New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 3218 for branches/2011/dev_NEMO_MERGE_2011/DOC/TexFiles/Chapters/Annex_ISO.tex – NEMO

Ignore:
Timestamp:
2011-12-13T11:31:24+01:00 (12 years ago)
Author:
agn
Message:

agn: changes to documentation in dev_NEMO_MERGE_2011

--Reordered NEMO_book.tex, changed from 11pt->12pt,

only needs pstricks for logos

--more abbreviations in mathabbrev.sty
--Corrected bug in Abstracts_Foreword.tex that put whole

text into small

--Clarified discussion of LDF operator rotation in
Chap_Model_Basics.tex, Chap_LDF.tex, Annex_B.tex
--Discuss surface tapering of Griffies triads, how they

work in s-coordinates, eddy-induced velocities in
Annex_ISO.tex. Extra ref in Biblio.bib
Extra figures Fig_bdry_triads.pdf, Fig_triad_MLB.pdf
Modified namelist section namtra_ldf

--Minor corrections to Chap_DIA.tex, Chap_CFG.tex,

Chap_SBC.tex, Annex_A.tex, Chap_DOM.tex, Chap_ASM.tex

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2011/dev_NEMO_MERGE_2011/DOC/TexFiles/Chapters/Annex_ISO.tex

    r2376 r3218  
    11% ================================================================ 
    2 % Iso-neutral diffusion :  
     2% Iso-neutral diffusion : 
    33% ================================================================ 
    44\chapter{Griffies's iso-neutral diffusion} 
    5 \label{Apdx_C} 
     5\label{sec:triad} 
    66\minitoc 
    77 
    88\section{Griffies's formulation of iso-neutral diffusion} 
    9  
    10 \subsection{Introduction} 
    11  We define a scheme that get its inspiration from the scheme of 
    12 \citet{Griffies_al_JPO98}, but is formulated within the \NEMO 
     9\label{sec:triad:iso} 
     10 
     11We define a scheme inspired by \citet{Griffies_al_JPO98}, but formulated within the \NEMO 
    1312framework, using scale factors rather than grid-sizes. 
    1413 
    15 The off-diagonal terms of the small angle diffusion tensor 
    16 \eqref{Eq_PE_iso_tensor} produce skew-fluxes along the 
    17 i- and j-directions resulting from the vertical tracer gradient: 
    18 \begin{align} 
    19   \label{eq:i13c} 
    20   &+\kappa r_1\frac{1}{e_3}\frac{\partial T}{\partial k},\qquad+\kappa r_2\frac{1}{e_3}\frac{\partial T}{\partial k}\\ 
    21 \intertext{and in the k-direction resulting from the lateral tracer gradients} 
    22   \label{eq:i31c} 
    23  & \kappa r_1\frac{1}{e_1}\frac{\partial T}{\partial i}+\kappa r_2\frac{1}{e_1}\frac{\partial T}{\partial i} 
    24 \end{align} 
    25 where \eqref{Eq_PE_iso_slopes} 
     14\subsection{The iso-neutral diffusion operator} 
     15The iso-neutral second order tracer diffusive operator for small 
     16angles between iso-neutral surfaces and geopotentials is given by 
     17\eqref{Eq_PE_iso_tensor}: 
     18\begin{subequations} \label{eq:triad:PE_iso_tensor} 
     19  \begin{equation} 
     20    D^{lT}=-\Div\vect{f}^{lT}\equiv 
     21    -\frac{1}{e_1e_2e_3}\left[\pd{i}\left (f_1^{lT}e_2e_3\right) + 
     22      \pd{j}\left (f_2^{lT}e_2e_3\right) + \pd{k}\left (f_3^{lT}e_1e_2\right)\right], 
     23  \end{equation} 
     24  where the diffusive flux per unit area of physical space 
     25  \begin{equation} 
     26    \vect{f}^{lT}=-\Alt\Re\cdot\grad T, 
     27  \end{equation} 
     28  \begin{equation} 
     29    \label{eq:triad:PE_iso_tensor:c} 
     30    \mbox{with}\quad \;\;\Re = 
     31    \begin{pmatrix} 
     32      1&0&-r_1\mystrut \\ 
     33      0&1&-r_2\mystrut \\ 
     34      -r_1&-r_2&r_1 ^2+r_2 ^2\mystrut 
     35    \end{pmatrix} 
     36    \quad \text{and} \quad\grad T= 
     37    \begin{pmatrix} 
     38      \frac{1}{e_1}\pd[T]{i}\mystrut \\ 
     39      \frac{1}{e_2}\pd[T]{j}\mystrut \\ 
     40      \frac{1}{e_3}\pd[T]{k}\mystrut 
     41    \end{pmatrix}. 
     42  \end{equation} 
     43\end{subequations} 
     44% \left( {{\begin{array}{*{20}c} 
     45%  1 \hfill & 0 \hfill & {-r_1 } \hfill \\ 
     46%  0 \hfill & 1 \hfill & {-r_2 } \hfill \\ 
     47%  {-r_1 } \hfill & {-r_2 } \hfill & {r_1 ^2+r_2 ^2} \hfill \\ 
     48% \end{array} }} \right) 
     49 Here \eqref{Eq_PE_iso_slopes} 
    2650\begin{align*} 
    2751  r_1 &=-\frac{e_3 }{e_1 } \left( \frac{\partial \rho }{\partial i} 
     
