New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 3072 for branches/2011/dev_NOC_2011_MERGE/DOC/TexFiles/Chapters/Chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2011-11-09T18:07:32+01:00 (12 years ago)
Author:
acc
Message:

Branch dev_NOC_2011_MERGE. #874. Step 10. Merge in changes from dev_r2802_NOCL_bfrimp branch (plus some additions and conflicit resolutions)

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2011/dev_NOC_2011_MERGE/DOC/TexFiles/Chapters/Chap_ZDF.tex

    r2541 r3072  
    11% ================================================================ 
    2 % Chapter Ñ Vertical Ocean Physics (ZDF) 
     2% Chapter Vertical Ocean Physics (ZDF) 
    33% ================================================================ 
    44\chapter{Vertical Ocean Physics (ZDF)} 
     
    539539the clipping factor is of crucial importance for the entrainment depth predicted in  
    540540stably stratified situations, and that its value has to be chosen in accordance  
    541 with the algebraic model for the turbulent ßuxes. The clipping is only activated  
     541with the algebraic model for the turbulent fluxes. The clipping is only activated  
    542542if \np{ln\_length\_lim}=true, and the $c_{lim}$ is set to the \np{rn\_clim\_galp} value. 
    543543 
     
    981981reduced as necessary to ensure stability; these changes are not reported. 
    982982 
     983Limits on the bottom friction coefficient are not imposed if the user has elected to 
     984handle the bottom friction implicitly (see \S\ref{ZDF_bfr_imp}). The number of potential 
     985breaches of the explicit stability criterion are still reported for information purposes. 
     986 
     987% ------------------------------------------------------------------------------------------------------------- 
     988%       Implicit Bottom Friction 
     989% ------------------------------------------------------------------------------------------------------------- 
     990\subsection{Implicit Bottom Friction (\np{ln\_bfrimp}$=$\textit{T})} 
     991\label{ZDF_bfr_imp} 
     992 
     993An optional implicit form of bottom friction has been implemented to improve 
     994model stability. We recommend this option for shelf sea and coastal ocean applications, especially  
     995for split-explicit time splitting. This option can be invoked by setting \np{ln\_bfrimp}  
     996to \textit{true} in the \textit{nambfr} namelist. This option requires \np{ln\_zdfexp} to be \textit{false}  
     997in the \textit{namzdf} namelist.  
     998 
     999This implementation is realised in \mdl{dynzdf\_imp} and \mdl{dynspg\_ts}. In \mdl{dynzdf\_imp}, the  
     1000bottom boundary condition is implemented implicitly. 
     1001 
     1002\begin{equation} \label{Eq_dynzdf_bfr} 
     1003\left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{mbk} 
     1004    = \binom{c_{b}^{u}u^{n+1}_{mbk}}{c_{b}^{v}v^{n+1}_{mbk}} 
     1005\end{equation} 
     1006 
     1007where $mbk$ is the layer number of the bottom wet layer. superscript $n+1$ means the velocity used in the 
     1008friction formula is to be calculated, so, it is implicit. 
     1009 
     1010If split-explicit time splitting is used, care must be taken to avoid the double counting of 
     1011the bottom friction in the 2-D barotropic momentum equations. As NEMO only updates the barotropic  
     1012pressure gradient and Coriolis' forcing terms in the 2-D barotropic calculation, we need to remove 
     1013the bottom friction induced by these two terms which has been included in the 3-D momentum trend  
     1014and update it with the latest value. On the other hand, the bottom friction contributed by the 
     1015other terms (e.g. the advection term, viscosity term) has been included in the 3-D momentum equations 
     1016and should not be added in the 2-D barotropic mode. 
     1017 
     1018The implementation of the implicit bottom friction in \mdl{dynspg\_ts} is done in two steps as the 
     1019following: 
     1020 
     1021\begin{equation} \label{Eq_dynspg_ts_bfr1} 
     1022\frac{\textbf{U}_{med}-\textbf{U}^{m-1}}{2\Delta t}=-g\nabla\eta-f\textbf{k}\times\textbf{U}^{m}+c_{b} 
     1023\left(\textbf{U}_{med}-\textbf{U}^{m-1}\right) 
     1024\end{equation} 
     1025\begin{equation} \label{Eq_dynspg_ts_bfr2} 
     1026\frac{\textbf{U}^{m+1}-\textbf{U}_{med}}{2\Delta t}=\textbf{T}+ 
     1027\left(g\nabla\eta^{'}+f\textbf{k}\times\textbf{U}^{'}\right)- 
     10282\Delta t_{bc}c_{b}\left(g\nabla\eta^{'}+f\textbf{k}\times\textbf{u}_{b}\right) 
     1029\end{equation} 
     1030 
     1031where $\textbf{T}$ is the vertical integrated 3-D momentum trend. We assume the leap-frog time-stepping 
     1032is used here. $\Delta t$ is the barotropic mode time step and $\Delta t_{bc}$ is the baroclinic mode time step. 
     1033 $c_{b}$ is the friction coefficient. $\eta$ is the sea surface level calculated in the barotropic loops 
     1034while $\eta^{'}$ is the sea surface level used in the 3-D baroclinic mode. $\textbf{u}_{b}$ is the bottom 
     1035layer horizontal velocity. 
     1036 
     1037 
     1038 
     1039 
    9831040% ------------------------------------------------------------------------------------------------------------- 
    9841041%       Bottom Friction with split-explicit time splitting 
    9851042% ------------------------------------------------------------------------------------------------------------- 
    986 \subsection{Bottom Friction with split-explicit time splitting} 
     1043\subsection{Bottom Friction with split-explicit time splitting (\np{ln\_bfrimp}$=$\textit{F})} 
    9871044\label{ZDF_bfr_ts} 
    9881045 
     
