New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 2541 for trunk/DOC/TexFiles/Chapters/Introduction.tex – NEMO

Ignore:
Timestamp:
2011-01-09T05:55:20+01:00 (14 years ago)
Author:
gm
Message:

v3.3beta: #658 hopefully the final update, including MPP sum, SIGN, IOM, fldread documentation

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/DOC/TexFiles/Chapters/Introduction.tex

    r2376 r2541  
    4141the tendency terms of the equations are evaluated either centered  in time, or forward,  
    4242or backward depending of the nature of the term. 
    43 Chapter~\ref{DOM} presents the space domain. The model is discretised on a staggered grid  
    44 (Arakawa C grid) with masking of land areas and uses a Leap-frog environment for time-stepping.  
    45 Vertical discretisation used depends on both how the bottom topography is represented and  
    46 whether the free surface is linear or not. Full step or partial step $z$-coordinate or  
    47 $s$- (terrain-following) coordinate is used with linear free surface (level position are then  
    48 fixed in time). In non-linear free surface, the corresponding rescaled height coordinate  
    49 formulation (\textit{z*} or \textit{s*}) is used (the level position then vary in time as a  
    50 function of the sea surface heigh). The following two chapters (\ref{TRA} and \ref{DYN})  
    51 describe the discretisation of the prognostic equations for the active tracers and the  
    52 momentum. Explicit, split-explicit and filtered free surface formulations are implemented.  
     43Chapter~\ref{DOM} presents the space domain. The model is discretised on a staggered  
     44grid (Arakawa C grid) with masking of land areas. Vertical discretisation used depends  
     45on both how the bottom topography is represented and whether the free surface is linear or not.  
     46Full step or partial step $z$-coordinate or $s$- (terrain-following) coordinate is used  
     47with linear free surface (level position are then fixed in time). In non-linear free surface,  
     48the corresponding rescaled height coordinate formulation (\textit{z*} or \textit{s*}) is used  
     49(the level position then vary in time as a function of the sea surface heigh).  
     50The following two chapters (\ref{TRA} and \ref{DYN}) describe the discretisation of the  
     51prognostic equations for the active tracers and the momentum. Explicit, split-explicit  
     52and filtered free surface formulations are implemented.  
    5353A number of numerical schemes are available for momentum advection, for the computation  
    5454of the pressure gradients, as well as for the advection of tracers (second or higher  
     
    7979or \citet{Umlauf_Burchard_JMS03} mixing schemes. 
    8080 
    81 Chapter~\ref{OBS} describes a tool which reads in observation files (profile temperature and salinity,  
    82 sea surface temperature, sea level anomaly and sea ice concentration) and calculates an interpolated  
    83 model equivalent value at the observation location and nearest model timestep. Originally  
    84 developed of data assimilation, it is a fantastic tool for model and data comparison. 
    85 Other Specific online diagnostics (not documented yet) are available in the model: output of all  
    86 the tendencies of the momentum and tracers equations, output of tracers tendencies  
    87 averaged over the time evolving mixed layer, output of the tendencies of the barotropic  
    88 vorticity equation, on-line floats trajectories... 
     81Model outputs management and specific online diagnostics are described in chapters~\ref{DIA}. 
     82The diagnostics includes the output of all the tendencies of the momentum and tracers equations,  
     83the output of tracers tendencies averaged over the time evolving mixed layer, the output of  
     84the tendencies of the barotropic vorticity equation, the computation of on-line floats trajectories...  
     85Chapter~\ref{OBS} describes a tool which reads in observation files (profile temperature  
     86and salinity, sea surface temperature, sea level anomaly and sea ice concentration)  
     87and calculates an interpolated model equivalent value at the observation location  
     88and nearest model timestep. Originally developed of data assimilation, it is a fantastic  
     89tool for model and data comparison. Chapter~\ref{ASM} describes how increments  
     90produced by data assimilation may be applied to the model equations. 
     91Finally, Chapter~\ref{CFG} provides a brief introduction to the pre-defined model  
     92configurations (water column model, ORCA and GYRE families of configurations). 
    8993 
    9094The model is implemented in \textsc{Fortran 90}, with preprocessing (C-pre-processor).  
     
    102106around the code, the module names follow a three-letter rule. For example, \mdl{traldf}  
    103107is a module related to the TRAcers equation, computing the Lateral DiFfussion.  
    104 The complete list of module names is presented in Appendix~\ref{Apdx_D}.  
     108%The complete list of module names is presented in Appendix~\ref{Apdx_D}.      %====>>>> to be done ! 
    105109Furthermore, modules are organized in a few directories that correspond to their category,  
    106110as indicated by the first three letters of their name (Tab.~\ref{Tab_chap}).  
     
    114118\begin{table}[!t]  
    115119%\begin{center} \begin{tabular}{|p{143pt}|l|l|} \hline 
     120\caption{ \label{Tab_chap}   Organization of Chapters mimicking the one of the model directories. } 
    116121\begin{center}    \begin{tabular}{|l|l|l|}   \hline 
    117122Chapter \ref{STP} & -                 & model time STePping environment \\    \hline 
     