    3357    }{\partial k} \right)^{-1} 
    3458\end{align*} 
    35 is the i-component of the slope of the isoneutral surface relative to the computational 
    36 surface, and $r_2$ is the j-component. 
    37  
    38 The extra vertical diffusive flux associated with the $_{33}$ 
     59is the $i$-component of the slope of the iso-neutral surface relative to the computational 
     60surface, and $r_2$ is the $j$-component. 
     61 
     62We will find it useful to consider the fluxes per unit area in $i,j,k$ 
     63space; we write 
     64\begin{equation} 
     65  \label{eq:triad:Fijk} 
     66  \vect{F}_{\mathrm{iso}}=\left(f_1^{lT}e_2e_3, f_2^{lT}e_1e_3, f_3^{lT}e_1e_2\right). 
     67\end{equation} 
     68Additionally, we will sometimes write the contributions towards the 
     69fluxes $\vect{f}$ and $\vect{F}_\mathrm{iso}$ from the component 
     70$R_{ij}$ of $\Re$ as $f_{ij}$, $F_{\mathrm{iso}\: ij}$, with 
     71$f_{ij}=R_{ij}e_i^{-1}\partial T/\partial x_i$ (no summation) etc. 
     72 
     73The off-diagonal terms of the small angle diffusion tensor 
     74\eqref{Eq_PE_iso_tensor}, \eqref{eq:triad:PE_iso_tensor:c} produce skew-fluxes along the 
     75$i$- and $j$-directions resulting from the vertical tracer gradient: 
     76\begin{align} 
     77  \label{eq:triad:i13c} 
     78  f_{13}=&+\Alt r_1\frac{1}{e_3}\frac{\partial T}{\partial k},\qquad f_{23}=+\Alt r_2\frac{1}{e_3}\frac{\partial T}{\partial k}\\ 
     79\intertext{and in the k-direction resulting from the lateral tracer gradients} 
     80  \label{eq:triad:i31c} 
     81 f_{31}+f_{32}=& \Alt r_1\frac{1}{e_1}\frac{\partial T}{\partial i}+\Alt r_2\frac{1}{e_1}\frac{\partial T}{\partial i} 
     82\end{align} 
     83 
     84The vertical diffusive flux associated with the $_{33}$ 
    3985component of the small angle diffusion tensor is 
    4086\begin{equation} 
    41   \label{eq:i33c} 
    42   -\kappa(r_1^2 +r_2^2) \frac{1}{e_3}\frac{\partial T}{\partial k}. 
     87  \label{eq:triad:i33c} 
     88  f_{33}=-\Alt(r_1^2 +r_2^2) \frac{1}{e_3}\frac{\partial T}{\partial k}. 
    4389\end{equation} 
    4490 
    4591Since there are no cross terms involving $r_1$ and $r_2$ in the above, we can 
    46 consider the isoneutral diffusive fluxes separately in the i-k and j-k 
     92consider the iso-neutral diffusive fluxes separately in the $i$-$k$ and $j$-$k$ 
    4793planes, just adding together the vertical components from each 
    48 plane. The following description will describe the fluxes on the i-k 
     94plane. The following description will describe the fluxes on the $i$-$k$ 
    4995plane. 
    5096 
    51 There is no natural discretization for the i-component of the 
    52 skew-flux, \eqref{eq:i13c}, as 
    53 although it must be evaluated at u-points, it involves vertical 
     97There is no natural discretization for the $i$-component of the 
     98skew-flux, \eqref{eq:triad:i13c}, as 
     99although it must be evaluated at $u$-points, it involves vertical 
    54100gradients (both for the tracer and the slope $r_1$), defined at 
    55 w-points. Similarly, the vertical skew flux, \eqref{eq:i31c}, is evaluated at 
    56 w-points but involves horizontal gradients defined at u-points. 
     101$w$-points. Similarly, the vertical skew flux, \eqref{eq:triad:i31c}, is evaluated at 
     102$w$-points but involves horizontal gradients defined at $u$-points. 
    57103 
    58104\subsection{The standard discretization} 
    59105The straightforward approach to discretize the lateral skew flux 
    60 \eqref{eq:i13c} from tracer cell $i,k$ to $i+1,k$, introduced in 1995 
     106\eqref{eq:triad:i13c} from tracer cell $i,k$ to $i+1,k$, introduced in 1995 
    61107into OPA, \eqref{Eq_tra_ldf_iso}, is to calculate a mean vertical 
    62 gradient at the u-point from the average of the four surrounding 
     108gradient at the $u$-point from the average of the four surrounding 
    63109vertical tracer gradients, and multiply this by a mean slope at the 
    64 u-point, calculated from the averaged surrounding vertical density 
    65 gradients. The total area-integrated skew-flux from tracer cell $i,k$ 
    66 to $i+1,k$, noting that the $e_{{3u}_{i+1/2}^k}$ in the area 
    67 $e_{{3u}_{i+1/2}^k}e_{{2u}_{i+1/2}^k}$ at the u-point cancels out with 
    68 the $1/e_{{3u}_{i+1/2}^k}$ associated with the vertical tracer 
     110$u$-point, calculated from the averaged surrounding vertical density 
     111gradients. The total area-integrated skew-flux (flux per unit area in 
     112$ijk$ space) from tracer cell $i,k$ 
     113to $i+1,k$, noting that the $e_{{3}_{i+1/2}^k}$ in the area 
     114$e{_{3}}_{i+1/2}^k{e_{2}}_{i+1/2}i^k$ at the $u$-point cancels out with 
     115the $1/{e_{3}}_{i+1/2}^k$ associated with the vertical tracer 
    69116gradient, is then \eqref{Eq_tra_ldf_iso} 
    70117\begin{equation*} 
    71   \left(F_u^{\mathrm{skew}} \right)_{i+\hhalf}^k = \kappa _{i+\hhalf}^k 
    72   e_{{2u}_{i+1/2}^k} \overline{\overline 
     118  \left(F_u^{13} \right)_{i+\hhalf}^k = \Alts_{i+\hhalf}^k 
     119  {e_{2}}_{i+1/2}^k \overline{\overline 
    73120    r_1} ^{\,i,k}\,\overline{\overline{\delta_k T}}^{\,i,k}, 
    74121\end{equation*} 
     
