New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 14929 – NEMO

Changeset 14929


Ignore:
Timestamp:
2021-05-31T10:57:04+02:00 (3 years ago)
Author:
rlod
Message:

Finalization of TOP documentation: 2020 shared action, https://forge.ipsl.jussieu.fr/nemo/wiki/2020WP/PUB-02_Ethe_TOP_DOC, C. Ethe & R. Person, thanks to O. Aumont

Location:
NEMO/trunk/doc/latex/TOP
Files:
7 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/TOP/main/abstract.tex

    r11591 r14929  
    2424it includes different sub-modules: ocean water age, inorganic carbon (CFCs) \& radiocarbon (C14b), 
    2525built-in biogeochemical model (PISCES), and prototype for user-defined cases or 
    26 coupling with alternative biogeochemical models (\eg \href{http://www.bfm-community.eu}{BFM}). 
     26coupling with alternative biogeochemical models (\eg, \href{http://www.bfm-community.eu}{BFM}). 
  • NEMO/trunk/doc/latex/TOP/main/authors.tex

    r11591 r14929  
    55Georges Nurser         \\ 
    66Julien Palmi\'{e}ri    \\ 
     7Renaud Person    \\ 
    78Andrew Yool 
  • NEMO/trunk/doc/latex/TOP/main/bibliography.bib

    r14374 r14929  
    187187} 
    188188 
     189@article{         getzlaff_2013, 
     190  author        = {Getzlaff, Julia and Dietze, Heiner}, 
     191  title         = {Effects of increased isopycnal diffusivity 
     192                  mimicking the unresolved equatorial intermediate 
     193                  current system in an earth system climate model}, 
     194  year          = {2013}, 
     195  volume        = {40}, 
     196  number        = {10}, 
     197  pages         = {2166--2170}, 
     198  doi           = {10.1002/grl.50419}, 
     199  url           = {https://dx.doi.org/10.1002/grl.50419}, 
     200  journal       = {Geophysical Research Letters}, 
     201  publisher     = {Wiley Online Library} 
     202} 
     203 
    189204@techreport{      gibson_trpt86, 
    190205  title         = "Standards for software development and maintenance", 
     
    271286  journal   = {Limnology and Oceanography}, 
    272287  publisher = {Wiley} 
     288} 
     289 
     290@Article{         mathiot_explicit_2017, 
     291  author        = {Mathiot, Pierre and Jenkins, Adrian and Harris, Christopher  
     292                  and Madec, Gurvan}, 
     293  title         = {Explicit representation and parametrised impacts of under  
     294                  ice shelf seas in the z∗ coordinate ocean model {NEMO} 3.6}, 
     295  year          = {2017}, 
     296  volume        = {10}, 
     297  number        = {7}, 
     298  month         = jul, 
     299  pages         = {2849--2874}, 
     300  issn          = {1991-9603}, 
     301  doi           = {10.5194/gmd-10-2849-2017}, 
     302  url           = {https://www.geosci-model-dev.net/10/2849/2017/}, 
     303  journal       = {Geoscientific Model Development}, 
     304  publisher = {Copernicus GmbH} 
    273305} 
    274306 
     
    448480} 
    449481 
     482@Article{         person_sensitivity_2019, 
     483  author        = {Person, Renaud and Aumont, Olivier and Madec, Gurvan and  
     484                   Vancoppenolle, Martin and Bopp, Laurent and Merino, Nacho}, 
     485  title         = {Sensitivity of ocean biogeochemistry to the iron supply from the  
     486                  {Antarctic} {Ice} {Sheet} explored with a biogeochemical model}, 
     487  year          = {2019}, 
     488  volume        = {16}, 
     489  number        = {18}, 
     490  month         = sep, 
     491  pages         = {3583--3603}, 
     492  issn          = {1726-4189}, 
     493  doi           = {10.5194/bg-16-3583-2019}, 
     494  url           = {https://www.biogeosciences.net/16/3583/2019/}, 
     495  journal       = {Biogeosciences}, 
     496  publisher = {Copernicus GmbH} 
     497} 
     498 
    450499@Article{     reimer_2013, 
    451500  author = {Reimer, Paula J and Bard, Edouard and Bayliss, Alex and 
     
    630679  publisher = {Elsevier BV} 
    631680} 
     681 
     682 
  • NEMO/trunk/doc/latex/TOP/main/introduction.tex

    r11591 r14929  
    1111\begin{itemize} 
    1212        \item a transport code TRP sharing the same advection/diffusion routines with the dynamics, with specific treatment of some features like the surface boundary 
    13 conditions, or the positivity of passive tracers concentrations 
     13conditions or the positivity of passive tracers concentrations 
    1414        \item sources and sinks - SMS - models that can be typically biogeochemical, biological or radioactive 
    15         \item an offline option which is a simplified OPA 9 model using fields of physics variables that are previously stored to disk 
     15        \item an offline option which is a simplified OPA 9 model using fields of physical variables that were previously stored on disk 
    1616\end{itemize} 
    1717 
    18 There is two ways of coupling TOP to the dynamics : 
     18There are two ways of coupling TOP to the dynamics : 
    1919 
    2020\begin{itemize} 
    2121        \item \textit{online coupling} : the evolution of passive tracers is computed along with the dynamics 
    22         \item \textit{offline coupling} : the fields of physics variables are read from files and interpolated at each model time step, with no constraints on the time sampling in the input files 
     22        \item \textit{offline coupling} : the physical variable fields are read from files and interpolated at each model time step, with no constraints on the temporal sampling in the input files 
    2323\end{itemize} 
    2424 
    25 TOP is designed to handle multiple oceanic tracers through a modular approach and it includes different sub-modules : 
     25TOP is designed to handle multiple oceanic tracers through a modular approach and includes different sub-modules : 
    2626 
    2727\begin{itemize} 
    2828        \item the ocean water age module (AGE) tracks down the time-dependent spread of surface waters into the ocean interior 
    29         \item inorganic carbon (e.g. CFCs, SF6) and radiocarbon (C14) passive tracers can be modeled to assess ocean absorption timescales of anthropogenic emissions and further address water masses ventilation 
     29        \item inorganic (\eg, CFCs, SF6) and radiocarbon (C14) passive tracers can be modeled to assess ocean absorption timescales of anthropogenic emissions and further address water masses ventilation 
    3030        \item a built-in biogeochemical model (PISCES) to simulate lower trophic levels ecosystem dynamics in the global ocean 
    31         \item a prototype tracer module (MY\_TRC) to enable user-defined cases or the coupling with alternative biogeochemical models ( e.g. BFM, MEDUSA, ERSEM, BFM, ECO3M) 
     31        \item a prototype tracer module (MY\_TRC) to enable user-defined cases or the coupling with alternative biogeochemical models (\eg, BFM, MEDUSA, ERSEM, BFM, ECO3M) 
    3232\end{itemize} 
    3333 
     
    3636\vspace{0cm} 
    3737\includegraphics[width=0.80\textwidth]{Fig_TOP_design} 
    38 %\includegraphics[height=6cm,angle=-00]{Fig_TOP_design} 
    39 \caption{A schematic view of NEMO-TOP component} 
     38\caption{Schematic view of the NEMO-TOP component} 
    4039\label{topdesign} 
    4140\end{center} 
  • NEMO/trunk/doc/latex/TOP/subfiles/miscellaneous.tex

