New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 1831 for branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Annex_B.tex – NEMO

Ignore:
Timestamp:
2010-04-12T16:59:59+02:00 (14 years ago)
Author:
gm
Message:

cover, namelist, rigid-lid, e3t, appendices, see ticket: #658

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Annex_B.tex

    r1223 r1831  
    66\minitoc 
    77 
     8 
     9\newpage 
     10$\ $\newline    % force a new ligne 
     11 
    812% ================================================================ 
    913% Horizontal/Vertical 2nd Order Tracer Diffusive Operators 
     
    1519In the $z$-coordinate, the horizontal/vertical second order tracer diffusion operator  
    1620is given by: 
    17 \begin{multline} \label{Apdx_B1} 
    18  D^T = \frac{1}{e_1 \, e_2}      \left[  
    19   \left. \frac{\partial}{\partial i} \left(  \frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.          \\ 
    20                        \left. 
     21\begin{eqnarray} \label{Apdx_B1} 
     22 &D^T = \frac{1}{e_1 \, e_2}      \left[  
     23  \left. \frac{\partial}{\partial i} \left(  \frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.          
     24                       \left. 
    2125+ \left. \frac{\partial}{\partial j} \left(  \frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]          
    2226+ \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right) 
    23 \end{multline} 
     27\end{eqnarray} 
    2428 
    2529In the $s$-coordinate, we defined the slopes of $s$-surfaces, $\sigma_1$ and  
    26 $\sigma_2$ by (!!!A.1!!!) and the vertical/horizontal ratio of diffusion coefficient  
    27 by $\epsilon = A^{vT} / A^{lT}$. The diffusion operator is given by: 
     30$\sigma_2$ by \eqref{Apdx_A_s_slope} and the vertical/horizontal ratio of diffusion  
     31coefficient by $\epsilon = A^{vT} / A^{lT}$. The diffusion operator is given by: 
    2832 
    2933\begin{equation} \label{Apdx_B2} 
     
    3842\end{equation} 
    3943or in expanded form: 
    40 \begin{multline} \label{Apdx_B3} 
    41 D^T=\frac{1}{e_1\,e_2\,e_3 }\;\left[ {\quad \; \; e_2\,e_3\,A^{lT} \;\left.  
    42 {\frac{\partial }{\partial i}\left( {\frac{1}{e_1 }\;\left. {\frac{\partial  
    43 T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial  
    44 T}{\partial s}} \right)} \right|_s } \right.  \\ 
    45 +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\ 
    46  \;\;+e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right. \; \\ 
    47 \shoveright{\;\;\left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;\,} \right]}  
    48 \end{multline} 
    49  
    50 Equation \eqref{Apdx_B2} (or equivalently \eqref{Apdx_B3}) is obtained from  
    51 \eqref{Apdx_B1} without any additional assumption. Indeed, for the special  
    52 case $k=z$ and thus $e_3 =1$, we introduce an arbitrary vertical coordinate  
    53 $s = s (i,j,z)$ as in Appendix~\ref{Apdx_A} and use \eqref{Apdx_A_s_slope}  
    54 and \eqref{Apdx_A_s_chain_rule}. Since no cross horizontal derivative  
    55 $\partial _i \partial _j $ appears in \eqref{Apdx_B1}, the ($i$,$z$) and ($j$,$z$)  
    56 planes are independent. The derivation can then be demonstrated for the  
    57 ($i$,$z$)~$\to$~($j$,$s$) transformation without any loss of generality: 
    58  
    59 \begin{equation*} 
    60 D^T=\frac{1}{e_1\,e_2 }\left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)        \qquad  \qquad  \qquad  \qquad \qquad  \qquad \qquad     \\ 
    61 \end{equation*} 
    62 \begin{multline*} 
    63  =\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\  
    64  \left. { -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]    
    65 \shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]} \\  
    66 \end{multline*} 
    67 \begin{multline*} 
    68  =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1  
    69 }A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\  
    70  \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left(  
    71 {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
    72  \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;} \right] }\\  
    73 \end{multline*} 
    74  
    75 Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes: 
    76  
    77 \begin{multline*} 
    78  =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left.  
    79 -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\  
    80 \qquad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\  
    81 \shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\  
    82 \end{multline*} 
    83 \begin{multline*} 
    84  =\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial  
    85 i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\  
    86  \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\  
    87 -e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\  
    88 \shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\  
    89 \end{multline*} 
    90 using the same remark as just above, it becomes: 
    91 \begin{multline*} 
    92 = \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\  
    93 +\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\  
    94 -e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\  
    95 \shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\  
    96 \end{multline*} 
    97  
    98 Since the horizontal scale factors do not depend on the vertical coordinate,  
     44\begin{subequations} 
     45\begin{align*} {\begin{array}{*{20}l}  
     46D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left.  
     47{\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.  \\ 
     48&\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\ 
     49&\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right.  
     50 \left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right]  
     51\end{array} }      
     52\end{align*} 
     53\end{subequations} 
     54 
     55Equation \eqref{Apdx_B2} is obtained from \eqref{Apdx_B1} without any  
     56additional assumption. Indeed, for the special case $k=z$ and thus $e_3 =1$,  
     57we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in Appendix~\ref{Apdx_A}  
     58and use \eqref{Apdx_A_s_slope} and \eqref{Apdx_A_s_chain_rule}.  
     59Since no cross horizontal derivative $\partial _i \partial _j $ appears in  
     60\eqref{Apdx_B1}, the ($i$,$z$) and ($j$,$z$) planes are independent.  
     61The derivation can then be demonstrated for the ($i$,$z$)~$\to$~($j$,$s$)  
     62transformation without any loss of generality: 
     63 
     64\begin{subequations}  
     65\begin{align*} {\begin{array}{*{20}l}  
     66D^T&=\frac{1}{e_1\,e_2} \left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z  
     67                     +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)     \\ 
     68\\ 
     69\allowdisplaybreaks 
     70&=\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s  
     71                                                    -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\  
     72& \qquad \qquad \left. { -\frac{e_1\,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]    
     73\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]}  \qquad \qquad \qquad \\  
     74\\ 
     75\allowdisplaybreaks 
     76&=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\  
     77&  \qquad \qquad \quad \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
     78&  \qquad \qquad \quad \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\quad} \right] }\\  
     79\end{array} }     \\ 
     80 {\begin{array}{*{20}l} 
     81% 
     82\allowdisplaybreaks 
     83\intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:} 
     84% 
     85& =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\  
     86& \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\  
     87& \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\  
     88\\ 
     89&=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\  
     90& \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\  
     91& \qquad \qquad \quad-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\  
     92& \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\  
     93% 
     94\allowdisplaybreaks 
     95\intertext{using the same remark as just above, it becomes:} 
     96% 
     97&= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\  
     98& \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\  
     99& \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\  
     100& \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\  
     101% 
     102\allowdisplaybreaks 
     103\intertext{Since the horizontal scale factors do not depend on the vertical coordinate,  
    99104the last term of the first line and the first term of the last line cancel, while  
    100 the second line reduces to a single vertical derivative, so it becomes: 
    101  
    102 \begin{multline*} 
    103  =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\  
    104  \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\  
    105 \end{multline*} 
    106  
    107 in other words, the horizontal Laplacian operator in the ($i$,$s$) plane takes the following form : 
    108  
    109 \begin{equation*} 
     105the second line reduces to a single vertical derivative, so it becomes:} 
     106% 
     107& =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\  
     108& \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\  
     109% 
     110\allowdisplaybreaks 
     111\intertext{in other words, the horizontal Laplacian operator in the ($i$,$s$) plane takes the following form :} 
     112\end{array} }     \\ 
     113% 
    110114D^T = {\frac{1}{e_1\,e_2\,e_3}} 
    111115\left( {{\begin{array}{*{30}c} 
     