    76123\begin{equation*} 
    77124  \overline{\overline 
    78     r_1} ^{\,i,k} = -\frac{e_{{3u}_{i+1/2}^k}}{e_{{1u}_{i+1/2}^k}} 
    79   \frac{\delta_{i+1/2} [\rho]}{\overline{\overline{\delta_k \rho}}^{\,i,k}}. 
     125   r_1} ^{\,i,k} = -\frac{{e_{3u}}_{i+1/2}^k}{{e_{1u}}_{i+1/2}^k} 
     126  \frac{\delta_{i+1/2} [\rho]}{\overline{\overline{\delta_k \rho}}^{\,i,k}}, 
    80127\end{equation*} 
    81  
     128and here and in the following we drop the $^{lT}$ superscript from 
     129$\Alt$ for simplicity. 
    82130Unfortunately the resulting combination $\overline{\overline{\delta_k 
    83131    \bullet}}^{\,i,k}$ of a $k$ average and a $k$ difference %of the tracer 
     
    89137global-average variance. To correct this, we introduced a smoothing of 
    90138the slopes of the iso-neutral surfaces (see \S\ref{LDF}). This 
    91 technique works fine for $T$ and $S$ as they are active tracers 
     139technique works for $T$ and $S$ in so far as they are active tracers 
    92140($i.e.$ they enter the computation of density), but it does not work 
    93141for a passive tracer. 
     
