New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 15548 for NEMO/branches/2021/ticket2632_r14588_theta_sbcblk/doc/latex/NEMO/subfiles/chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2021-11-28T18:59:49+01:00 (3 years ago)
Author:
gsamson
Message:

update branch to the head of the trunk (r15547); ticket #2632

Location:
NEMO/branches/2021/ticket2632_r14588_theta_sbcblk
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2021/ticket2632_r14588_theta_sbcblk

    • Property svn:externals
      •  

        old new  
        99 
        1010# SETTE 
        11 ^/utils/CI/sette@14244        sette 
         11^/utils/CI/sette@HEAD        sette 
         12 
  • NEMO/branches/2021/ticket2632_r14588_theta_sbcblk/doc/latex/NEMO/subfiles/chap_ZDF.tex

    r14530 r15548  
    278278 
    279279%% ================================================================================================= 
    280 \subsubsection{Surface wave breaking parameterization} 
     280\subsubsection{Surface wave breaking parameterization (No information from an external wave model)} 
     281\label{subsubsec:ZDF_tke_wave}  
    281282 
    282283Following \citet{mellor.blumberg_JPO04}, the TKE turbulence closure model has been modified to 
     
    306307with $e_{bb}$ the \np{rn_ebb}{rn\_ebb} namelist parameter, setting \np[=67.83]{rn_ebb}{rn\_ebb} corresponds 
    307308to $\alpha_{CB} = 100$. 
    308 Further setting  \np[=.true.]{ln_mxl0}{ln\_mxl0},  applies \autoref{eq:ZDF_Lsbc} as the surface boundary condition on the length scale, 
    309 with $\beta$ hard coded to the Stacey's value. 
    310 Note that a minimal threshold of \np{rn_emin0}{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters) is applied on the 
    311 surface $\bar{e}$ value. 
     309 
     310Further setting  \np[=.true.]{ln_mxl0}{ln\_mxl0},  applies \autoref{eq:ZDF_Lsbc} as the surface boundary condition on the length scale, with $\beta$ hard coded to the Stacey's value. Note that a minimal threshold of \np{rn_emin0}{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters) is applied on the surface $\bar{e}$ value.\\ 
     311 
     312\subsubsection{Surface wave breaking parameterization (using information from an external wave model)} 
     313\label{subsubsec:ZDF_tke_waveco}  
     314 
     315Surface boundary conditions for the turbulent kinetic energy, the mixing length scale and the dissipative length scale can be defined using wave fields provided from an external wave model (see \autoref{chap:SBC}, \autoref{sec:SBC_wave}).  
     316The injection of turbulent kinetic energy at the surface can be given by the dissipation of the wave field usually dominated by wave breaking. In coupled mode, the wave to ocean energy flux term ($\Phi_o$) from an external wave model can be provided and then converted into an ocean turbulence source by setting ln\_phioc=.true. 
     317 
     318The surface TKE can be defined by a Dirichlet boundary condition setting $nn\_bc\_surf=0$ in \nam{zdf}{tke} namelist: 
     319\begin{equation} 
     320  \bar{e}_o  = \frac{1}{2}\,\left( 15.8 \, \frac{\Phi_o}{\rho_o}\right) ^{2/3} 
     321\end{equation} 
     322 
     323Nevertheless, due to the definition of the computational grid, the TKE flux is not applied at the free surface but at the centre of the topmost grid cell ($z = z1$). To be more accurate, a Neumann boundary condition amounting to interpreter the half-grid cell at the top as a constant flux layer (consistent with the surface layer Monin–Obukhov theory) can be applied setting $nn\_bc\_surf=1$ in  \nam{zdf}{tke} namelist \citep{couvelard_2020}: 
     324 
     325\begin{equation} 
     326  \left(\frac{Km}{e_3}\,\partial_k e \right)_{z=z1} = \frac{\Phi_o}{\rho_o} 
     327\end{equation} 
     328 
     329 
     330The mixing length scale surface value $l_0$ can be estimated from the surface roughness length z0: 
     331\begin{equation} 
     332  l_o = \kappa \, \frac{ \left( C_k\,C_\epsilon \right) ^{1/4}}{C_k}\, z0 
     333\end{equation} 
     334where $z0$ is directly estimated from the significant wave height ($Hs$) provided by the external wave model as $z0=1.6Hs$. To use this option ln\_mxhsw as well as ln\_wave and ln\_sdw have to be set to .true. 
    312335 
    313336%% ================================================================================================= 
    314337\subsubsection{Langmuir cells} 
     338\label{subsubsec:ZDF_tke_langmuir} 
    315339 
    316340Langmuir circulations (LC) can be described as ordered large-scale vertical motions in 
     