    r14239 r14929  
    77\section{TOP synthetic Workflow} 
    88 
    9 \subsection{Model initialization} 
     9A synthetic description of the TOP interface workflow is given below to summarize the steps involved in the computation of biogeochemical and physical trends and their time integration and outputs, by reporting also the principal Fortran subroutine herein involved. 
    1010 
    11 \subsection{Time marching procedure} 
     11%\begin{figure}[!h] 
     12%  \centering 
     13%  \includegraphics[width=0.80\textwidth]{Top_FlowChart} 
     14%  \caption{Schematic view of NEMO-TOP flowchart} 
     15%  \label{img_cfcatm} 
     16%\end{figure}  
     17 
     18\begin{minted}{bash} 
     19nemogcm 
     20    !                       
     21    nemo_init           !   NEMO General Initialisations 
     22         !                    
     23         trc_init                              ! TOP  Initialisations  
     24    ! 
     25    stp()                   !   NEMO Time-stepping 
     26        ! 
     27        trc_stp()                            ! TOP time-stepping 
     28            ! 
     29            trc_wri()           ! I/O manager : Output of passive tracers  
     30            trc_sms()           ! Sinks and sources program manager 
     31            trc_trp()            ! Transport of passive tracers 
     32            trc_rst_wri()      ! Write tracer restart file 
     33            trd_mxl_trc()     ! trends: Mixed-layer 
     34\end{minted} 
     35 
     36\subsection{Model initialization (./src/TOP/trcini.F90)} 
     37 
     38This module consists on inital set up of passive tracers variables and parameters  : read the namelist, set initial tracer fields (either read restart or read data or analytical formulation and  specific initailisation in each SMS module  ( analytical initialisation of tracers or constant values ) 
     39 
     40\begin{minted}{bash} 
     41trc_init                              ! TOP  Initialisations  
     42    !     
     43    IF( PISCES )    trc_ini_pisces()     !  PISCES bio model 
     44    IF( MY_TRC)    trc_ini_my_trc()    !  MY_TRC model 
     45    IF( CFCs     )    trc_ini_cfc   ()       !  CFCs 
     46    IF( C14       )    trc_ini_c14   ()       !  C14 model 
     47    IF( AGE      )    trc_ini_age   ()       !  AGE tracer 
     48    ! 
     49    IF( REST   )    trc_rst_read()         ! Restart from a file   
     50    ELSE            trc_dta()                   ! Initialisation from data 
     51\end{minted} 
     52 
     53\subsection{BGC trends computation (./src/TOP/trcsms.F90)} 
     54 
     55This is the main module where the passive tracers source minus sinks of each TOP sub-module is managed.     
     56 
     57\begin{minted}{bash} 
     58trc_sms()                               ! Sinks and sources prooram manager 
     59    !  
     60    IF( PISCES  )    trc_sms_pisces()         ! main program of PISCES  
     61    IF( CFCs     )    trc_sms_cfc()               ! surface fluxes of CFC 
     62    IF( C14       )    trc_sms_c14()               ! surface fluxes of C14 
     63    IF( AGE       )    trc_sms_age()              ! Age tracer 
     64    IF( MY_TRC)    trc_sms_my_trc()         ! MY_TRC  tracers 
     65\end{minted} 
     66 
     67\subsection{Physical trends computation (./src/TOP/TRP/trctrp.F90)} 
     68 
     69This is the main module where the passive tracers transport is managed. All the physical trends is calculated ( advective \& diffusive trends, surface BC from freshwater or external inputs )  
     70 
     71\begin{minted}{bash} 
     72trc_trp()       ! Transport of passive tracers 
     73    ! 
     74    trc_sbc()         ! Surface boundary condition of freshwater flux 
     75    trc_bc()           ! Surface and lateral Boundary Conditions  
     76    trc_ais()          ! Tracers from Antarctic Ice Sheet (icb, isf)                
     77    trc_bbl()          ! Advective (and/or diffusive) bottom boundary layer scheme 
     78    trc_dmp()        ! Internal damping trends 
     79    trc_bdy()         ! BDY damping trends 
     80    trc_adv()         ! Horizontal & Vertical advection  
     81    trc_ldf()           ! Lateral mixing 
     82    trc_zdf()          ! Vert. mixing & after tracer 
     83    trc_atf()           ! Time filtering of "now" tracer fields     
     84    trc_rad()         ! Correct artificial negative concentrations 
     85\end{minted} 
     86 
     87\subsection{Outputs  (./src/TOP/TRP/trcwri.F90)} 
     88 
     89This is the main module where the passive tracer outputs of each TOP sub-module is managed using the I/O library XIOS. 
     90 
     91\begin{minted}{bash} 
     92trc_wri()                               ! I/O manager : Output of passive tracers  
     93! 
     94IF( PISCES   )    trc_wri_pisces()      ! Output of PISCES diagnostics  
     95IF( CFCs      )    trc_wri_cfc()            ! Output of Cfcs diagnostics 
     96IF( C14         )    trc_wri_c14()           ! surface fluxes of C14 
     97IF( AGE        )    trc_wri_age()           ! Age tracer 
     98IF( MY_TRC )    trc_wri_my_trc()      ! MY_TRC  tracers 
     99\end{minted} 
    12100 
    13101\section{Coupling an external BGC model using NEMO framework} 
     
    27115\end{minted} 
    28116 
    29 the compilation with \textit{makenemo} will be executed through the following syntax 
     117The compilation with \textit{makenemo} will be executed through the following syntax 
    30118 
    31119\begin{minted}{bash} 
    32120   makenemo -n NEMO_MYBGC -m <arch_my_machine> -j 8 -e <MYBGCPATH> 
    33121\end{minted} 
    34 %The makenemo feature ?-e? was introduced to readdress at compilation time the standard MY_SRC folder (usually found in NEMO configurations) with a user defined external one. 
    35 % 
    36 % 
    37 %The compilation of more articulated BGC model code & infrastructure, like in the case of BFM (?BFM-NEMO coupling manual), requires some additional features. 
    38 % 
    39 %As before, let?s assume a coupled configuration name NEMO_MYBGC, but in this case MYBGC model root becomes <MYBGCPATH> that contains 4 different subfolders for biogeochemistry, named initialization, pelagic, and benthic, and a separate one named nemo_coupling including the modified MY_SRC routines. The latter folder containing the modified NEMO coupling interface will be still linked using the makenemo ?-e? option. 
    40 % 
    41 %In order to include the BGC model subfolders in the compilation of NEMO code, it will be necessary to extend the configuration cpp_NEMO_MYBGC.fcm file to include the specific paths of MYBGC folders, as in the following example 
    42 % 
     122 
     123The makenemo feature \textit{-e} was introduced to readdress at compilation time the standard MY\_SRC folder (usually found in NEMO configurations) with a user defined external one. \\ \\ 
     124 
     125The compilation of more articulated BGC model code \& infrastructure, like in the case of BFM (BFM-NEMO coupling manual), requires some additional features. \\ \\ 
     126 
     127As before, let's assume a coupled configuration name NEMO\_MYBGC, but in this case MYBGC model root becomes <MYBGCPATH> that contains 4 different subfolders for biogeochemistry, named initialization, pelagic, and benthic, and a separate one named nemo\_coupling including the modified MY\_SRC routines. The latter folder containing the modified NEMO coupling interface will be still linked using the makenemo \textit{-e} option. \\ \\ 
     128 
     129In order to include the BGC model subfolders in the compilation of NEMO code, it will be necessary to extend the configuration \textit{cpp\_NEMO\_MYBGC.fcm} file to include the specific paths of MYBGC folders, as in the following example 
     130 
    43131\begin{minted}{bash} 
    44132   bld::tool::fppkeys   key_xios key_top 
     
    49137 
    50138   bld::pp::MYBGC      1 
    51    bld::tool::fppflags::MYBGC   %FPPFLAGS 
    52    bld::tool::fppkeys   %bld::tool::fppkeys MYBGC_MACROS 
     139   bld::tool::fppflags::MYBGC   \%FPPFLAGS 
     140   bld::tool::fppkeys                  \%bld::tool::fppkeys MYBGC_MACROS 
    53141\end{minted} 
    54142 
    55 %where MYBGC_MACROS is the space delimited list of macros used in MYBGC model for selecting/excluding specific parts of the code. The BGC model code will be preprocessed in the configuration BLD folder as for NEMO, but with an independent path, like NEMO_MYBGC/BLD/MYBGC/<subforlders>. 
    56 % 
    57 %The compilation will be performed similarly to in the previous case with the following 
    58 % 
    59 %makenemo -n NEMO_MYBGC -m <arch_my_machine> -j 8 -e <MYBGCPATH>/nemo_coupling 
    60 %Note that, the additional lines specific for the BGC model source and build paths, can be written into a separate file, e.g. named MYBGC.fcm, and then simply included in the cpp_NEMO_MYBGC.fcm as follow 
    61 % 
    62 %bld::tool::fppkeys  key_zdftke key_dynspg_ts key_xios key_top 
    63 %inc <MYBGCPATH>/MYBGC.fcm 
    64 %This will enable a more portable compilation structure for all MYBGC related configurations. 
    65 % 
    66 %Important: the coupling interface contained in nemo_coupling cannot be added using the FCM syntax, as the same files already exists in NEMO and they are overridden only with the readdressing of MY_SRC contents to avoid compilation conflicts due to duplicate routines. 
    67 % 
    68 %All modifications illustrated above, can be easily implemented using shell or python scripting to edit the NEMO configuration cpp.fcm file and to create the BGC model specific FCM compilation file with code paths. 
     143where MYBGC\_MACROS is the space delimited list of macros used in MYBGC model for selecting/excluding specific parts of the code. The BGC model code will be preprocessed in the configuration BLD folder as for NEMO, but with an independent path, like NEMO\_MYBGC/BLD/MYBGC/<subfolders>.\\ 
     144 
     145The compilation will be performed similarly to in the previous case with the following 
     146 
     147\begin{minted}{bash} 
     148makenemo -n NEMO_MYBGC -m <arch_my_machine> -j 8 -e <MYBGCPATH>/nemo_coupling 
     149\end{minted} 
     150 
     151Note that, the additional lines specific for the BGC model source and build paths, can be written into a separate file, e.g. named MYBGC.fcm, and then simply included in the cpp\_NEMO\_MYBGC.fcm as follow: 
     152 
     153\begin{minted}{bash} 
     154bld::tool::fppkeys  key_zdftke key_dynspg_ts key_xios key_top 
     155inc <MYBGCPATH>/MYBGC.fcm 
     156\end{minted} 
     157 
     158This will enable a more portable compilation structure for all MYBGC related configurations.  \\ \\ 
     159 
     160Important: the coupling interface contained in nemo\_coupling cannot be added using the FCM syntax, as the same files already exists in NEMO and they are overridden only with the readdressing of MY\_SRC contents to avoid compilation conflicts due to duplicate routines.  \\ \\ 
     161 
     162All modifications illustrated above, can be easily implemented using shell or python scripting to edit the NEMO configuration cpp.fcm file and to create the BGC model specific FCM compilation file with code paths. 
    69163 
    70164\end{document} 
  • NEMO/trunk/doc/latex/TOP/subfiles/model_description.tex

    r14375 r14929  
    1717\label{sec:Bas} 
    1818 
    19 The time evolution of any passive tracer $C$ follows the transport equation, which is similar to that of active tracer - temperature or salinity : 
     19The time evolution of any passive tracer $C$ is given by the transport equation, which is similar to that of active tracer - temperature or salinity : 
    2020 
    2121\begin{equation} 
     