    122126{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\ 
    123127{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\ 
    124 \end{array}}} 
    125 \right) \left( T \right)} \right] 
    126 \end{equation*} 
     128\end{array}}}       \right) \left( T \right)} \right] 
     129\end{align*} 
     130\end{subequations} 
    127131  
    128132 
     
    169173of fluxes. Let us demonstrate the second one: 
    170174\begin{equation*} 
    171 \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv 
     175\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv  
     176          = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv 
    172177\end{equation*} 
    173178since 
    174 \begin{align*} 
    175  \nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T}  
     179\begin{subequations}  
     180\begin{align*} {\begin{array}{*{20}l}  
     181\nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T}  
    176182\right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1  
    177183\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(  
    178184{\frac{\partial T}{\partial j}} \right)^2} \right. \\  
    179 &\qquad \qquad \qquad \quad 
    180 { \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial  
    181 k}+\left( {a_1 ^2+a_2 ^2} \right)\left( {\frac{\partial T}{\partial k}}  
    182 \right)^2} \right]} \\ 
    183 &=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial j}-a_2 \frac{\partial T}{\partial k}} \right)^2} \right]\quad \geq 0 
    184 \end{align*} 
     185&\qquad \qquad \qquad 
     186{ \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial k}+\left( {a_1 ^2+a_2 ^2} \right)\left( {\frac{\partial T}{\partial k}} \right)^2} \right]} \\ 
     187&=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial j}-a_2 \frac{\partial T}{\partial k}} \right)^2} \right]      \\ 
     188& \geq 0 
     189\end{array} }      
     190\end{align*} 
     191\end{subequations} 
    185192the property becomes obvious.  
    186193 
    187194The resulting diffusion operator in $z$-coordinate has the following form : 
    188195\begin{multline*} \label{Apdx_B_ldfiso} 
    189  D^T=\frac{1}{e_1 e_2 }\left\{ {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2 }{e_1 }\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right.\;\; \\  
    190  \;\left. {\;\;\;+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1 }{e_2 }\frac{\partial T}{\partial j}-a_2 \frac{e_1 }{e_3 }\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\ 
     196 D^T=\frac{1}{e_1 e_2 }\left\{  
     197 {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2}{e_1}\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]} 
     198 {+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1}{e_2}\frac{\partial T}{\partial j}-a_2 \frac{e_1}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\ 
    191199\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]} \\  
    192200\end{multline*} 
Note: See TracChangeset for help on using the changeset viewer.