    335359\] 
    336360where $w_{LC}(z)$ is the vertical velocity profile of LC, and $H_{LC}$ is the LC depth. 
    337 With no information about the wave field, $w_{LC}$ is assumed to be proportional to 
    338 the Stokes drift $u_s = 0.377\,\,|\tau|^{1/2}$, where $|\tau|$ is the surface wind stress module 
    339 \footnote{Following \citet{li.garrett_JMR93}, the surface Stoke drift velocity may be expressed as 
    340   $u_s =  0.016 \,|U_{10m}|$. 
    341   Assuming an air density of $\rho_a=1.22 \,Kg/m^3$ and a drag coefficient of 
    342   $1.5~10^{-3}$ give the expression used of $u_s$ as a function of the module of surface stress 
    343 }. 
     361 
    344362For the vertical variation, $w_{LC}$ is assumed to be zero at the surface as well as at 
    345363a finite depth $H_{LC}$ (which is often close to the mixed layer depth), 
     
    349367  w_{LC}  = 
    350368  \begin{cases} 
    351     c_{LC} \,u_s \,\sin(- \pi\,z / H_{LC} )    &      \text{if $-z \leq H_{LC}$}    \\ 
     369    c_{LC} \,\|u_s^{LC}\| \,\sin(- \pi\,z / H_{LC} )    &      \text{if $-z \leq H_{LC}$}    \\ 
    352370    0                             &      \text{otherwise} 
    353371  \end{cases} 
    354372\] 
    355 where $c_{LC} = 0.15$ has been chosen by \citep{axell_JGR02} as a good compromise to fit LES data. 
    356 The chosen value yields maximum vertical velocities $w_{LC}$ of the order of a few centimeters per second. 
     373 
     374 
     375In the absence of information about the wave field, $w_{LC}$ is assumed to be proportional to 
     376the surface Stokes drift ($u_s^{LC}=u_{s0} $) empirically estimated by $ u_{s0} = 0.377\,\,|\tau|^{1/2}$, where $|\tau|$ is the surface wind stress module 
     377\footnote{Following \citet{li.garrett_JMR93}, the surface Stoke drift velocity may be expressed as 
     378  $u_{s0} =  0.016 \,|U_{10m}|$. 
     379  Assuming an air density of $\rho_a=1.22 \,Kg/m^3$ and a drag coefficient of 
     380  $1.5~10^{-3}$ give the expression used of $u_{s0}$ as a function of the module of surface stress 
     381}. 
     382 
     383In case of online coupling with an external wave model (see \autoref{chap:SBC} \autoref{sec:SBC_wave}), $w_{LC}$ is proportional to the component of the Stokes drift aligned with the wind \citep{couvelard_2020} and $ u_s^{LC}  = \max(u_{s0}.e_\tau,0)$ where $e_\tau$ is the unit vector in the wind stress direction and $u_{s0}$ is the surface Stokes drift provided by the external wave model. 
     384 
     385 
     386$c_{LC} = 0.15$ has been chosen by \citep{axell_JGR02} as a good compromise to fit LES data. 
     387The chosen value yields maximum vertical velocities $w_{LC}$ of the order of a few centimetres per second. 
    357388The value of $c_{LC}$ is set through the \np{rn_lc}{rn\_lc} namelist parameter, 
    358389having in mind that it should stay between 0.15 and 0.54 \citep{axell_JGR02}. 
     
    362393converting its kinetic energy to potential energy, according to 
    363394\[ 
    364 - \int_{-H_{LC}}^0 { N^2\;z  \;dz} = \frac{1}{2} u_s^2 
     395- \int_{-H_{LC}}^0 { N^2\;z  \;dz} = \frac{1}{2} \|u_s^{LC}\|^2 
    365396\] 
    366397 
     
    14271458the Stokes Drift can be evaluated by setting \forcode{ln_sdw=.true.} 
    14281459(see \autoref{subsec:SBC_wave_sdw}) 
    1429 and the needed wave fields can be provided either in forcing or coupled mode 
     1460and the needed wave fields (significant wave height and mean wave number) can be provided either in forcing or coupled mode 
    14301461(for more information on wave parameters and settings see \autoref{sec:SBC_wave}) 
    14311462 
Note: See TracChangeset for help on using the changeset viewer.