    2424\end{equation} 
    2525 
    26 where expressions of $D^{lC}$ and $D^{vC}$ depend on the choice for the lateral and vertical subgrid scale parameterizations, see equations 5.10 and 5.11 in \citep{nemo_manual} 
    27  
    28 {S(C)} , the first term on the right hand side of \autoref{Eq_tracer}; is the SMS - Source Minus Sink - inherent to the tracer. 
    29 In the case of biological tracer such as phytoplankton, {S(C)} is the balance between phytoplankton growth and its decay through mortality and grazing. 
    30 In the case of a tracer comprising carbon,  {S(C)} accounts for gas exchange, river discharge, flux to the sediments, gravitational sinking and other biological processes. 
    31 In the case of a radioactive tracer, {S(C)} is simply loss due to radioactive decay. 
     26where expressions of $D^{lC}$ and $D^{vC}$ depend on the choice for the lateral and vertical subgrid scale parameterizations (see Equations 5.10 and 5.11 in \cite{nemo_manual}). 
     27 
     28{S(C)}, the first term on the right hand side of \autoref{Eq_tracer}, is the SMS - Sources Minus Sinks - inherent to the tracer. 
     29In the case of a biological tracer such as phytoplankton, {S(C)} is the balance between phytoplankton growth and its loss through mortality and grazing. 
     30In the case of a tracer comprising carbon,  {S(C)} accounts for gas exchange, river discharge, flux to the sediments, gravitational sinking and other biogeochemical processes. 
     31In the case of a radioactive tracer, {S(C)} is simply the loss due to radioactive decay. 
    3232 
    3333The second term (within brackets) represents the advection of the tracer in the three directions. 
     
    3636The third term  represents the change due to lateral diffusion. 
    3737 
    38 The fourth term is change due to vertical diffusion, parameterized as eddy diffusion to represent vertical turbulent fluxes : 
     38The fourth term denotes the change due to vertical diffusion, parameterized as eddy diffusion to represent vertical turbulent fluxes : 
    3939 
    4040\begin{equation} 
     
    4343\end{equation} 
    4444 
    45 where $A^{vT}$ is the vertical eddy diffusivity coefficient of active tracers 
     45where $A^{vT}$ is the vertical eddy diffusivity coefficient of active tracers. 
    4646 
    4747\section{The NEMO-TOP interface} 
    4848\label{sec:TopInt} 
    4949 
    50 TOP is the NEMO hardwired interface toward biogeochemical models and provide the physical constraints/boundaries for oceanic tracers. 
     50TOP is the NEMO hardwired interface toward biogeochemical models, which provides the physical constraints/boundaries for oceanic tracers. 
    5151It consists of a modular framework to handle multiple ocean tracers, including also a variety of built-in modules. 
    5252 
    53 This component of the NEMO framework allows one to exploit available modules  and further develop a range of applications, spanning from the implementation of a dye passive tracer to evaluate dispersion processes (by means of MY\_TRC), track water masses age (AGE module), assess the ocean interior penetration of persistent chemical compounds (e.g., gases like CFC or even PCBs), up to the full set of equations involving marine biogeochemical cycles. 
     53This component of the NEMO framework allows one to exploit available modules  and further develop a range of applications, spanning from the implementation of a dye passive tracer to evaluate dispersion processes (by means of MY\_TRC), track water masses age (AGE module), assess the ocean interior penetration of persistent chemical compounds (e.g., gases like CFC or even PCBs), up to the full set of equations to simulate marine biogeochemical cycles. 
    5454 
    5555TOP interface has the following location in the code repository : \path{<repository>/src/TOP/} 
     
    6060\begin{itemize} 
    6161        \item \textbf{TRP}           :    Interface to NEMO physical core for computing tracers transport 
    62         \item \textbf{CFC}     :    Inert carbon tracers (CFC11,CFC12, SF6) 
     62        \item \textbf{CFC}     :    Inert tracers (CFC11,CFC12, SF6) 
    6363        \item \textbf{C14}     :    Radiocarbon passive tracer 
    6464        \item \textbf{AGE}     :    Water age tracking 
    6565        \item \textbf{MY\_TRC}  :   Template for creation of new modules and external BGC models coupling 
    66         \item \textbf{PISCES}    :   Built in BGC model. 
    67 See \citep{aumont_2015} for a throughout description. 
     66        \item \textbf{PISCES}    :   Built in BGC model. See \cite{aumont_2015} for a complete description 
    6867\end{itemize} 
    6968%  ---------------------------------------------------------- 
     
    7170\section{The transport component : TRP} 
    7271 
    73 The passive tracer transport component  shares the same advection/diffusion routines with the dynamics, with specific treatment of some features like the surface boundary conditions, or the positivity of passive tracers concentrations. 
     72The passive tracer transport component shares the same advection/diffusion routines with the dynamics, with specific treatment of some features like the surface boundary conditions, or the positivity of passive tracers concentrations. 
    7473 
    7574\subsection{Advection} 
     75 
     76The advection schemes used for the passive tracers are the same as those used for $T$ and $S$. They are described in section 5.1 of \cite{nemo_manual}. 
     77The choice of an advection scheme can be selected independently and can differ from the ones used for active tracers. 
     78This choice is made in \textit{namelist\_to}p (ref or cfg) in the namelist block \textit{namtrc\_adv}, by setting to \textit{true} one and only one of the logicals \textit{ln\_trcadv\_xxx}, the same way of what is done for dynamics. 
     79cen2, MUSCL2, and UBS are not \textit{positive} schemes meaning that negative values can appear in an initially strictly positive tracer field which is advected, implying that artificial extrema are permitted. Their use is not recommended for passive tracers. 
     80 
    7681%------------------------------------------namtrc_adv---------------------------------------------------- 
    7782\nlst{namtrc_adv} 
    78 %------------------------------------------------------------------------------------------------------------- 
    79 The advection schemes used for the passive tracers are the same than the ones for $T$ and $S$ and described in section 5.1 of \citep{nemo_manual}. 
    80 The choice of an advection scheme  can be selected independently and  can differ from the ones used for active tracers. 
    81 This choice is made in the \textit{namtrc\_adv} namelist, by  setting to \textit{true} one and only one of the logicals \textit{ln\_trcadv\_xxx}, the same way of what is done for dynamics. 
    82 cen2, MUSCL2, and UBS are not \textit{positive} schemes meaning that negative values can appear in an initially strictly positive tracer field which is advected, implying that false extrema are permitted. 
    83 Their use is not recommended on passive tracers 
     83%---------------------------------------------------------------------------------------------------------- 
    8484 
    8585\subsection{Lateral diffusion} 
     86 
     87In NEMO v4.0, diffusion of passive tracers has necessarily the same form as the active tracer diffusion, meaning that the numerical scheme must be the same. 
     88However the passive tracer mixing coefficient can be chosen as a multiple of the active ones by changing the value of \textit{rn\_ldf\_multi} in namelist \textit{namtrc\_ldf}. 
     89The choice of the numerical scheme is then set in the \forcode{&namtra_ldf} namelist section for the dynamic described in section 5.2 of \cite{nemo_manual}. 
     90 
     91rn\_fact\_lap is a factor used to increase zonal equatorial diffusion for depths beyond 200 m. It can be useful to achieve a better representation of Oxygen Minimum Zone (OMZ) in some biogeochemical models, especially at coarse resolution \citep{getzlaff_2013}. 
     92 
    8693%------------------------------------------namtrc_ldf---------------------------------------------------- 
    8794\nlst{namtrc_ldf} 
    88 %------------------------------------------------------------------------------------------------------------- 
    89 In NEMO v4.0, the passive tracer diffusion has necessarily the same form as the active tracer diffusion, meaning that the numerical scheme must be the same. 
    90 However the passive tracer mixing coefficient can be chosen as a multiple of the active ones by changing the value of \textit{rn\_ldf\_multi} in namelist \textit{namtrc\_ldf}. 
    91 The choice of numerical scheme is then set in the \forcode{&namtra_ldf} namelist for the dynamic described in section 5.2 of \citep{nemo_manual}. 
     95%--------------------------------------------------------------------------------------------------------- 
    9296 
    9397%-----------------We also offers the possibility to increase zonal equatorial diffusion for passive tracers by introducing an enhanced zonal diffusivity coefficent in the equatorial domain which can be defined by the equation below : 
     
