^3$}} 
     11\newcommand{\TOP    }{\textsl{TOP}} 
     12\newcommand{\PISCES }{\textsl{PISCES}} 
    1013\newcommand{\NEMOVAR}{\textsl{NEMOVAR}} 
    1114 
    12 %% Links for external components 
    13 \newcommand{\AGRIF}{\href{http://agrif.imag.fr}{AGRIF}} 
     15%% URL links for consortium institutes and external components 
     16\newcommand{\CMCC }{\href{http://www.cmcc.it}          } 
     17\newcommand{\CNRS }{\href{http://www.cnrs.fr}          } 
     18\newcommand{\MOI  }{\href{http://www.mercator-ocean.fr}} 
     19\newcommand{\UKMO }{\href{http://www.metoffice.gov.uk} } 
     20\newcommand{\NERC }{\href{http://nerc.ukri.org}        } 
     21\newcommand{\AGRIF}{\href{http://agrif.imag.fr                  }{AGRIF}} 
     22\newcommand{\BFM  }{\href{http://bfm-community.eu               }{BFM}} 
    1423\newcommand{\CICE }{\href{http://github.com/CICE-Consortium/CICE}{CICE}} 
    15 \newcommand{\OASIS}{\href{http://portal.enes.org/oasis}{OASIS}} 
    16 \newcommand{\XIOS }{\href{http://forge.ipsl.jussieu.fr/ioserver}{XIOS}} 
     24\newcommand{\OASIS}{\href{http://portal.enes.org/oasis          }{OASIS}} 
     25\newcommand{\XIOS }{\href{http://forge.ipsl.jussieu.fr/ioserver }{XIOS}} 
    1726 
    1827%% Fortran in small capitals 
     
    2231%% Common aliases 
    2332\renewcommand{\deg}[1][]{\ensuremath{^{\circ}#1}} 
     33\newcommand{\eg    }{\ensuremath{e.g.}} 
     34\newcommand{\ie    }{\ensuremath{i.e.}} 
    2435\newcommand{\zstar }{\ensuremath{z^\star}} 
    2536\newcommand{\sstar }{\ensuremath{s^\star}} 
    2637\newcommand{\ztilde}{\ensuremath{\tilde z}} 
    2738\newcommand{\stilde}{\ensuremath{\tilde s}} 
    28 \newcommand{\ie}{\ensuremath{i.e.}} 
    29 \newcommand{\eg}{\ensuremath{e.g.}} 
    30  
    31 %% Inline maths 
    32 \newcommand{\fractext}[2]{\textstyle \frac{#1}{#2}} 
    33 \newcommand{\rdt}{\Delta t} 
    3439 
    3540%% Gurvan's comments 
    3641\newcommand{\cmtgm}[1]{} 
    3742 
    38 %% Maths 
     43%% Maths: reduce equation 
     44\newcommand{\fractext}[2]{\textstyle\frac{#1}{#2}} 
    3945\newcommand{\lt}{\left} 
     46\newcommand{\pd}[2][]{\ensuremath{\frac{\partial #1}{\partial #2}}} 
     47\newcommand{\rdt}{\Delta t} 
    4048\newcommand{\rt}{\right} 
    41 \newcommand{\vect}[1]{\ensuremath{ \mathbf{#1} }} 
    42 \newcommand{\pd}[2][]{\ensuremath{\frac{\partial #1}{\partial #2}}} 
    43  
    44 %% Convert chapter/section headings to lowercase 
    45 \renewcommand{\chaptermark}[1]{\markboth{#1}{}} 
    46 \renewcommand{\sectionmark}[1]{\markright{#1}{}} 
     49\newcommand{\vect}[1][]{\ensuremath{\mathbf{#1}}} 
    4750 
    4851%% Retrieve month name 
    4952\renewcommand{\today}{ 
    50   \ifcase \month\or January\or February\or March\or 
    51                     April\or   May\or      June\or 
    52                     July\or    August\or   September\or 
    53                     October\or November\or December 
     53  \ifcase \month\or   January\or February\or    March\or    April\or 
     54                          May\or     June\or     July\or   August\or 
     55                    September\or  October\or November\or December 
    5456  \fi, \number \year 
    5557} 
    5658 
    57 %% Link to orcid profile 
    58 \newcommand{\orcid}[1]{\href{http://orcid.org/#1}{\textcolor{orcidcolor}\aiOrcidSquare}} 
     59%% Custom aliases 
     60\newcommand{\cf}{\ensuremath{C\kern-0.14em f}} 
     61\newcommand{\rML}[1][i]{\ensuremath{_{\mathrm{ML}\,#1}}} 
     62\newcommand{\rMLt}[1][i]{\tilde{r}_{\mathrm{ML}\,#1}} 
     63\newcommand{\triad}[6][]{\ensuremath{{}_{#2}^{#3}{\mathbb{#4}_{#1}}_{#5}^{\,#6}}} 
     64\newcommand{\triadd}[5]{\ensuremath{{}_{#1}^{#2}{\mathbb{#3}}_{#4}^{\,#5}}} 
     65\newcommand{\triadt}[5]{\ensuremath{{}_{#1}^{#2}{\tilde{\mathbb{#3}}}_{#4}^{\,#5}}} 
     66\newcommand{\rtriad}[2][]{\ensuremath{\triad[#1]{i}{k}{#2}{i_p}{k_p}}} 
     67\newcommand{\rtriadt}[1]{\ensuremath{\triadt{i}{k}{#1}{i_p}{k_p}}} 
    5968 
    60 %% Workaround for \listoffigures 
    61 \DeclareRobustCommand{\triad}[6][]{\ensuremath{ {}_{#2}^{#3} { \mathbb{#4}_{#1} }_{#5}^{\,#6} }} 
    62  
    63 %% New command for ToC 
    64 \newcommand{\chaptertoc}[1][Table of contents]{% 
    65   \thispagestyle{empty} 
    66   \etocsettocstyle{\addsec*{#1}}{}% 
    67   \localtableofcontents% 
     69%% New command for ToC (?) 
     70\newcommand{\chaptertoc}[1][Table of contents]{ 
     71  \etocsettocstyle{\addsec*{#1}}{} 
     72  \localtableofcontents 
    6873  \vfill 
    6974} 
     75 
     76%% ORCID links 
     77\newcommand{\orcid}[1]{\href{http://orcid.org/#1}{\textcolor{orcidclr}\aiOrcidSquare}} 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/packages.tex