    95143\citep{Griffies_al_JPO98} introduce a different discretization of the 
    96144off-diagonal terms that nicely solves the problem. 
    97 % Instead of multiplying the mean slope calculated at the u-point by 
    98 % the mean vertical gradient at the u-point, 
     145% Instead of multiplying the mean slope calculated at the $u$-point by 
     146% the mean vertical gradient at the $u$-point, 
    99147% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    100148\begin{figure}[h] \begin{center} 
    101149    \includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_triad_fluxes} 
    102     \caption{  \label{Fig_ISO_triad}   
     150    \caption{ \label{fig:triad:ISO_triad} 
    103151      (a) Arrangement of triads $S_i$ and tracer gradients to 
    104            give lateral tracer flux from box $i,k$ to $i+1,k$  
     152           give lateral tracer flux from box $i,k$ to $i+1,k$ 
    105153      (b) Triads $S'_i$ and tracer gradients to give vertical tracer flux from 
    106154            box $i,k$ to $i,k+1$.} 
    107     \label{Fig_triad} 
    108   \end{center} \end{figure} 
     155 \end{center} \end{figure} 
    109156% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    110157They get the skew flux from the products of the vertical gradients at 
    111 each w-point surrounding the u-point with the corresponding `triad' 
    112 slope calculated from the lateral density gradient across the u-point 
    113 divided by the vertical density gradient at the same w-point as the 
    114 tracer gradient. See Fig.~\ref{Fig_triad}a, where the thick lines 
     158each $w$-point surrounding the $u$-point with the corresponding `triad' 
     159slope calculated from the lateral density gradient across the $u$-point 
     160divided by the vertical density gradient at the same $w$-point as the 
     161tracer gradient. See Fig.~\ref{fig:triad:ISO_triad}a, where the thick lines 
    115162denote the tracer gradients, and the thin lines the corresponding 
    116163triads, with slopes $s_1, \dotsc s_4$. The total area-integrated 
    117164skew-flux from tracer cell $i,k$ to $i+1,k$ 
    118165\begin{multline} 
    119   \label{eq:i13} 
    120   \left( F_u^{13}  \right)_{i+\frac{1}{2}}^k = \kappa _{i+1}^k a_1 s_1 
     166  \label{eq:triad:i13} 
     167  \left( F_u^{13}  \right)_{i+\frac{1}{2}}^k = \Alts_{i+1}^k a_1 s_1 
    121168  \delta _{k+\frac{1}{2}} \left[ T^{i+1} 
    122   \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}}  + \kappa _i^k a_2 s_2 \delta 
     169  \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}}  + \Alts _i^k a_2 s_2 \delta 
    123170  _{k+\frac{1}{2}} \left[ T^i 
    124171  \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}} \\ 
    125    +\kappa _{i+1}^k a_3 s_3 \delta _{k-\frac{1}{2}} \left[ T^{i+1} 
    126   \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}}  +\kappa _i^k a_4 s_4 \delta 
     172   +\Alts _{i+1}^k a_3 s_3 \delta _{k-\frac{1}{2}} \left[ T^{i+1} 
     173  \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}}  +\Alts _i^k a_4 s_4 \delta 
    127174  _{k-\frac{1}{2}} \left[ T^i \right]/e_{{3w}_{i+1}}^{k+\frac{1}{2}}, 
    128175\end{multline} 
    129176where the contributions of the triad fluxes are weighted by areas 
    130 $a_1, \dotsc a_4$, and $\kappa$ is now defined at the tracer points 
    131 rather than the u-points. This discretization gives a much closer 
     177$a_1, \dotsc a_4$, and $\Alts$ is now defined at the tracer points 
     178rather than the $u$-points. This discretization gives a much closer 
    132179stencil, and disallows the two-point computational modes. 
    133180 
    134  The vertical skew flux \eqref{eq:i31c} from tracer cell $i,k$ to $i,k+1$ at the 
    135 w-point $i,k+\hhalf$ is constructed similarly (Fig.~\ref{Fig_triad}b) 
     181 The vertical skew flux \eqref{eq:triad:i31c} from tracer cell $i,k$ to $i,k+1$ at the 
     182$w$-point $i,k+\hhalf$ is constructed similarly (Fig.~\ref{fig:triad:ISO_triad}b) 
    136183by multiplying lateral tracer gradients from each of the four 
    137 surrounding u-points by the appropriate triad slope: 
     184surrounding $u$-points by the appropriate triad slope: 
    138185\begin{multline} 
    139   \label{eq:i31} 
    140   \left( F_w^{31} \right) _i ^{k+\frac{1}{2}} =  \kappa_i^{k+1} a_{1}' 
     186  \label{eq:triad:i31} 
     187  \left( F_w^{31} \right) _i ^{k+\frac{1}{2}} =  \Alts_i^{k+1} a_{1}' 
    141188  s_{1}' \delta _{i-\frac{1}{2}} \left[ T^{k+1} \right]/{e_{3u}}_{i-\frac{1}{2}}^{k+1} 
    142    +\kappa_i^{k+1} a_{2}' s_{2}' \delta _{i+\frac{1}{2}} \left[ T^{k+1} \right]/{e_{3u}}_{i+\frac{1}{2}}^{k+1}\\ 
    143   + \kappa_i^k a_{3}' s_{3}' \delta _{i-\frac{1}{2}} \left[ T^k\right]/{e_{3u}}_{i-\frac{1}{2}}^k 
    144   +\kappa_i^k a_{4}' s_{4}' \delta _{i+\frac{1}{2}} \left[ T^k \right]/{e_{3u}}_{i+\frac{1}{2}}^k. 
     189   +\Alts_i^{k+1} a_{2}' s_{2}' \delta _{i+\frac{1}{2}} \left[ T^{k+1} \right]/{e_{3u}}_{i+\frac{1}{2}}^{k+1}\\ 
     190  + \Alts_i^k a_{3}' s_{3}' \delta _{i-\frac{1}{2}} \left[ T^k\right]/{e_{3u}}_{i-\frac{1}{2}}^k 
     191  +\Alts_i^k a_{4}' s_{4}' \delta _{i+\frac{1}{2}} \left[ T^k \right]/{e_{3u}}_{i+\frac{1}{2}}^k. 
    145192\end{multline} 
    146   
    147 We notate the triad slopes in terms of the `anchor point' $i,k$ 
    148 (appearing in both the vertical and lateral gradient), and the u- and 
    149 w-points $(i+i_p,k)$, $(i,k+k_p)$ at the centres of the `arms' of the 
    150 triad as follows (see also Fig.~\ref{Fig_triad}): 
    151 \begin{equation} 
    152   \label{Gf_slopes} 
    153   _i^k \mathbb{R}_{i_p}^{k_p}  
    154   =\frac{ {e_{3w}}_{\,i}^{\,k+k_p}} { {e_{1u}}_{\,i+i_p}^{\,k}} 
     193 
     194We notate the triad slopes $s_i$ and $s'_i$ in terms of the `anchor point' $i,k$ 
     195(appearing in both the vertical and lateral gradient), and the $u$- and 
     196$w$-points $(i+i_p,k)$, $(i,k+k_p)$ at the centres of the `arms' of the 
     197triad as follows (see also Fig.~\ref{fig:triad:ISO_triad}): 
     198\begin{equation} 
     199  \label{eq:triad:R} 
     200  _i^k \mathbb{R}_{i_p}^{k_p} 
     201  =-\frac{ {e_{3w}}_{\,i}^{\,k+k_p}} { {e_{1u}}_{\,i+i_p}^{\,k}} 
    155202  \ 
    156   \frac  
     203  \frac 
    157204  {\left(\alpha / \beta \right)_i^k  \ \delta_{i + i_p}[T^k] - \delta_{i + i_p}[S^k] } 
    158205  {\left(\alpha / \beta \right)_i^k  \ \delta_{k+k_p}[T^i ] - \delta_{k+k_p}[S^i ] }. 
     