    98102\subsection{Tracer damping} 
    99103 
     104The use of newtonian damping  to climatological fields or observations is also coded, sharing the same routine as that of active tracers. 
     105Boolean variables are defined in the namelist\_top\_ref to select the tracers on which restoring is applied. 
     106Options are defined through the \textit{\&namtrc\_dmp} namelist variables. 
     107The restoring term is added when the namelist parameter \textit{ln\_trcdmp} is set to \textit{true}. 
     108The restoring coefficient is a three-dimensional array read in a file, whose name is specified by the namelist variable \textit{cn\_resto\_tr}. 
     109This netcdf file can be generated using the DMP\_TOOLS tool. 
     110 
    100111%------------------------------------------namtrc_dmp---------------------------------------------------- 
    101112\nlst{namtrc_dmp} 
    102 %------------------------------------------------------------------------------------------------------------- 
    103  
    104 The use of newtonian damping  to climatological fields or observations is also coded, sharing the same routine dans active tracers. 
    105 Boolean variables are defined in the namelist\_top\_ref to select the tracers on which restoring is applied 
    106 Options are defined through the \nam{trc_dmp}{trc\_dmp} namelist variables. 
    107 The restoring term is added when the namelist parameter \np{ln\_trcdmp} is set to true. 
    108 The restoring coefficient is a three-dimensional array read in a file, which name is specified by the namelist variable \np{cn\_resto\_tr}. 
    109 This netcdf file can be generated using the DMP\_TOOLS tool. 
     113%----------------------------------------------------------------------------------------------------------- 
    110114 
    111115\subsection{Tracer positivity} 
     116 
     117Some numerical schemes can generate negative values of passive tracers concentration, which is obviously unrealistic. 
     118For example,  isopycnal diffusion can created local extrema, meaning that negative concentrations can be generated. 
     119The trcrad routine artificially corrects negative concentrations with a very crude solution that either sets negative concentrations to zero without adjusting the tracer budget (CFCs or C14 chemical coumpounds), or by removing negative concentrations while computing the corresponding tracer content that is added and then, adjusting the tracer concentration using a multiplicative factor so that the total tracer concentration is preserved (PISCES model).  
     120The treatment of negative concentrations is an option and can be selected in the namelist \textit{\&namtrc\_rad} by setting the parameter \textit{ln\_trcrad}  to true. 
    112121 
    113122%------------------------------------------namtrc_rad---------------------------------------------------- 
    114123\nlst{namtrc_rad} 
    115 %------------------------------------------------------------------------------------------------------------- 
    116  
    117 Sometimes, numerical scheme can generates negative values of passive tracers concentration that must be positive. 
    118 For exemple,  isopycnal diffusion can created extrema. 
    119 The trcrad routine artificially corrects negative concentrations with a very crude solution that either sets negative concentration to zero without adjusting the tracer budget, or by removing negative concentration and keeping mass conservation. 
    120 The treatment of negative concentrations is an option and can be selected in the namelist \nam{trc_rad}{trc\_rad} by setting the parameter \np{ln\_trcrad}  to true. 
     124%---------------------------------------------------------------------------------------------------------- 
     125 
     126\subsection{Tracer boundary conditions} 
     127 
     128In NEMO, different types of boundary conditions can be specified for biogeochemical tracers. For every single variable, it is possible to define a field of surface boundary conditions, such as deposition of dust or nitrogen, which is then interpolated to the grid and timestep using the fld\_read function. The same facility is available to include river inputs or coastal erosion (coastal boundary conditions) and the treatment of open boundary conditions. For lateral boundary conditions, spatial interpolation should not be activated. 
     129 
     130%------------------------------------------namtrc_bc---------------------------------------------------- 
     131\nlst{namtrc_cfg} 
     132%--------------------------------------------------------------------------------------------------------- 
     133 
     134\subsubsection{Surface and lateral boundaries} 
     135 
     136The namelist \textit{\&namtrc\_bc}  is in file \textit{namelist\_top\_cfg}  and allows to specify the name of the files, the frequency of the input and the time and space interpolation as done for any other field using the fld\_read interface. 
     137 
     138%------------------------------------------namtrc_bc---------------------------------------------------- 
     139\nlst{namtrc_bc} 
     140%--------------------------------------------------------------------------------------------------------- 
     141\subsubsection{Open boundaries} 
     142 
     143The BDY for passive tracer are set together with the physical oceanic variables (lnbdy  =.true.). Boundary conditions are set in the structure used to define the passive tracer properties in the « cbc » column. These boundary conditions are applied on the segments defined for the physical core of NEMO (see BDY description in the User Manual). 
     144\begin{itemize} 
     145   \item cn\_trc\_dflt : the type of OBC applied to all the tracers 
     146   \item cn\_trc :  the boundary condition used for tracers with data file 
     147\end{itemize}  
     148 
     149%------------------------------------------namtrc_bdy---------------------------------------------------- 
     150\nlst{namtrc_bdy} 
     151%---------------------------------------------------------------------------------------------------------- 
     152 
     153\subsubsection{Sedimentation of particles} 
     154 
     155This module computes the vertical flux of particulate matter due to gravitational sinking. It also offers a temporary solution for the problem that may arise in specific situation where the CFL criterion is broken for vertical sedimentation of particles. To avoid this, a time splitting algorithm has been coded. The number of iterations niter necessary to respect the CFL criterion is dynamically computed. A specific maximum number of iterations nitermax may be specified in the namelist. This is to avoid a very large number of iterations when explicit free surface is used, for instance. If niter is larger than the prescribed nitermax, sinking speeds are clipped so that the CFL criterion is respected. The numerical scheme used to compute sedimentation is based on the MUSCL advection scheme. 
     156 
     157%------------------------------------------namtrc_bdy---------------------------------------------------- 
     158\nlst{namtrc_snk} 
     159%---------------------------------------------------------------------------------------------------------- 
     160 
     161\subsubsection{Sea-ice growth and melt effect} 
     162 
     163NEMO provides three options for the specification of tracer concentrations in sea ice: (-1) identical tracer concentrations in sea ice and ocean, which corresponds to no concentration/dilution effect upon ice growth and melt; (0) zero concentrations in sea ice, which gives the largest concentration-dilution effect upon ice growth and melt; (1) specified concentrations in sea ice, which gives a possibly more realistic effect of sea ice on tracers. Option (-1) and (0) work for all tracers, but (1) is currently only available for PISCES. 
     164 
     165%------------------------------------------namtrc_ice---------------------------------------------------- 
     166\nlst{namtrc_ice} 
     167%--------------------------------------------------------------------------------------------------------- 
     168 
     169\subsubsection{Antartic Ice Sheet tracer supply} 
     170 
     171The external input of biogeochemical tracers from the Antarctic Ice Sheet (AIS) is represented by associating a tracer content with the freshwater flux from icebergs and ice shelves \citep{person_sensitivity_2019}. This supply is currently implemented only for dissolved Fe (\autoref{img_icbisf}) and is effective in model configurations with south-extended grids (eORCA1 and eORCA025). As the ORCA2 grid does not extend south into Antarctica, the external source of tracers from the AIS cannot be enabled in this configuration.  
     172 
     173For icebergs, a homogeneous distribution of biogeochemical tracers is applied from the surface to a depth that can be defined in \textit{\&namtrc\_ais}, currently set at 120 m. It should be noted that the freshwater flux from icebergs affects only the ocean properties at the surface. For ice shelves, biogeochemical tracers follow the explicit or parameterized representation of freshwater flux distribution modeled in NEMO. The AIS tracer supply is activated by setting \textit{ln\_trcais} to \textit{true} in the \textit{\&namtrc} section. 
     174 
     175\begin{figure}[!h] 
     176   \centering 
     177   \includegraphics[width=0.80\textwidth]{ICB-ISF-Feflx} 
     178   \caption{Annual Fe fluxes from icebergs and ice shelves in the Southern Ocean.} 
     179   \label{img_icbisf} 
     180\end{figure} 
     181 
     182%------------------------------------------namtrc_ais---------------------------------------------------- 
     183\nlst{namtrc_ais} 
     184%--------------------------------------------------------------------------------------------------------- 
    121185 
    122186\section{The SMS modules} 
     
    129193\subsection{Ideal Age} 
    130194%------------------------------------------namage---------------------------------------------------- 
    131 % 
    132195\nlst{namage} 
    133196%---------------------------------------------------------------------------------------------------------- 
    134197 
    135198An `ideal age' tracer is integrated online in TOP when \textit{ln\_age} = \texttt{.true.} in namelist \textit{namtrc}. 
    136 This tracer marks the length of time in units of years that fluid has spent in the interior of the ocean, insulated from exposure to the atmosphere. 
     199This tracer marks the duration in units of years that fluid has spent in the interior of the ocean, insulated from exposure to the atmosphere  (\autoref{img_ageatl} and \autoref{img_age200}). 
     200 
     201\begin{figure}[!h] 
     202   \centering 
     203   \includegraphics[width=0.80\textwidth]{Age_Atl} 
     204   \caption{Vertical distribution of the Age tracer in the Atlantic Ocean at 35°W from a 62-year simulation.} 
     205   \label{img_ageatl} 
     206\end{figure} 
     207 
     208\begin{figure}[!h] 
     209   \centering 
     210   \includegraphics[width=0.80\textwidth]{Age_200m} 
     211   \caption{Age tracer at 200 m depth from a 62-year simulation.} 
     212   \label{img_age200} 
     213\end{figure} 
     214 
    137215Thus, away from the surface for $z<-H_{\mathrm{Age}}$ where $H_{\mathrm{Age}}$ is specified by the \textit{namage} namelist variable \textit{rn\_age\_depth}, whose default value is 10~m, there is a source $\mathrm{SMS_{\mathrm{Age}}}$ of the age tracer $A$: 
    138216 
     
