New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 1831 for branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Chap_SBC.tex – NEMO

Ignore:
Timestamp:
2010-04-12T16:59:59+02:00 (14 years ago)
Author:
gm
Message:

cover, namelist, rigid-lid, e3t, appendices, see ticket: #658

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/DEV_r1826_DOC/DOC/TexFiles/Chapters/Chap_SBC.tex

    r1320 r1831  
    1717\item the two components of the surface ocean stress $\left( {\tau _u \;,\;\tau _v} \right)$ 
    1818\item the incoming solar and non solar heat fluxes $\left( {Q_{ns} \;,\;Q_{sr} } \right)$ 
    19 \item the surface freshwater budget $\left( {\text{EMP},\;\text{EMP}_S } \right)$ 
     19\item the surface freshwater budget $\left( {\textit{emp},\;\textit{emp}_S } \right)$ 
    2020\end{itemize} 
    2121 
     
    2828the  \np{nf\_sbc} namelist parameter.  
    2929When the fields are supplied from data files (flux and bulk formulations), the input fields  
    30 need not be supplied on the model grid.  Instead a file of coordinates and weights can be supplied which 
    31 maps the data from the supplied grid to the model points (so called "Interpolation on the Fly"). 
    32 In addition, the resulting fields can be further modified using  
    33 several namelist options. These options control  the rotation of vector components 
    34 supplied relative to an east-north coordinate system onto the local grid directions in the model; 
    35 the addition of a surface restoring  
    36 term to observed SST and/or SSS (\np{ln\_ssr}=true); the modification of fluxes  
     30need not be supplied on the model grid.  Instead a file of coordinates and weights can  
     31be supplied which maps the data from the supplied grid to the model points  
     32(so called "Interpolation on the Fly"). 
     33In addition, the resulting fields can be further modified using several namelist options.  
     34These options control  the rotation of vector components supplied relative to an east-north  
     35coordinate system onto the local grid directions in the model; the addition of a surface  
     36restoring term to observed SST and/or SSS (\np{ln\_ssr}=true); the modification of fluxes  
    3737below ice-covered areas (using observed ice-cover or a sea-ice model)  
    3838(\np{nn\_ice}=0,1, 2 or 3); the addition of river runoffs as surface freshwater  
     
    4242cycle (\np{ln\_dm2dc}=true). 
    4343 
    44 In this chapter, we first discuss where the surface boundary condition  
    45 appears in the model equations. Then we present the four ways of providing  
    46 the surface boundary condition. Next the scheme for interpolation on the fly is described. 
    47 Finally, the different options that further modify 
    48 the fluxes applied to the ocean are discussed. 
     44In this chapter, we first discuss where the surface boundary condition appears in the 
     45model equations. Then we present the four ways of providing the surface boundary condition.  
     46Next the scheme for interpolation on the fly is described. 
     47Finally, the different options that further modify the fluxes applied to the ocean are discussed. 
    4948 
    5049 
     
    7574\begin{equation} \label{Eq_sbc_trasbc_q} 
    7675\frac{\partial T}{\partial t}\equiv \cdots \;+\;\left. {\frac{Q_{ns} }{\rho  
    77 _o \;C_p \;e_{3T} }} \right|_{k=1} \quad 
     76_o \;C_p \;e_{3t} }} \right|_{k=1} \quad 
    7877\end{equation} 
    7978$Q_{sr}$ is the penetrative part of the heat flux. It is applied as a 3D  
     
    8180 
    8281\begin{equation} \label{Eq_sbc_traqsr} 
    83 \frac{\partial T}{\partial t}\equiv \cdots \;+\frac{Q_{sr} }{\rho _o C_p  
    84 \,e_{3T} }\delta _k \left[ {I_w } \right] 
     82\frac{\partial T}{\partial t}\equiv \cdots \;+\frac{Q_{sr} }{\rho_o C_p \,e_{3t} }\delta _k \left[ {I_w } \right] 
    8583\end{equation} 
    8684where $I_w$ is a non-dimensional function that describes the way the light  
     