    r14113 r14644  
     1%% ================================================================================================= 
     2%% Packages 
     3%% ================================================================================================= 
    14 
    2 %% LaTeX packages in use 
    3 %% ============================================================================== 
     5%% Document class 
     6\usepackage[footsepline=0.25pt,headsepline=0.25pt]{scrlayer-scrpage} %% KOMA-script 
    47 
    5 %% 'hyperref' pkg is loaded at the end of the preamble for higher compatibility 
    6  
    7 %% KOMA-script 
    8 \usepackage[footsepline=0.25pt, headsepline=0.25pt]{scrlayer-scrpage} 
    9  
    10 %% customization (layout, header/footer styles & contents, background) 
    11 \usepackage{draftwatermark} 
    12 \usepackage[margin = 2cm]{geometry} 
    13 \usepackage[pages = some]{background}   %% 'some' for title page 
    14 \usepackage[Bjornstrup]{fncychap} 
     8%% Customisation (cover page, chapter headings and mark of draft copy) 
     9\usepackage[margin=2cm]{geometry} %% Why 2cm margin? Load geometry before background! 
     10\usepackage[pages=some]{background} %% 'some' for title page 
     11\usepackage[scale=15,color=pink]{draftwatermark} 
     12\usepackage[Bjornstrup]{fncychap} %% Chapter style 
    1513 
    1614%% Fonts 
    1715\usepackage{fontspec} 
    18 %% Issue with fontawesome pkg: path to FontAwesome.otf has to be hard-coded 
    19 \defaultfontfeatures{ 
    20     Path = /home/nicolas/.local/texlive/2020/texmf-dist/fonts/opentype/public/fontawesome/ 
    21 } 
    22 \usepackage{academicons, fontawesome, newtxtext} 
     16%% Issue with path to 'FontAwesome.otf' 
     17\defaultfontfeatures{Path=/usr/local/texlive/2020/texmf-dist/fonts/opentype/public/fontawesome/} 
     18\usepackage{academicons,fontawesome} 
    2319 
    2420%% Formatting 
    2521\usepackage[inline]{enumitem} 
    26 \usepackage{etoc, tabularx, xcolor} 
     22\usepackage{etoc,tabularx,xcolor} 
    2723 
    2824%% Graphics 
    29 \usepackage{caption, graphicx, grffile} 
     25\usepackage{caption} 
     26\graphicspath{{../../../badges/}{../figures/}{../../../logos/}} 
    3027 
    3128%% Labels 
    32 \usepackage{lastpage, natbib} 
     29\usepackage{lastpage,natbib} 
     30%\usepackage{natbib,pageslts} 
    3331 
    34 %% Mathematics 
    35 \usepackage{amsmath, amssymb, mathtools} 
     32%% Mathematics: 'amsmath' is loaded by 'mathtools' 
     33\usepackage{mathtools,amssymb} 
    3634 
    3735%% Versatility 
    3836\usepackage{subfiles} 
    3937 
    40 %% Configuration 
    41 \graphicspath{ {../../../} {../figures/} } 
     38%% Source code listings 
     39\usepackage[cachedir=cache,outputdir=../build,chapter,newfloat]{minted} 
     40%% chapter? newfloat? 
     41 
     42%% Indexing and cross-referencing, loaded at the end for higher compatibility 
     43\usepackage{hyperref,imakeidx} 
    4244 
    4345%% Missing utmr8a font 
    4446\usepackage{times} 
    45  
    46 \usepackage{hyperref}   %% links 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/styles.tex