    151229 
    152230where the relaxation rate $\lambda_{\mathrm{Age}}$  (units $\mathrm{s}\;^{-1}$) is specified by the \textit{namage} namelist variable \textit{rn\_age\_kill\_rate} and has a default value of 1/7200~s. 
    153 Since this relaxation is applied explicitly, this relaxation rate in principle should not exceed $1/\Delta t$, where $\Delta t$ is the time step used to step forward passive tracers (2 * \textit{nn\_dttrc * rn\_rdt} when the default  leapfrog time-stepping scheme is employed). 
     231Since this relaxation is applied explicitly, the relaxation rate should in principle not exceed $1/\Delta t$, where $\Delta t$ is the time step used to step forward passive tracers (2 * \textit{nn\_dttrc * rn\_rdt} when the default  leapfrog time-stepping scheme is employed). 
    154232 
    155233Currently the 1-dimensional reference depth of the grid boxes is used rather than the dynamically evolving depth to determine whether the age tracer is incremented or relaxed to zero. 
    156 This means that the tracer only works correctly in z-coordinates. 
    157 To ensure that the forcing is independent of the level thicknesses, where the tracer cell at level $k$ has its upper face $z=-depw(k)$ above the depth $-H_{\mathrm{Age}}$, but its lower face $z=-depw(k+1)$ below that depth, then the age source 
     234This means that the age tracer module only works correctly in z-coordinates. 
     235To ensure that the forcing is independent of the level thicknesses, where the tracer cell at level $k$ has its upper face $z=-depw(k)$ above the depth $-H_{\mathrm{Age}}$, but its lower face $z=-depw(k+1)$ below that depth, then the age source is computed as: 
    158236 
    159237\begin{equation} 
     
    169247\end{align} 
    170248 
    171  
    172 This implementation was first used in the CORE-II intercomparison runs described e.g.\ in \citet{danabasoglu_2014}. 
     249This implementation was first used in the CORE-II intercomparison runs described in \citet{danabasoglu_2014}. 
    173250 
    174251\subsection{Inert carbons tracer} 
     
    184261and additionally as an aerosol propellant. 
    185262SF6 (SF$_{6}$) is also a gas at room temperature, with a range of applications based around its property as an excellent electrical insulator (often replacing more toxic alternatives). 
    186 All three are relatively inert chemicals that are both non-toxic and non-flammable, and their wide use has led to their accumulation within the Earth's atmosphere. 
    187 Large-scale production of CFC-11 and CFC-12 began in the 1930s, while production of SF6 began in the 1950s, and their atmospheric concentration time-histories are shown in Figure \autoref{img_cfcatm}. 
    188 As can be seen in the figure, while the concentration of SF6 continues to rise to the present  day, the concentrations of both CFC-11 and CFC-12 have levelled off and declined since around the 1990s. 
     263All three gases are relatively inert chemicals that are both non-toxic and non-flammable, and their wide use has led to their accumulation in the atmosphere. 
     264Large-scale production of CFC-11 and CFC-12 began in the 1930s, while production of SF6 began in the 1950s, and the time-histories of their atmospheric concentrations are shown in Figure \autoref{img_cfcatm}. 
     265As can be seen in the figure, while the concentration of SF6 continues to rise to the present day, concentrations of both CFC-11 and CFC-12 have levelled off and declined since around the 1990s. 
    189266These declines have been driven by the Montreal Protocol (effective since August 1989), which has banned the production of CFC-11 and CFC-12 (as well as other CFCs) because of their role in the depletion of 
    190 stratospheric ozone (O$_{3}$), critical in decreasing the flux of ultraviolet radiation to the Earth's surface. 
    191 Separate to this role in ozone-depletion, all three chemicals are significantly more potent greenhouse gases 
     267stratospheric ozone (O$_{3}$), critical in decreasing the flux of ultraviolet radiation to the Earth's surface. All three chemicals are also  significantly more potent greenhouse gases 
    192268than CO$_{2}$ (especially SF6), although their relatively low atmospheric concentrations limit their role in climate change. \\ 
    193269 
     
    204280The ocean is a notable sink for all three gases, and their relatively recent occurrence in the atmosphere, coupled to the ease of making high precision measurements of their dissolved concentrations, has made them 
    205281valuable in oceanography. % for tracking interior ventilation and mixing. 
    206 Because they only enter the ocean via surface air-sea exchange, and are almost completely chemically and biologically inert, their distribution within the ocean interior reveals its ventilation via transport and mixing. 
    207 Measuring the dissolved concentrations of the gases -- as well as the mixing ratios between them -- shows circulation pathways within the ocean as well as water mass ages (i.e. the time since last contact with the 
     282Because they only enter the ocean via surface air-sea exchange, and are almost completely chemically and biologically inert, their distribution within the ocean interior reveals ventilation of the latter via transport and mixing. 
     283Measuring the dissolved concentrations of these gases -- as well as the mixing ratios between them -- shows circulation pathways within the ocean as well as water mass ages (i.e. the time since has been last in contact with the 
    208284atmosphere). 
    209 This feature of the gases has made them valuable across a wide range of oceanographic problems. 
    210 One use lies in ocean modelling, where they can be used to evaluate the realism of the circulation and 
    211 ventilation of models, key for understanding the behaviour of wider modelled marine biogeochemistry (e.g. \citep{dutay_2002,palmieri_2015}). \\ 
     285This feature has made them valuable across a wide range of oceanographic problems. 
     286In ocean modelling, they can be used to evaluate the realism of the simulated circulation and 
     287ventilation patterns, which is key for understanding the behaviour of modelled marine biogeochemistry (e.g. \citep{dutay_2002,palmieri_2015}). \\ 
    212288 
    213289Modelling these gases (henceforth CFCs) in NEMO is done within the passive tracer transport module, TOP, using the conservation state equation \autoref{Eq_tracer} 
    214290 
    215 Advection and diffusion of the CFCs in NEMO are calculated by the physical module, OPA, 
     291Advection and diffusion of the CFCs in NEMO are calculated by the physical module, TRP, 
    216292whereas sources and sinks are done by the CFC module within TOP. 
    217 The only source for CFCs in the ocean is via air-sea gas exchange at its surface, and since CFCs are generally 
     293The only source of CFCs to the ocean is via air-sea gas exchange at its surface, and since CFCs are generally 
    218294stable within the ocean, we assume that there are no sinks (i.e. no loss processes) within the ocean interior. 
    219295Consequently, the sinks-minus-sources term for CFCs consists only of their air-sea fluxes, $F_{cfc}$, as 
     
    233309$C_{surf}$ is the local surface concentration of the CFC tracer within the model (in mol~m$^{-3}$); 
    234310and $f_{i}$ is the fractional sea-ice cover of the local ocean (ranging between 0.0 for ice-free ocean, 
    235 through to 1.0 for completely ice-covered ocean with no air-sea exchange). 
     311 to 1.0 for completely ice-covered ocean with no air-sea exchange). 
    236312 
    237313The saturation concentration of the CFC, $C_{sat}$, is calculated as follows: 
     
    312388% AXY: consider an itemized list here if you've got a list of differences 
    313389 
    314 For instance, C$_{sat}$ is calculated for a fixed surface pressure of 1atm, what could be corrected in a further version of the module. 
     390For instance, C$_{sat}$ is calculated for a fixed surface pressure of 1atm. This may be corrected in a future version of the module. 
    315391 
    316392 
     
    333409 
    334410\begin{table}[!t] 
    335 \caption{Coefficients for fit of the CFCs Schmidt number (Eq. \autoref{equ_Sc}). } 
     411\caption{Coefficients for fit of the CFCs Schmidt number (Eq. \autoref{equ_Sc}).} 
    336412\vskip4mm 
    337413\centering 
     
    384460%---------------------------------------------------------------------------------------------------------- 
    385461 
    386 The C14 package implemented in NEMO by Anne Mouchet models ocean $\Dcq$. 
     462The C14 package has been implemented in NEMO by Anne Mouchet $\Dcq$. 
    387463It offers several possibilities: $\Dcq$ as a physical tracer of the ocean ventilation (natural $\cq$), assessment of bomb radiocarbon uptake, as well as transient studies of paleo-historical ocean radiocarbon distributions. 
    388464 
     
    390466 
    391467Let  $\Rq$ represent the ratio of $\cq$ atoms to the total number of carbon atoms in the sample, i.e. $\cq/\mathrm{C}$. 
    392 Then, radiocarbon anomalies are reported as 
     468Then, radiocarbon anomalies are reported as: 
    393469 
    394470\begin{equation} 
     
    397473 
    398474where $\Rq_{\textrm{ref}}$ is a reference ratio. 
    399 For the purpose of ocean ventilation studies $\Rq_{\textrm{ref}}$ is set to one. 
     475For the purpose of ocean ventilation studies, $\Rq_{\textrm{ref}}$ is set to one. 
    400476 
    401477Here we adopt the approach of \cite{fiadeiro_1982} and \cite{toggweiler_1989a,toggweiler_1989b} in which  the ratio $\Rq$ is transported rather than the individual concentrations C and $\cq$. 
     