    8886exponentials (see \S\ref{TRA_qsr}). 
    8987 
    90 The surface freshwater budget is provided by fields: EMP and EMP$_S$ which  
     88The surface freshwater budget is provided by fields: \textit{emp} and $\textit{emp}_S$ which  
    9189may or may not be identical. Indeed, a surface freshwater flux has two effects:  
    9290it changes the volume of the ocean and it changes the surface concentration of  
    9391salt (and other tracers). Therefore it appears in the sea surface height as a volume  
    94 flux, EMP (\textit{dynspg\_xxx} modules), and in the salinity time evolution equations  
     92flux, \textit{emp} (\textit{dynspg\_xxx} modules), and in the salinity time evolution equations  
    9593as a concentration/dilution effect,  
    96 EMP$_{S}$ (\mdl{trasbc} module).  
     94$\textit{emp}_{S}$ (\mdl{trasbc} module).  
    9795\begin{equation} \label{Eq_trasbc_emp} 
    9896\begin{aligned} 
    99 &\frac{\partial \eta }{\partial t}\equiv \cdots \;+\;\text{EMP}\quad  \\  
     97&\frac{\partial \eta }{\partial t}\equiv \cdots \;+\;\textit{emp}\quad  \\  
    10098\\ 
    101  &\frac{\partial S}{\partial t}\equiv \cdots \;+\left. {\frac{\text{EMP}_S \;S}{e_{3T} }} \right|_{k=1} \\  
     99 &\frac{\partial S}{\partial t}\equiv \cdots \;+\left. {\frac{\textit{emp}_S \;S}{e_{3t} }} \right|_{k=1} \\  
    102100 \end{aligned} 
    103101\end{equation}  
    104102 
    105 In the real ocean, EMP$=$EMP$_S$ and the ocean salt content is conserved,  
     103In the real ocean, $\textit{emp}=\textit{emp}_S$ and the ocean salt content is conserved,  
    106104but it exist several numerical reasons why this equality should be broken.  
    107105For example: 
    108106 
    109107When the rigid-lid assumption is made, the ocean volume becomes constant and  
    110 thus, EMP$=$0, not EMP$_{S }$. 
     108thus, $\textit{emp}=0$, not $\textit{emp}_S$. 
    111109 
    112110When the ocean is coupled to a sea-ice model, the water exchanged between ice and  
    113111ocean is slightly salty (mean sea-ice salinity is $\sim $\textit{4 psu}). In this case,  
    114 EMP$_{S}$ take into account both concentration/dilution effect associated with  
    115 freezing/melting and the salt flux between ice and ocean, while EMP is  
    116 only the volume flux. In addition, in the current version of \NEMO, the  
    117 sea-ice is assumed to be above the ocean. Freezing/melting does not change  
    118 the ocean volume (no impact on EMP) but it modifies the SSS. 
     112$\textit{emp}_{S}$ take into account both concentration/dilution effect associated with  
     113freezing/melting and the salt flux between ice and ocean, while \textit{emp} is  
     114only the volume flux. In addition, in the current version of \NEMO, the sea-ice is  
     115assumed to be above the ocean (the so-called levitating sea-ice). Freezing/melting does  
     116not change the ocean volume (no impact on \textit{emp}) but it modifies the SSS. 
    119117%gm  \colorbox{yellow}{(see {\S} on LIM sea-ice model)}. 
    120118 
     
    127125associated with precipitation! Precipitation can change the ocean volume and thus the 
    128126ocean heat content. It is therefore associated with a heat flux (not yet   
    129 diagnosed in the model) \citep{Roullet2000}). 
     127diagnosed in the model) \citep{Roullet_Madec_JGR00}). 
    130128 
    131129%\colorbox{yellow}{Miss: } 
     
    193191be uniform in space. They take constant values given in the namelist  
    194192namsbc{\_}ana by the variables \np{rn\_utau0}, \np{rn\_vtau0}, \np{rn\_qns0},  
    195 \np{rn\_qsr0}, and \np{rn\_emp0} (EMP$=$EMP$_S$). The runoff is set to zero.  
     193\np{rn\_qsr0}, and \np{rn\_emp0} ($\textit{emp}=\textit{emp}_S$). The runoff is set to zero.  
    196194In addition, the wind is allowed to reach its nominal value within a given number  
    197195of time steps (\np{nn\_tau000}). 
     