    r14113 r14644  
    1  
     1%% ================================================================================================= 
    22%% Styles 
    3 %% ============================================================================== 
     3%% ================================================================================================= 
    44 
    55%% Colors 
    6 \setmanualcolor 
    7 \colorlet{manualcolorshaded}{manualcolor!60} 
    8 \definecolor{orcidcolor}{HTML}{A6CE39} 
     6\definecolor{orcidclr}{HTML}{A6CE39} 
     7\definecolor{manclr}{cmyk}{\clr} %% \clr defined for each manual from local settings.tex 
     8\colorlet{manclrshd}{manclr!60} %% Derived color for chapter heading, see below 
     9 
     10%% Cover page 
     11\backgroundsetup{ 
     12   firstpage=true,scale=1,angle=0,opacity=1, 
     13   contents ={ 
     14      \begin{tikzpicture}[remember picture,overlay] 
     15         \path[fill=manclr] (-0.5\paperwidth,7) rectangle (0.5\paperwidth,10); 
     16      \end{tikzpicture} 
     17    } 
     18} 
    919 
    1020%% Page layout 
    11 \pagestyle{scrheadings} 
     21%\pagestyle{scrheadings} 
     22%\renewcommand{\chapterpagestyle}{empty} 
     23\renewcommand{\chaptermark}[1]{\markboth{ #1}{}} %% Convert mark to lowercase 
     24\renewcommand{\sectionmark}[1]{\markright{#1}{}} %%    "     ""  ""     "   
     25\ohead{} %% Clear default headings 
     26\lohead{Chap. \thechapter\  \leftmark} 
     27\rehead{Sect. \thesection\ \rightmark} 
     28\ifoot{Page \thepage\ of \pageref*{LastPage}} 
     29%\ifoot[\pagemark]{Page \thepage\ of \lastpageref*{pagesLTS.arabic}} 
     30\ofoot{\eng\ Reference Manual} 
    1231\addtokomafont{pagehead}{  \sffamily              } 
    1332\addtokomafont{pagefoot}{  \sffamily \footnotesize} 
    1433\addtokomafont{pagenumber}{\sffamily \slshape     } 
    15 \addtokomafont{chapter}{\color{white}} 
    16 \ohead{} \ofoot{}   %% Clear defaults 
     34%\addtokomafont{chapter}{\color{white}} 
    1735 
    18 %% Caption 
    19 \captionsetup{font = footnotesize, justification = justified} 
     36%% Cross-referencing 
     37\hypersetup{ 
     38   pdftitle=\hdg,pdfauthor=Gurvan Madec and NEMO System Team, 
     39   pdfsubject=Reference manual of NEMO modelling framework,pdfkeywords=ocean circulation modelling, 
     40   colorlinks,allcolors=manclr 
     41} 
     42\renewcommand{\appendixautorefname}{appendix}          %% `\autoref` uncapitalization 
     43\renewcommand{\equationautorefname}{equation}          %%     ""            "" 
     44\renewcommand{\figureautorefname  }{figure}            %%     ""            "" 
     45\renewcommand{\listingname        }{namelist}          %%     ""            "" 
     46\renewcommand{\listlistingname    }{List of Namelists} %%     ""            "" 
     47\renewcommand{\tableautorefname   }{table}             %%     ""            "" 
    2048 
    21 %% Footnote 
     49%% Misc. (caption and footnote) 
     50\captionsetup{font=footnotesize,justification=justified} 
    2251\renewcommand{\thefootnote}{\fnsymbol{footnote}} 
    2352 
     