    464540The radiocarbon decay rate (\forcode{rlam14}; in \texttt{trcnam\_c14} module) is set to $\lambda=(1/8267)$ yr$^{-1}$ \citep{stuiver_1977}, which corresponds to a half-life of 5730 yr.\\[1pt] 
    465541% 
    466 The Schmidt number $Sc$, Eq. \autoref{eq:wanc14}, is calculated with the help of the formulation of \cite{wanninkhof_2014}. 
     542The Schmidt number $Sc$, Eq. \autoref{eq:wanc14}, is calculated using the formulation of \cite{wanninkhof_2014}. 
    467543The $\cd$ solubility $K_0$ in \autoref{eq:Rspeed} is taken from \cite{weiss_1974}. $K_0$ and $Sc$ are computed with the OGCM temperature and salinity fields (\texttt{trcsms\_c14} module).\\[1pt] 
    468544% 
     
    522598\end{figure} 
    523599 
    524 Performing this type of experiment requires that a pre-industrial equilibrium run be performed beforehand (\forcode{ln\_rsttr} should be set to \texttt{.TRUE.}). 
    525  
    526 An exception to this rule is when wishing to perform a perturbation bomb experiment as was possible with the package \texttt{C14b}. 
     600Performing this type of experiment requires that a pre-industrial equilibrium run has been performed beforehand (\forcode{ln\_rsttr} should be set to \texttt{.TRUE.}). 
     601 
     602An exception to this rule is when performing a perturbation bomb experiment as was possible with the package \texttt{C14b}. 
    527603It is still possible to easily set-up that type of transient experiment for which no previous run is needed. 
    528 In addition to the instructions as given in this section it is however necessary to adapt the \texttt{atmc14.dat} file so that it does no longer contain any negative $\Dcq$ values (Suess effect in the pre-bomb period). 
     604In addition to the instructions given in this section, it is however necessary to adapt the \texttt{atmc14.dat} file so that it does no longer contain any negative $\Dcq$ values (Suess effect in the pre-bomb period). 
    529605 
    530606The model  is integrated from a given initial date following the observed records provided from 1765 AD on ( Fig. \autoref{fig:bomb}). 
     
    535611Dates in these forcing files are expressed as yr AD. 
    536612 
    537 To ensure that the atmospheric forcing is applied properly as well as that output files contain consistent dates and inventories the experiment should be set up carefully: 
     613To ensure that the atmospheric forcing is applied properly as well as that output files contain consistent dates and inventories, the experiment should be set up carefully: 
    538614 
    539615\begin{itemize} 
     
    543619\end{itemize} 
    544620 
    545 If the experiment date is outside the data time span then the first or last atmospheric concentrations are prescribed depending on whether the date is earlier or later. 
    546 Note that \forcode{tyrc14\_beg} (\texttt{namelist\_c14}) is not used in this context. 
     621If the experiment date is outside the data time span, the first or last atmospheric concentrations are then prescribed depending on whether the date is earlier or later. 
     622   Note that \forcode{tyrc14\_beg} (\texttt{namelist\_c14}) is not used in this context. 
    547623 
    548624% 
     
    582658 
    583659All output fields in Table \autoref{tab:out} are routinely computed. 
    584 It depends on the actual settings in \texttt{iodef.xml} whether they are stored or not. 
     660It depends on the actual settings in \texttt{iodef.xml} whether they are saved or not. 
    585661% 
    586662\begin{table}[!h] 
     
    645721\subsection{PISCES biogeochemical model} 
    646722 
    647 PISCES is a biogeochemical model which simulates the lower trophic levels of marine ecosystem (phytoplankton, microzooplankton and mesozooplankton) and the biogeochemical cycles of carbonand of the main nutrients (P, N, Fe, and Si). 
    648 The  model is intended to be used for both regional and global configurations at high or low spatial resolutions as well as for  short-term (seasonal, interannual) and long-term (climate change, paleoceanography) analyses. 
     723PISCES is a biogeochemical model that simulates the lower trophic levels of marine ecosystem (phytoplankton, microzooplankton, and mesozooplankton) and the biogeochemical cycles of carbon and of the main nutrients (P, N, Si, and Fe) (\autoref{img_piscesdesign} and \autoref{img_pisces}). 
     724 
     725\begin{figure}[ht] 
     726   \begin{center} 
     727      \vspace{0cm} 
     728      \includegraphics[width=0.80\textwidth]{Fig_PISCES_model} 
     729      \caption{Schematic view of the PISCES-v2 model (figure by Jorge Martinez-Rey).} 
     730      \label{img_piscesdesign} 
     731   \end{center} 
     732\end{figure} 
     733 
     734\begin{figure}[!h] 
     735   \centering 
     736   \includegraphics[width=0.80\textwidth]{PISCES_tracers} 
     737   \caption{Surface concentrations of NO$_{3}$, PO$_{4}$, total chlorophyll, and air-sea CO$_{2}$ flux from the last year of a 62-year simulation.} 
     738   \label{img_pisces} 
     739\end{figure} 
     740 
     741The  model is intended to be used for both regional and global configurations at high or low spatial resolutions as well as for short-term (seasonal, interannual) and long-term (climate change, paleoceanography) analyses.  
     742 
    649743Two versions of PISCES are available in NEMO v4.0 : 
    650744 
    651 PISCES-v2, by setting in namelist\_pisces\_ref  \np{ln\_p4z} to true,  can be seen as one of the many Monod models \citep{monod_1958}. 
    652 It assumes a constant Redfield ratio and phytoplankton growth depends on the external concentration in nutrients. 
    653 There are twenty-four prognostic variables (tracers) including two phytoplankton compartments  (diatoms and nanophytoplankton), two zooplankton size-classes (microzooplankton and  mesozooplankton) and a description of the carbonate chemistry. 
    654 Formulations in PISCES-v2 are based on a mixed Monod/Quota formalism: On one hand, stoichiometry of C/N/P is fixed and growth rate of phytoplankton is limited by the external availability in N, P and Si. 
    655 On the other hand, the iron and silicium quotas are variable and growth rate of phytoplankton is limited by the internal availability in Fe. 
    656 Various parameterizations can be activated in PISCES-v2, setting for instance the complexity of iron chemistry or the description of particulate organic materials. 
    657  
    658 PISCES-QUOTA has been built on the PISCES-v2 model described in \citet{aumont_2015}. 
    659 PISCES-QUOTA has thirty-nine prognostic compartments. 
    660 Phytoplankton growth can be controlled by five modeled limiting nutrients: Nitrate and Ammonium, Phosphate, Silicate and Iron. 
    661 Five living compartments are represented: Three phytoplankton size classes/groups corresponding to picophytoplankton, nanophytoplankton and diatoms, and two zooplankton size classes which are microzooplankton and mesozooplankton. 
    662 For phytoplankton, the prognostic variables are the carbon, nitrogen, phosphorus,  iron, chlorophyll and silicon biomasses (the latter only for diatoms). 
    663 This means that the N/C, P/C, Fe/C and Chl/C ratios of both phytoplankton groups as well as the Si/C ratio of diatoms are prognostically predicted  by the model. 
    664 Zooplankton are assumed to be strictly homeostatic \citep[e.g.,][]{sterner_2003,woods_2013,meunier_2014}. 
    665 As a consequence, the C/N/P/Fe ratios of these groups are maintained constant and are not allowed to vary. 
    666 In PISCES, the Redfield ratios C/N/P are set to 122/16/1 \citep{takahashi_1985} and the -O/C ratio is set to 1.34 \citep{kortzinger_2001}. 
    667 No silicified zooplankton is assumed. 
    668 The bacterial pool is not yet explicitly modeled. 
     745\begin{itemize} 
     746   \item PISCES-v2, by setting \textit{ln\_p4z} = \texttt{.true.} in \textit{namelist\_pisces\_ref}. This version can be seen as one of the many Monod models \citep{monod_1958}. It assumes a constant Redfield ratio and phytoplankton growth depends on the external concentration in nutrients. There are twenty-four prognostic variables (tracers) including two phytoplankton compartments  (diatoms and nanophytoplankton), two zooplankton size-classes (microzooplankton and  mesozooplankton) and a description of the carbonate chemistry. Formulations in PISCES-v2 are based on a mixed Monod/Quota formalism: On one hand, stoichiometry of C/N/P is fixed and growth rate of phytoplankton is limited by the external availability in N, P, and Si. On the other hand, the iron and silicium quotas are variable and growth rate of phytoplankton is limited by the internal availability in Fe. Various parameterizations can be activated in PISCES-v2, setting for instance the complexity of iron chemistry or the description of particulate organic materials. 
     747    
     748   \item PISCES-QUOTA, by setting \textit{ln\_p5z} = \texttt{.true.} in \textit{namelist\_pisces\_ref}. This version has been built on the PISCES-v2 model described in \citet{aumont_2015}. PISCES-QUOTA has thirty-nine prognostic compartments. Phytoplankton growth is controlled by five modeled limiting nutrients: Nitrate and Ammonium, Phosphate, Silicate, and Iron. Five living compartments are represented: Three phytoplankton size classes/groups corresponding to picophytoplankton, nanophytoplankton, and diatoms, and two zooplankton size classes, which are microzooplankton and mesozooplankton. For phytoplankton, the prognostic variables are the carbon, nitrogen, phosphorus,  iron, chlorophyll and silicon biomasses (the latter only for diatoms). This means that the N/C, P/C, Fe/C, and Chl/C ratios of the three phytoplankton groups as well as the Si/C ratio of diatoms are prognostically predicted by the model. Zooplankton are assumed to be strictly homeostatic \citep[e.g.,][]{sterner_2003,woods_2013,meunier_2014}. As a consequence, the C/N/P/Fe ratios of these groups are maintained constant and are not allowed to vary. In PISCES, the Redfield ratios C/N/P are set to 122/16/1 \citep{takahashi_1985} and the -O/C ratio is set to 1.34 \citep{kortzinger_2001}. No silicified zooplankton is assumed. The bacterial pool is not yet explicitly modeled. 
     749\end{itemize} 
    669750 
    670751There are three non-living compartments: Semi-labile dissolved organic matter, small sinking particles, and large sinking particles. 
    671752As a consequence of the variable stoichiometric ratios of phytoplankton and of the stoichiometric regulation of zooplankton, elemental ratios in organic matter cannot be supposed constant anymore as that was the case in PISCES-v2. 
    672 Indeed, the nitrogen, phosphorus, iron, silicon and calcite pools of the particles are now all explicitly modeled. 
     753Indeed, the nitrogen, phosphorus, iron, silicon, and calcite pools of the particles are now all explicitly modeled. 
    673754The sinking speed of the particles is not altered by their content in calcite and biogenic silicate (''The ballast effect'', \citep{honjo_1996,armstrong_2001}). 
    674755The latter particles are assumed to sink at the same speed as the large organic matter particles. 
     
