New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 14929 for NEMO/trunk/doc/latex/TOP/subfiles/model_setup.tex – NEMO

Ignore:
Timestamp:
2021-05-31T10:57:04+02:00 (3 years ago)
Author:
rlod
Message:

Finalization of TOP documentation: 2020 shared action, https://forge.ipsl.jussieu.fr/nemo/wiki/2020WP/PUB-02_Ethe_TOP_DOC, C. Ethe & R. Person, thanks to O. Aumont

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/TOP/subfiles/model_setup.tex

    r11591 r14929  
    55\chapter{ Model Setup} 
    66 
     7The usage of TOP is activated i) by including in the configuration definition the component TOP and ii) by adding the macro key\_top in the configuration CPP file (see for more details “Learn more about the model”). 
     8As an example, the user can refer to already available configurations in the code, ORCA2\_ICE\_PISCES being the NEMO biogeochemical demonstrator and GYRE\_BFM to see the required configuration elements to couple with an external biogeochemical model (see also Section 4).\\ 
     9Note that, since version 4.0, TOP interface core functionalities are activated by means of logical keys and all submodules preprocessing macros from previous versions were removed.\\ 
     10 
     11Below is the list of preprocessing keys that apply to the TOP interface (beside key\_top): 
     12\begin{itemize} 
     13   \item key\_xios use XIOS I/O 
     14   \item key\_agrif enables AGRIF coupling 
     15   \item key\_trdtrc and key\_trdmxl\_trc trend computation for tracers 
     16\end{itemize} 
     17 
     18There are only two entry points in the NEMOGCM model for passive tracers : 
     19\begin{itemize} 
     20   \item initialization (trcini) : general initialization of global variables and parameters of BGCM 
     21   \item time-stepping (trcstp) : time-evolution of SMS first, then time evolution of tracers by transport 
     22\end{itemize} 
     23 
    724\section{ Setting up a passive tracer configuration} 
    825%------------------------------------------namtrc_int---------------------------------------------------- 
     