    2857\renewcommand{\bibpostamble}{  \end{multicols}   } 
    2958 
    30 %% Catcodes 
     59%% Catcodes (between `\makeatletter` and `\makeatother`) 
    3160\makeatletter 
    3261 
    33 %% Prevent error with tikz and namelist inclusion 
    34 \global\let\tikz@ensure@dollar@catcode=\relax 
    35  
    36 %% First page 
    37 \backgroundsetup{ 
    38   firstpage = true, 
    39   scale = 1, angle = 0, opacity = 1, 
    40   contents = { 
    41     \begin{tikzpicture}[remember picture, overlay] 
    42       \path [fill = manualcolor] (-0.5\paperwidth, 7) rectangle (0.5\paperwidth, 10); 
    43     \end{tikzpicture} 
    44   } 
     62%% Apply manual color for chap. headings (original snippets from fncychap.sty) 
     63%% !!! Let trailing percent sign to avoid space insertion 
     64\renewcommand{\DOCH}{% %% Upper box with chapter number 
     65   \settowidth{\py}{\CNoV\thechapter}% 
     66   \addtolength{\py}{-10pt}% %% Amount of space by which the number is shifted right 
     67   \fboxsep=0pt% 
     68   \colorbox{manclr}{\rule{0pt}{40pt}\parbox[b]{\textwidth}{\hfill}}% 
     69   \kern-\py\raise20pt% 
     70   \hbox{\color{manclrshd}\CNoV\thechapter}\\ 
     71} 
     72\renewcommand{\DOTI}[1]{% %% Lower box with chapter title 
     73   \nointerlineskip\raggedright% 
     74   \fboxsep=\myhi% 
     75   \vskip-1ex% 
     76   \colorbox{manclr}{\parbox[t]{\mylen}{\color{white}\CTV\FmTi{#1}}}\par\nobreak% 
     77   \vskip 40\p@% 
     78} 
     79\renewcommand{\DOTIS}[1]{% %% Box for unumbered chapter 
     80   \fboxsep=0pt% 
     81   \colorbox{manclr}{\rule{0pt}{40pt}\parbox[b]{\textwidth}{\hfill}}\\ 
     82   \nointerlineskip\raggedright% 
     83   \fboxsep=\myhi% 
     84   \vskip-1ex% %% Remove white 1pt line 
     85   \colorbox{manclr}{\parbox[t]{\mylen}{\color{white}\CTV\FmTi{#1}}}\par\nobreak% 
     86   \vskip 40\p@% 
    4587} 
    4688 
    47 %% Apply engine color for chapter headings: tweaking snippets from fncychap.sty 
    48 \renewcommand{\DOCH}{% 
    49   \settowidth{\py}{\CNoV\thechapter} 
    50   \addtolength{\py}{-10pt}      % Amount of space by which the 
    51 %                                  % number is shifted right 
    52   \fboxsep=0pt% 
    53   \colorbox{manualcolor}{\rule{0pt}{40pt}\parbox[b]{\textwidth}{\hfill}}% 
    54   \kern-\py\raise20pt% 
    55   \hbox{\color{manualcolorshaded}\CNoV\thechapter}\\% 
    56 } 
    57 \renewcommand{\DOTI}[1]{% 
    58   \nointerlineskip\raggedright% 
    59   \fboxsep=\myhi% 
    60   \vskip-1ex% 
    61   \colorbox{manualcolor}{\parbox[t]{\mylen}{\color{white}\CTV\FmTi{#1}}}\par\nobreak% 
    62   \vskip 40\p@% 
    63 } 
    64 \renewcommand{\DOTIS}[1]{% 
    65   \fboxsep=0pt 
    66   \colorbox{manualcolor}{\rule{0pt}{40pt}\parbox[b]{\textwidth}{\hfill}}\\% 
    67   \nointerlineskip\raggedright% 
    68   \fboxsep=\myhi% 
    69   \vskip-1ex% Remove white 1pt line 
    70   \colorbox{manualcolor}{\parbox[t]{\mylen}{\color{white}\CTV\FmTi{#1}}}\par\nobreak% 
    71   \vskip 40\p@% 
    72 } 
    73  
    74 %% Temporary fix 
    75 \def\set@curr@file#1{% 
    76   \begingroup 
    77     \escapechar\m@ne 
    78     \xdef\@curr@file{\expandafter\string\csname #1\endcsname}% 
    79   \endgroup 
    80 } 
    81 \def\quote@name#1{"\quote@@name#1\@gobble""} 
    82 \def\quote@@name#1"{#1\quote@@name} 
    83 \def\unquote@name#1{\quote@@name#1\@gobble"} 
    84  
    8589\makeatother 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/latex/global/todonotes.tex