    267265%------------------------------------------------------------------------------------------------------------- 
    268266 
    269 The CORE bulk formulae have been developed by \citet{LargeYeager2004}.  
     267The CORE bulk formulae have been developed by \citet{Large_Yeager_Rep04}.  
    270268They have been designed to handle the CORE forcing, a mixture of NCEP  
    271269reanalysis and satellite data. They use an inertial dissipative method to compute  
     
    408406The symbolic algorithm used to calculate values on the model grid is now: 
    409407 
    410 \begin{multline*} 
    411 f_{m}(i,j) = f_{m}(i,j) + \sum_{k=1}^{4} {wgt(k)f(idx(src(k)))} 
    412 \\ 
    413                         + \sum_{k=5}^{8} {wgt(k)\left.\frac{\partial f}{\partial i}\right| _{idx(src(k))} } 
    414 \\ 
    415                         + \sum_{k=9}^{12} {wgt(k)\left.\frac{\partial f}{\partial j}\right| _{idx(src(k))} } 
    416 \\ 
    417                         + \sum_{k=13}^{16} {wgt(k)\left.\frac{\partial ^2 f}{\partial i \partial j}\right| _{idx(src(k))} } 
    418 \end{multline*} 
     408\begin{equation*} \begin{split} 
     409f_{m}(i,j) =  f_{m}(i,j) +& \sum_{k=1}^{4} {wgt(k)f(idx(src(k)))}      
     410              +   \sum_{k=5}^{8} {wgt(k)\left.\frac{\partial f}{\partial i}\right| _{idx(src(k))} }    \\ 
     411              +& \sum_{k=9}^{12} {wgt(k)\left.\frac{\partial f}{\partial j}\right| _{idx(src(k))} }    
     412              +   \sum_{k=13}^{16} {wgt(k)\left.\frac{\partial ^2 f}{\partial i \partial j}\right| _{idx(src(k))} } 
     413\end{split} 
     414\end{equation*} 
    419415The gradients here are taken with respect to the horizontal indices and not distances since the spatial dependency has been absorbed into the weights. 
    420416 
     
    515511 
    516512\begin{equation} \label{Eq_sbc_dmp_emp} 
    517 EMP = EMP_o + \gamma_s^{-1} e_{3t}  \frac{  \left(\left.S\right|_{k=1}-SSS_{Obs}\right)} 
     513\textit{emp} = \textit{emp}_o + \gamma_s^{-1} e_{3t}  \frac{  \left(\left.S\right|_{k=1}-SSS_{Obs}\right)} 
    518514                                             {\left.S\right|_{k=1}} 
    519515\end{equation} 
    520516 
    521 where EMP$_{o }$ is a net surface fresh water flux (observed, climatological or an 
     517where $\textit{emp}_{o }$ is a net surface fresh water flux (observed, climatological or an 
    522518atmospheric model product), \textit{SSS}$_{Obs}$ is a sea surface salinity (usually a time  
    523519interpolation of the monthly mean Polar Hydrographic Climatology \citep{Steele2001}),  
     
    602598\item[\np{nn\_fwb}=0]  no control at all. The mean sea level is free to drift, and will  
    603599certainly do so. 
    604 \item[\np{nn\_fwb}=1]  global mean EMP set to zero at each model time step.  
     600\item[\np{nn\_fwb}=1]  global mean \textit{emp} set to zero at each model time step.  
    605601%Note that with a sea-ice model, this technique only control the mean sea level with linear free surface (\key{vvl} not defined) and no mass flux between ocean and ice (as it is implemented in the current ice-ocean coupling).  
    606602\item[\np{nn\_fwb}=2]  freshwater budget is adjusted from the previous year annual  
Note: See TracChangeset for help on using the changeset viewer.