    1027%------------------------------------------------------------------------------------------------------------- 
    1128 
    12 The usage of TOP is activated 
    13  
    14 \begin{itemize} 
    15          \item by including in the configuration definition the component TOP\_SRC 
    16          \item by adding the macro \textit{key\_top} in the configuration cpp file 
    17 \end{itemize} 
    18  
    19 As an example, the user can refer to already available configurations in the code, GYRE\_PISCES being the NEMO biogeochemical demonstrator and GYRE\_BFM to see the required configuration elements to couple with an external biogeochemical model (see also section \S\ref{SMS_models}) . 
    20  
    21 Note that, since version 4.0, TOP interface core functionalities are activated by means of logical keys and all submodules preprocessing macros from previous versions were removed. 
    22  
    23 There are only three specific keys remaining in TOP 
    24  
    25 \begin{itemize} 
    26         \item \textit{key\_top} : to enables passive tracer module 
    27         \item \textit{key\_trdtrc} and \textit{key\_trdmxl\_trc} : trend computation for tracers 
    28 \end{itemize} 
    29  
    30 For a remind, the revisited structure of TOP interface now counts for five different modules handled in namelist\_top : 
     29As a reminder, the revisited structure of TOP interface now counts for five different modules handled in namelist\_top : 
    3130 
    3231\begin{itemize} 
    3332        \item \textbf{PISCES}, default BGC model 
    3433        \item \textbf{MY\_TRC}, template for creation of new modules couplings (maybe run a single passive tracer) 
    35         \item \textbf{CFC}, inert carbon tracers dynamics (CFC11,CFC12,SF6) Updated with OMIP-BGC guidelines (Orr et al, 2016) 
     34        \item \textbf{CFC}, inert tracers dynamics (CFC$_{11}$,CFC$_{12}$,SF$_{6}$) updated based on OMIP-BGC guidelines (Orr et al, 2016) 
    3635        \item \textbf{C14}, radiocarbon passive tracer 
    37         \item \textbf{AGE}, water age tracking revised implementation 
     36        \item \textbf{AGE}, water age tracking 
    3837\end{itemize} 
    3938 
    40 The modular approach was implemented also in the definition of the total number of passive tracers (jptra). This results from to user setting from the namelist \textit{namtrc} 
     39For inert, C14, and Age tracers, all variables settings (\textit{sn\_tracer} definitions) are hard-coded in \textit{trc\_nam\_*} routines. For instance, for Age tracer: 
     40%------------------------------------------namtrc_int---------------------------------------------------- 
     41\nlst{nam_trc_age} 
     42%--------------------------------------------------------------------------------------------------------- 
    4143 
    42 \section{ TOP Tracer Initialisation} 
     44The modular approach was also implemented in the definition of the total number of passive tracers (jptra) which is specified by the user in  \textit{namtrc} 
     45 
     46\section{ TOP Tracer Initialization} 
     47 
     48Two main types of data structure are used within TOP interface to initialize tracer properties and to provide related initial and boundary conditions.  
     49In addition to providing name and metadata for tracers, the use of initial and boundary conditions is also defined here (sn\_tracer). 
     50The data structure is internally initialized by the code with dummy names and all initialization/forcing logical fields are set to \textit{false} . 
     51Below are listed some features/options of the TOP interface accessible through the \textit{namelist\_top\_ref} and modifiable by means of \textit{namelist\_top\_cfg} (as for NEMO physical ones). 
     52 
     53There are three options to initialize TOP tracers in the \textit{namelist\_top } file: (1) initialization to hard-coded constant values when \textit{ln\_trcdta} at \textit{false}, (2) initialization from files when \textit{ln\_trcdta} at \textit{true}, and (3) initialisation from restart files by setting \textit{ln\_rsttr} to \textit{true} in \textit{namelist}. 
     54 
     55In the following, an example of the full structure definition is given for four tracers (DIC, Fe, NO$_{3}$, PHY) with initial conditions and different surface boundary and coastal forcings for DIC, Fe, and NO$_{3}$:  
     56 
     57%------------------------------------------namtrc_int---------------------------------------------------- 
     58\nlst{namtrc_cfg} 
     59%--------------------------------------------------------------------------------------------------------- 
     60 
     61You have to activate which tracers (\textit{sn\_tracer}) you want to initialize by setting them to \texttt{true} in the  column.  
     62 
     63\nlst{namtrc_dta_cfg} 
     64 
     65In \textit{namtrc\_dta}, you prescribe from which files the tracer are initialized (\textit{sn\_trcdta}).  
     66A multiplicative factor can also be set for each tracer (\textit{rn\_trfac}).  
     67 
    4368 
    4469\section{ TOP Boundaries Conditions} 
    4570 
     71\subsection{Surface and lateral boundaries} 
     72 
     73Lateral and surface boundary conditions for passive tracers are prescribed in \textit{namtrc\_bc} as well as whether temporal interpolation of these files is enabled. Here we show the cases of Fe and NO$_{3}$ from dust and rivers with different output frequencies. 
     74  
     75%------------------------------------------namtrc_bc---------------------------------------------------- 
     76\nlst{namtrc_bc_cfg} 
     77%--------------------------------------------------------------------------------------------------------- 
     78 
     79\subsection{Antartic Ice Sheet tracer supply} 
     80 
     81As a reminder, the supply of passive tracers from the AIS is currently implemented only for dissolved Fe. The activation of this Fe source is done by setting \textit{ln\_trcais} to \textit{true} and by adding the Fe tracer (\textit{sn\_tracer(2) = .true.}) in the 'ais' column in \textit{\&namtrc} (see section 2.2). \\ 
     82 
     83As the external source of Fe from the AIS is represented by associating  a sedimentary Fe content (with a solubility fraction) to the freshwater fluxes of icebergs and ice shelves, these fluxes have to be activated in \textit{namelist\_cfg}. The reading of the freshwater flux file from ice shelves is activated in \textit{namisf} with the namelist parameter \textit{ln\_isf} set to \textit{true}. 
     84 
     85You have to choose between two options depending whether the cavities under ice shelves are open or not in your grid configuration: 
     86\begin{itemize} 
     87   \item ln\_isfcav\_mlt = .false. (resolved cavities) 
     88   \item ln\_isfpar\_mlt = .true. (parameterized distribution for unopened cavities) 
     89\end{itemize} 
     90 
     91%------------------------------------------namisf---------------------------------------------------- 
     92\nlst{namisf_cfg_eORCA1} 
     93%----------------------------------------------------------------------------------------------------- 
     94 
     95Runoff from icebergs is activated by setting \textit{ln\_rnf\_icb} to \textit{true} in the \textit{\&namsbc\_rnf} section of \textit{namelist\_cfg}. 
     96 
     97%------------------------------------------namsbc_rnf-------------------------------------------------- 
     98\nlst{namsbc_rnf_cfg_eORCA1} 
     99%--------------------------------------------------------------------------------------------------------- 
     100 
     101The freshwater flux from ice shelves and icebergs is based on observations and modeled climatologies and is available for eORCA1 and eORCA025 grids : 
     102\begin{itemize} 
     103   \item runoff-icb\_DaiTrenberth\_Depoorter\_eORCA1\_JD.nc 
     104   \item runoff-icb\_DaiTrenberth\_Depoorter\_eORCA025\_JD.nc  
     105\end{itemize} 
     106 
     107%------------------------------------------namtrc_ais---------------------------------------------------- 
     108\nlst{namtrc_ais_cfg} 
     109%--------------------------------------------------------------------------------------------------------- 
     110 
     111Two options for tracer concentrations in iceberg and ice shelf can be set with the namelist parameter \textit{nn\_ais\_tr}: 
     112\begin{itemize} 
     113   \item 0 : null concentrations corresponding to dilution of BGC tracers due to freshwater fluxes from icebergs and ice shelves 
     114   \item 1 : prescribed concentrations set with the \textit{rn\_trafac} factor 
     115\end{itemize} 
     116 
     117The depth until which Fe from melting iceberg is delivered can be set with the namelist parameter \textit{rn\_icbdep}. The value of 120 m is the average underwater depth of the different iceberg size classes modeled by the NEMO iceberg module, which was used to produce the freshwater flux climatology of icebergs. 
     118 
     119 
    46120\end{document} 
Note: See TracChangeset for help on using the changeset viewer.