    r11187 r14644  
    1 \usepackage[]{todonotes} 
     1%% ================================================================================================= 
     2%% Notes 
     3%% ================================================================================================= 
     4 
     5\usepackage{todonotes} 
    26 
    37\newcounter{ubcomment} 
    4 \newcommand{\ubcomment}[2][]{% 
    5 \refstepcounter{ubcomment}% 
    6 {% 
    7 \todo[linecolor=black,backgroundcolor={green!40!},size=\footnotesize]{% 
    8 \textbf{Fixme: UB [\uppercase{#1}\theubcomment]:}~#2}% 
    9 }} 
    10 \newcommand{\ubcommentinline}[2][]{% 
    11 \refstepcounter{ubcomment}% 
    12 {% 
    13 \todo[linecolor=black,inline,backgroundcolor={green!40!},size=\footnotesize]{% 
    14 \textbf{Fixme: UB [\uppercase{#1}\theubcomment]:}~#2}% 
     8 
     9\newcommand{\ubcomment         }[2][]{ 
     10\refstepcounter{ubcomment} 
     11{ 
     12\todo[linecolor=black,       backgroundcolor={green!40!},size=\footnotesize ]{ 
     13\textbf{Fixme: UB [\uppercase{#1}\theubcomment]:}~#2} 
    1514}} 
    1615 
    17 \newcommand{\ubcommentmultiline}[2]{% 
    18 \refstepcounter{ubcomment}% 
    19 {% 
    20 \todo[linecolor=black,inline,caption={\textbf{{Fixme: UB} 
    21     [\theubcomment] #1}} ,backgroundcolor={green!40!},size=\footnotesize]{% 
    22 \textbf{Fixme: UB [\theubcomment]:}~#2}% 
     16\newcommand{\ubcommentinline   }[2][]{ 
     17\refstepcounter{ubcomment} 
     18{ 
     19\todo[linecolor=black,inline,backgroundcolor={green!40!},size=\footnotesize ]{ 
     20\textbf{Fixme: UB [\uppercase{#1}\theubcomment]:}~#2} 
     21}} 
     22 
     23\newcommand{\ubcommentmultiline}[2]{ 
     24\refstepcounter{ubcomment} 
     25{ 
     26\todo[linecolor=black,inline,backgroundcolor={green!40!},size=\footnotesize, 
     27      caption={\textbf{{Fixme: UB} [\theubcomment] #1}}                     ]{ 
     28\textbf{Fixme: UB [              \theubcomment]:}~#2} 
    2329}} 
    2430 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/manual_build.sh