    9931050{\key{dynspg\_flt}). Extra attention is required, however, when using  
    9941051split-explicit time stepping (\key{dynspg\_ts}). In this case the free surface  
    995 equation is solved with a small time step \np{nn\_baro}*\np{rn\_rdt}, while the three  
    996 dimensional prognostic variables are solved with a longer time step that is a  
    997 multiple of \np{rn\_rdt}. The trend in the barotropic momentum due to bottom  
     1052equation is solved with a small time step \np{rn\_rdt}/\np{nn\_baro}, while the three  
     1053dimensional prognostic variables are solved with the longer time step  
     1054of \np{rn\_rdt} seconds. The trend in the barotropic momentum due to bottom  
    9981055friction appropriate to this method is that given by the selected parameterisation  
    9991056($i.e.$ linear or non-linear bottom friction) computed with the evolving velocities  
     
    10181075\end{enumerate} 
    10191076 
    1020 Note that the use of an implicit formulation 
     1077Note that the use of an implicit formulation within the barotropic loop 
    10211078for the bottom friction trend means that any limiting of the bottom friction coefficient  
    10221079in \mdl{dynbfr} does not adversely affect the solution when using split-explicit time  
    10231080splitting. This is because the major contribution to bottom friction is likely to come from  
    1024 the barotropic component which uses the unrestricted value of the coefficient. 
    1025  
    1026 The implicit formulation takes the form: 
     1081the barotropic component which uses the unrestricted value of the coefficient. However, if the 
     1082limiting is thought to be having a major effect (a more likely prospect in coastal and shelf seas 
     1083applications) then the fully implicit form of the bottom friction should be used (see \S\ref{ZDF_bfr_imp} )  
     1084which can be selected by setting \np{ln\_bfrimp} $=$ \textit{true}. 
     1085 
     1086Otherwise, the implicit formulation takes the form: 
    10271087\begin{equation} \label{Eq_zdfbfr_implicitts} 
    10281088 \bar{U}^{t+ \rdt} = \; \left [ \bar{U}^{t-\rdt}\; + 2 \rdt\;RHS \right ] / \left [ 1 - 2 \rdt \;c_b^{u} / H_e \right ]   
     
    10911151The essential goal of the parameterization is to represent the momentum  
    10921152exchange between the barotropic tides and the unrepresented internal waves  
    1093 induced by the tidal ßow over rough topography in a stratified ocean.  
     1153induced by the tidal flow over rough topography in a stratified ocean.  
    10941154In the current version of \NEMO, the map is built from the output of  
    10951155the barotropic global ocean tide model MOG2D-G \citep{Carrere_Lyard_GRL03}. 
Note: See TracChangeset for help on using the changeset viewer.