    678759\label{Mytrc} 
    679760 
    680 The NEMO-TOP has only one built-in biogeochemical model - PISCES - but there are several BGC models - MEDUSA, ERSEM, BFM or ECO3M - which are meant to be coupled with the NEMO dynamics. 
    681 Therefore it was necessary to provide to the users a framework for easily add their own BGCM model, that can be a single passive tracer. 
     761NEMO-TOP has one built-in biogeochemical model - PISCES - but there are several BGC models - MEDUSA, ERSEM, BFM or ECO3M - which are meant to be used within the NEMO plateform. 
     762Therefore it was necessary to provide to the users a framework to easily add their own BGCM model. 
    682763The generalized interface is pivoted on MY\_TRC module that contains template files to build the coupling between NEMO and any external BGC model. 
    683 The call to MY\_TRC is activated by setting  \textit{ln\_my\_trc} = \texttt{.true.} in namelist \textit{namtrc} 
     764Call to MY\_TRC is activated by setting  \textit{ln\_my\_trc} = \texttt{.true.} in namelist \textit{namtrc}.\\ 
    684765 
    685766The following 6 fortran files are available in MY\_TRC with the specific purposes here described. 
     
    692773  \item \textit{trcsms\_my\_trc.F90} :  The routine performs the call to Boundary Conditions and its main purpose is to contain the Source-Minus-Sinks terms due to the biogeochemical processes of the external model. 
    693774Be aware that lateral boundary conditions are applied in trcnxt routine. 
    694 IMPORTANT: the routines to compute the light penetration along the water column and the tracer vertical sinking should be defined/called in here, as generalized modules are still missing in the code. 
    695  \item \textit{trcice\_my\_trc.F90} : Here it is possible to prescribe the tracers concentrations in the seaice that will be used as boundary conditions when ice melting occurs (nn\_ice\_tr =1 in namtrc\_ice). 
     775IMPORTANT: the routines to compute light penetration along the water column and the tracer vertical sinking should be defined/called in here, as generalized modules are still missing in the code. 
     776 \item \textit{trcice\_my\_trc.F90} : Here it is possible to prescribe the tracers concentrations in sea ice that will be used as boundary conditions when ice formation and melting occurs (nn\_ice\_tr =1 in namtrc\_ice). 
    696777See e.g. the correspondent PISCES subroutine. 
    697778 \item \textit{trcwri\_my\_trc.F90} : This routine performs the output of the model tracers using IOM module (see Manual Chapter Output and Diagnostics). 
     
    702783\label{Offline} 
    703784 
    704 %------------------------------------------namtrc_sms---------------------------------------------------- 
    705 \nlst{namdta_dyn} 
    706 %------------------------------------------------------------------------------------------------------------- 
    707  
    708 Coupling passive tracers offline with NEMO requires precomputed  physical fields from OGCM. 
    709 Those fields are read from files and interpolated on-the-fly at each model time step 
    710 At least the following dynamical parameters should be absolutely passed to the transport : ocean velocities, temperature, salinity, mixed layer depth and for ecosystem models like PISCES, sea ice concentration, short wave radiation at the ocean surface, wind speed (or at least, wind stress). 
    711 The so-called offline mode is useful since it has lower computational costs for example to perform very longer simulations - about 3000 years - to reach equilibrium of CO2 sinks for climate-carbon studies. 
    712  
    713 The offline interface is located in the code repository : \path{<repository>/src/OFF/}. 
    714 It is activated by adding the CPP key  \textit{key\_offline} to the CPP keys list. 
    715 There are two specifics routines for the Offline code : 
     785Coupling passive tracers offline with NEMO requires precomputed physical fields 
     786 from OGCM. Those fields are read in files and interpolated on-the-fly at each model 
     787 time step. There are two sets of fields to perform offline simulations : 
    716788 
    717789\begin{itemize} 
    718    \item \textit{dtadyn.F90} :  this module allows to read and compute the dynamical fields at each model time-step 
    719    \item \textit{nemogcm.F90} :  a degraded version of the main nemogcm.F90 code of NEMO to manage the time-stepping 
     790   \item linear free surface ( ln\_linssh = .true. )  where the vertical scale factor is constant with time. At least, the following dynamical parameters should be absolutely passed 
     791   to transport : the effective ocean transport velocities (eulerian plus the eddy induced plus all others parameterizations), vertical diffusion coefficient and the freshwater flux 
     792. 
     793   %------------------------------------------namtrc_sms---------------------------------------------------- 
     794   \nlst{namdta_dyn_linssh} 
     795   %----------------------------------------------------------------------------------------------------------- 
     796   \item non linear free surface ( ln\_linssh = .false. or key\_qco ) : the same fields than the ones in the linear free surface case. In addition, the horizontal divergence transport is needed to  recompute the time evolution of the sea surface heigth and the vertical scale factor and depth, and thus the time evolution of the vertical transport velocity. 
     797   %------------------------------------------namtrc_sms---------------------------------------------------- 
     798   \nlst{namdta_dyn_nolinssh} 
     799   %----------------------------------------------------------------------------------------------------------- 
    720800\end{itemize} 
    721801 
    722 %- 
    723 %- 
    724 %- 
    725 %-  Describes here the specifities of oflline : At least the dynamical variables needed - u/v/w transport T/S for isopycnal MLD for biogeo models etc ... 
    726 %-  the specfities of vvl - ssh + runoffs and how to 
    727 %- 
     802Additionally, temperature, salinity, and mixed layer depth are needed to compute slopes for isopycnal diffusion. Some ecosystem models like PISCES need sea ice concentration, short-wave radiation at the ocean surface, and wind speed (or at least, wind stress).  
     803 
     804The so-called offline mode is useful since it has lower computational costs for example to perform very longer simulations – about 3000 years - to reach equilibrium of CO$_{2}$ sinks for climate-carbon studies. 
     805 
     806The offline interface is located in the code repository : <repository>/src/OFF/. It is activated by adding the\textit{ key\_offline} CPP key to the CPP keys list.  
     807There are 
     808two specifics routines for the offline code : 
     809\begin{itemize} 
     810   \item dtadyn.F90 : this module reads and computes the dynamical fields at 
     811each model time-step 
     812   \item nemogcm.F90 : a degraded version of the main nemogcm.F90 code of NEMO to 
     813manage the time-stepping 
     814\end{itemize} 
     815 
     816 
    728817\end{document} 
  • NEMO/trunk/doc/latex/TOP/subfiles/model_setup.tex

    r11591 r14929  
    55\chapter{ Model Setup} 
    66 
     7The usage of TOP is activated i) by including in the configuration definition the component TOP and ii) by adding the macro key\_top in the configuration CPP file (see for more details “Learn more about the model”). 
     8As an example, the user can refer to already available configurations in the code, ORCA2\_ICE\_PISCES being the NEMO biogeochemical demonstrator and GYRE\_BFM to see the required configuration elements to couple with an external biogeochemical model (see also Section 4).\\ 
     9Note that, since version 4.0, TOP interface core functionalities are activated by means of logical keys and all submodules preprocessing macros from previous versions were removed.\\ 
     10 
     11Below is the list of preprocessing keys that apply to the TOP interface (beside key\_top): 
     12\begin{itemize} 
     13   \item key\_xios use XIOS I/O 
     14   \item key\_agrif enables AGRIF coupling 
     15   \item key\_trdtrc and key\_trdmxl\_trc trend computation for tracers 
     16\end{itemize} 
     17 
     18There are only two entry points in the NEMOGCM model for passive tracers : 
     19\begin{itemize} 
     20   \item initialization (trcini) : general initialization of global variables and parameters of BGCM 
     21   \item time-stepping (trcstp) : time-evolution of SMS first, then time evolution of tracers by transport 
     22\end{itemize} 
     23 
    724\section{ Setting up a passive tracer configuration} 
    825%------------------------------------------namtrc_int---------------------------------------------------- 
     