    123128Chapter \ref{LDF} & LDF    & Lateral DiFfusion (parameterisations) \\   \hline 
    124129Chapter \ref{ZDF} & ZDF    & vertical (Z) DiFfusion (parameterisations)  \\      \hline 
     130Chapter \ref{DIA} & DIA    & I/O and DIAgnostics (also IOM, FLO and TRD) \\      \hline 
    125131Chapter \ref{OBS} & OBS    & OBServation and model comparison  \\    \hline 
    126 Chapter \ref{ASM} & ASM    & ASsimilation increment  \\     \hline 
    127 Chapter \ref{MISC}   & ...       & Miscellaneous  topics (DIA, DTA, IOM,   \\ 
    128                   &              & SOL, TRD, FLO...)   \\       \hline 
    129 Chapter \ref{CFG} &  -        & predefined configurations  \\     \hline 
     132Chapter \ref{ASM} & ASM    & ASsiMilation increment  \\     \hline 
     133Chapter \ref{MISC}   & SOL    & Miscellaneous  topics (including solvers)  \\       \hline 
     134Chapter \ref{CFG} &  -        & predefined configurations (including C1D) \\     \hline 
    130135\end{tabular}   
    131 \caption{    \label{Tab_chap} 
    132 Organization of Chapters which miminc the one of the model directories. } 
    133136\end{center}   \end{table} 
    134137%-------------------------------------------------------------------------------------------------------------- 
     
    141144 
    142145$\bullet$ The main modifications from OPA v8 and NEMO/OPA v3.2 are :\\ 
    143 \\ 
    144146(1) transition to full native \textsc{Fortran} 90, deep code restructuring and drastic  
    145147reduction of CPP keys; \\ 
     
    150152coordinate and for the new options for horizontal pressure gradient computation with  
    151153a non-linear equation of state.}; \\  
    152 (4) more choices for the treatment of the free surface: full explicit, split-explicit and filtered. \\ 
     154(4) more choices for the treatment of the free surface: full explicit, split-explicit or filtered schemes. \\ 
    153155(5) suppression of the rigid-lid option;\\ 
    154156(6) non linear free surface option (associated with the rescaled height coordinate   
     
    162164(12) surface module (SBC) that simplify the way the ocean is forced and include two 
    163165bulk formulea (CLIO and CORE) and which includes an on-the-fly interpolation of input forcing fields\\ 
    164 (13) introduction of LIM 3, the new Louvain-la-Neuve sea-ice model (C-grid rheology and 
     166(13) RGB light penetration and optional use of ocean color  
     167(14) major changes in the TKE schemes: it now includes a Langmuir cell parameterization  \citep{Axell_JGR02},  
     168the \citet{Mellor_Blumberg_JPO04} surface wave breaking parameterization, and has a time discretization  
     169which is energetically consistent with the ocean model equations \citep{Burchard_OM02, Marsaleix_al_OM08}; \\ 
     170(15) tidal mixing parametrisation (bottom intensification) + Indonesian specific tidal mixing \citep{Koch-Larrouy_al_GRL07}; \\ 
     171(16) introduction of LIM-3, the new Louvain-la-Neuve sea-ice model (C-grid rheology and 
    165172new thermodynamics including bulk ice salinity) \citep{Vancoppenolle_al_OM09a, Vancoppenolle_al_OM09b} 
    166173 
    167174 \vspace{1cm} 
    168 $\bullet$ The main modifications from NEMO/OPA v3.2 and  v3.2 are :\\ 
    169 \\ 
     175$\bullet$ The main modifications from NEMO/OPA v3.2 and  v3.3 are :\\ 
    170176(1) introduction of a modified leapfrog-Asselin filter time stepping scheme \citep{Leclair_Madec_OM09}; \\ 
    171 (2) additional scheme for  iso-neutral mixing \citep{Griffies_al_JPO98}, although it is still a "work in progress"; \\ 
    172 (3) a rewriting of the bottom boundary scheme, following \citet{Campin_Goosse_Tel99}; \\ 
    173 (4) addition of the atmospheric pressure as an external forcing on both ocean and sea-ice dynamics; \\ 
    174 (5) addition of a diurnal cycle on solar radiation \citep{Bernie_al_CD07}; \\ 
    175 (6) addition of an on-line observation and model comparison (thanks to NEMOVAR project); \\ 
    176 (7) optional application of an assimilation increment (thanks to NEMOVAR project); \\ 
    177 (8) introduction of .....     
     177(2) additional scheme for iso-neutral mixing \citep{Griffies_al_JPO98}, although it is still a "work in progress"; \\ 
     178(3) a rewriting of the bottom boundary layer scheme, following \citet{Campin_Goosse_Tel99}; \\ 
     179(4) addition of a Generic Length Scale vertical mixing scheme, following \citet{Umlauf_Burchard_JMS03}; 
     180(5) addition of the atmospheric pressure as an external forcing on both ocean and sea-ice dynamics; \\ 
     181(6) addition of a diurnal cycle on solar radiation \citep{Bernie_al_CD07}; \\ 
     182(7) river runoffs added through a non-zero depth, and having its own temperature and salinity; \\ 
     183(8) CORE II normal year forcing set as the default forcing of ORCA2-LIM configuration ; \\ 
     184(9) generalisation of the use of \mdl{fldread} for all input fields (ocean, climatology, sea-ice damping...)  
     185(10) addition of an on-line observation and model comparison (thanks to NEMOVAR project); \\ 
     186(11) optional application of an assimilation increment (thanks to NEMOVAR project); \\ 
     187(12) coupling interface adjusted for WRF atmospheric model 
     188(13) C-grid ice rheology now available fro both LIM-2 and LIM-3 \citep{Bouillon_al_OM09}; \\ 
     189(14) a deep re-writting and simplification of the off-line tracer component (OFF\_SRC) ;  \\ 
     190(15) the merge of passive and active advection and diffusion modules \\ 
     191(16)  Use of the Flexible Configuration Manager (FCM) to build configurations, generate the Makefile and produce the executable ; \\ 
     192(17) Linear-tangent and Adjoint component (TAM) added, phased with v3.0 
    178193 
    179194 \vspace{1cm} 
Note: See TracChangeset for help on using the changeset viewer.