    r11594 r14644  
    2121 
    2222## LaTeX installation, find latexmk should be enough 
    23 [ -z $( which latexmk ) ] && { echo 'latexmk not installed => QUIT'; exit 2; } 
     23[ -z "$( which latexmk )" ] && { echo 'latexmk not installed => QUIT'; exit 2; } 
    2424 
    2525## Pygments package for syntax highlighting of source code (namelists & snippets) 
    2626[ -n "$( ./tools/check_pkg.py pygments )" ] && { echo 'Python pygments is missing => QUIT'; exit 2; } 
    27  
    28 ## Retrieve figures if not already there 
    29 #if [ ! -d latex/figures ]; then 
    30 #    printf "Downloading of shared figures and logos\n\n" 
    31 #    svn co http://forge.ipsl.jussieu.fr/nemo/svn/utils/figures latex/figures > /dev/null 
    32 #fi 
    33  
    3427 
    3528## Loop on the models 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/namelists/namberg

    r11703 r14644  
    3333   rn_speed_limit          = 0.      ! CFL speed limit for a berg 
    3434 
     35   ln_M2016                = .false. ! use Merino et al. (2016) modification (use of 3d ocean data instead of only sea surface data) 
     36      ln_icb_grd           = .false. ! ground icb when icb bottom level hit oce bottom level (need ln_M2016 to be activated) 
     37 
    3538   cn_dir      = './'      !  root directory for the calving data location 
    3639   !___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________! 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/namelists/nammpp

    r11703 r14644  
    11!----------------------------------------------------------------------- 
    2 &nammpp        !   Massively Parallel Processing                        ("key_mpp_mpi") 
     2&nammpp        !   Massively Parallel Processing 
    33!----------------------------------------------------------------------- 
    44   ln_listonly =  .false.  !  do nothing else than listing the best domain decompositions (with land domains suppression) 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/namelists/namrun

    r11703 r14644  
    2626      !                          !    = -1 do not do any restart 
    2727   nn_stocklist = 0,0,0,0,0,0,0,0,0,0 ! List of timesteps when a restart file is to be written 
    28    nn_write    =       0   !  used only if key_iomput is not defined: output frequency (modulo referenced to nn_it000) 
     28   nn_write    =       0   !  used only if key_xios is not defined: output frequency (modulo referenced to nn_it000) 
    2929      !                          !    =  0 force to write output files only at the end of the run 
    3030      !                          !    = -1 do not do any output file 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/rst/source/conf.py

    r11907 r14644  
    4343# General information about the project. 
    4444project = u'NEMO' 
    45 copyright = u'2019, NEMO Consortium' 
     45copyright = u'2020, NEMO Consortium' 
    4646 
    4747# The version info for the project you're documenting, acts as replacement for 
     
    5050# 
    5151# The short X.Y version. 
    52 version = 'trk' 
     52version = 'trunk' 
    5353# The full version, including alpha/beta/rc tags. 
    5454release = 'trunk' 
     
    279279# Default language to highlight set to fortran 
    280280highlight_language = 'fortran' 
     281 
     282# Extra setting for sphinxcontrib.bibtex upgrade to 2.X.X branche 
     283bibtex_bibfiles = ['cfgs.bib', 'ref.bib', 'tests.bib', 'zooms.bib'] 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/rst/source/guide.rst

    r13244 r14644  
    1616.. toctree:: 
    1717   :hidden: 
    18 .. todos:: 
     18 
     19   todos 
    1920 
    2021.. Only displayed with 'make drafthtml' 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/tools/check_pkg.py

    r11008 r14644  
    1 #!/usr/bin/env python 
     1#!/usr/bin/env python3 
    22 
    33import sys, importlib 
     
    77      importlib.import_module(argv) 
    88   except ImportError: 
    9       print("Package %s is missing in Python" % argv) 
     9      print("Package %s is missing in Python 3" % argv) 
    1010 
  • NEMO/branches/2020/dev_r14116_HPC-04_mcastril_Mixed_Precision_implementation_final/doc/tools/shr_func.sh

    r14113 r14644  
    88 
    99build() { 
    10     printf "\t¤ Generation of the PDF format\n" 
    11     latexmk -r ./latex/global/latexmk.pl -pdfxe ./latex/$1/main/$1_manual \ 
    12 #  1> /dev/null 
     10    printf "\t¤ Generation of the PDF export of the manual\n" 
     11    latexmk -r ./latex/global/latexmk.pl ./latex/$1/main/$1_manual \ 
     12   1> /dev/null 
    1313    [ -f ./latex/$1/build/$1_manual.pdf ] && mv ./latex/$1/build/$1_manual.pdf . 
    1414    echo 
Note: See TracChangeset for help on using the changeset viewer.