    1027%------------------------------------------------------------------------------------------------------------- 
    1128 
    12 The usage of TOP is activated 
    13  
    14 \begin{itemize} 
    15          \item by including in the configuration definition the component TOP\_SRC 
    16          \item by adding the macro \textit{key\_top} in the configuration cpp file 
    17 \end{itemize} 
    18  
    19 As an example, the user can refer to already available configurations in the code, GYRE\_PISCES being the NEMO biogeochemical demonstrator and GYRE\_BFM to see the required configuration elements to couple with an external biogeochemical model (see also section \S\ref{SMS_models}) . 
    20  
    21 Note that, since version 4.0, TOP interface core functionalities are activated by means of logical keys and all submodules preprocessing macros from previous versions were removed. 
    22  
    23 There are only three specific keys remaining in TOP 
    24  
    25 \begin{itemize} 
    26         \item \textit{key\_top} : to enables passive tracer module 
    27         \item \textit{key\_trdtrc} and \textit{key\_trdmxl\_trc} : trend computation for tracers 
    28 \end{itemize} 
    29  
    30 For a remind, the revisited structure of TOP interface now counts for five different modules handled in namelist\_top : 
     29As a reminder, the revisited structure of TOP interface now counts for five different modules handled in namelist\_top : 
    3130 
    3231\begin{itemize} 
    3332        \item \textbf{PISCES}, default BGC model 
    3433        \item \textbf{MY\_TRC}, template for creation of new modules couplings (maybe run a single passive tracer) 
    35         \item \textbf{CFC}, inert carbon tracers dynamics (CFC11,CFC12,SF6) Updated with OMIP-BGC guidelines (Orr et al, 2016) 
     34        \item \textbf{CFC}, inert tracers dynamics (CFC$_{11}$,CFC$_{12}$,SF$_{6}$) updated based on OMIP-BGC guidelines (Orr et al, 2016) 
    3635        \item \textbf{C14}, radiocarbon passive tracer 
    37         \item \textbf{AGE}, water age tracking revised implementation 
     36        \item \textbf{AGE}, water age tracking 
    3837\end{itemize} 
    3938 
    40 The modular approach was implemented also in the definition of the total number of passive tracers (jptra). This results from to user setting from the namelist \textit{namtrc} 
     39For inert, C14, and Age tracers, all variables settings (\textit{sn\_tracer} definitions) are hard-coded in \textit{trc\_nam\_*} routines. For instance, for Age tracer: 
     40%------------------------------------------namtrc_int---------------------------------------------------- 
     41\nlst{nam_trc_age} 
     42%--------------------------------------------------------------------------------------------------------- 
    4143 
    42 \section{ TOP Tracer Initialisation} 
     44The modular approach was also implemented in the definition of the total number of passive tracers (jptra) which is specified by the user in  \textit{namtrc} 
     45 
     46\section{ TOP Tracer Initialization} 
     47 
     48Two main types of data structure are used within TOP interface to initialize tracer properties and to provide related initial and boundary conditions.  
     49In addition to providing name and metadata for tracers, the use of initial and boundary conditions is also defined here (sn\_tracer). 
     50The data structure is internally initialized by the code with dummy names and all initialization/forcing logical fields are set to \textit{false} . 
     51Below are listed some features/options of the TOP interface accessible through the \textit{namelist\_top\_ref} and modifiable by means of \textit{namelist\_top\_cfg} (as for NEMO physical ones). 
     52 
     53There are three options to initialize TOP tracers in the \textit{namelist\_top } file: (1) initialization to hard-coded constant values when \textit{ln\_trcdta} at \textit{false}, (2) initialization from files when \textit{ln\_trcdta} at \textit{true}, and (3) initialisation from restart files by setting \textit{ln\_rsttr} to \textit{true} in \textit{namelist}. 
     54 
     55In the following, an example of the full structure definition is given for four tracers (DIC, Fe, NO$_{3}$, PHY) with initial conditions and different surface boundary and coastal forcings for DIC, Fe, and NO$_{3}$:  
     56 
     57%------------------------------------------namtrc_int---------------------------------------------------- 
     58\nlst{namtrc_cfg} 
     59%--------------------------------------------------------------------------------------------------------- 
     60 
     61You have to activate which tracers (\textit{sn\_tracer}) you want to initialize by setting them to \texttt{true} in the  column.  
     62 
     63\nlst{namtrc_dta_cfg} 
     64 
     65In \textit{namtrc\_dta}, you prescribe from which files the tracer are initialized (\textit{sn\_trcdta}).  
     66A multiplicative factor can also be set for each tracer (\textit{rn\_trfac}).  
     67 
    4368 
    4469\section{ TOP Boundaries Conditions} 
    4570 
     71\subsection{Surface and lateral boundaries} 
     72 
     73Lateral and surface boundary conditions for passive tracers are prescribed in \textit{namtrc\_bc} as well as whether temporal interpolation of these files is enabled. Here we show the cases of Fe and NO$_{3}$ from dust and rivers with different output frequencies. 
     74  
     75%------------------------------------------namtrc_bc---------------------------------------------------- 
     76\nlst{namtrc_bc_cfg} 
     77%--------------------------------------------------------------------------------------------------------- 
     78 
     79\subsection{Antartic Ice Sheet tracer supply} 
     80 
     81As a reminder, the supply of passive tracers from the AIS is currently implemented only for dissolved Fe. The activation of this Fe source is done by setting \textit{ln\_trcais} to \textit{true} and by adding the Fe tracer (\textit{sn\_tracer(2) = .true.}) in the 'ais' column in \textit{\&namtrc} (see section 2.2). \\ 
     82 
     83As the external source of Fe from the AIS is represented by associating  a sedimentary Fe content (with a solubility fraction) to the freshwater fluxes of icebergs and ice shelves, these fluxes have to be activated in \textit{namelist\_cfg}. The reading of the freshwater flux file from ice shelves is activated in \textit{namisf} with the namelist parameter \textit{ln\_isf} set to \textit{true}. 
     84 
     85You have to choose between two options depending whether the cavities under ice shelves are open or not in your grid configuration: 
     86\begin{itemize} 
     87   \item ln\_isfcav\_mlt = .false. (resolved cavities) 
     88   \item ln\_isfpar\_mlt = .true. (parameterized distribution for unopened cavities) 
     89\end{itemize} 
     90 
     91%------------------------------------------namisf---------------------------------------------------- 
     92\nlst{namisf_cfg_eORCA1} 
     93%----------------------------------------------------------------------------------------------------- 
     94 
     95Runoff from icebergs is activated by setting \textit{ln\_rnf\_icb} to \textit{true} in the \textit{\&namsbc\_rnf} section of \textit{namelist\_cfg}. 
     96 
     97%------------------------------------------namsbc_rnf-------------------------------------------------- 
     98\nlst{namsbc_rnf_cfg_eORCA1} 
     99%--------------------------------------------------------------------------------------------------------- 
     100 
     101The freshwater flux from ice shelves and icebergs is based on observations and modeled climatologies and is available for eORCA1 and eORCA025 grids : 
     102\begin{itemize} 
     103   \item runoff-icb\_DaiTrenberth\_Depoorter\_eORCA1\_JD.nc 
     104   \item runoff-icb\_DaiTrenberth\_Depoorter\_eORCA025\_JD.nc  
     105\end{itemize} 
     106 
     107%------------------------------------------namtrc_ais---------------------------------------------------- 
     108\nlst{namtrc_ais_cfg} 
     109%--------------------------------------------------------------------------------------------------------- 
     110 
     111Two options for tracer concentrations in iceberg and ice shelf can be set with the namelist parameter \textit{nn\_ais\_tr}: 
     112\begin{itemize} 
     113   \item 0 : null concentrations corresponding to dilution of BGC tracers due to freshwater fluxes from icebergs and ice shelves 
     114   \item 1 : prescribed concentrations set with the \textit{rn\_trafac} factor 
     115\end{itemize} 
     116 
     117The depth until which Fe from melting iceberg is delivered can be set with the namelist parameter \textit{rn\_icbdep}. The value of 120 m is the average underwater depth of the different iceberg size classes modeled by the NEMO iceberg module, which was used to produce the freshwater flux climatology of icebergs. 
     118 
     119 
    46120\end{document} 
Note: See TracChangeset for help on using the changeset viewer.