    160207In calculating the slopes of the local neutral 
    161208surfaces, the expansion coefficients $\alpha$ and $\beta$ are 
    162 evaluated at the anchor points of the triad \footnote{Note that in \eqref{Gf_slopes} we use the ratio $\alpha / \beta$ 
     209evaluated at the anchor points of the triad \footnote{Note that in \eqref{eq:triad:R} we use the ratio $\alpha / \beta$ 
    163210instead of multiplying the temperature derivative by $\alpha$ and the 
    164211salinity derivative by $\beta$. This is more efficient as the ratio 
    165212$\alpha / \beta$ can to be evaluated directly}, while the metrics are 
    166 calculated at the u- and w-points on the arms. 
     213calculated at the $u$- and $w$-points on the arms. 
    167214 
    168215% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    169216\begin{figure}[h] \begin{center} 
    170217    \includegraphics[width=0.60\textwidth]{./TexFiles/Figures/Fig_qcells} 
    171     \caption{   \label{Fig_ISO_triad_notation}   
    172     Triad notation for quarter cells.T-cells are inside 
    173       boxes, while the  $i+\half,k$ u-cell is shaded in green and the 
    174       $i,k+\half$ w-cell is shaded in pink.} 
    175     \label{qcells} 
     218    \caption{   \label{fig:triad:qcells} 
     219    Triad notation for quarter cells.$T$-cells are inside 
     220      boxes, while the  $i+\half,k$ $u$-cell is shaded in green and the 
     221      $i,k+\half$ $w$-cell is shaded in pink.} 
    176222  \end{center} \end{figure} 
    177223% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    178224 
    179 Each triad $\{_i^k\:_{i_p}^{k_p}\}$ is associated (Fig.~\ref{qcells}) with the quarter 
    180 cell that is the intersection of the $i,k$ T-cell, the $i+i_p,k$ 
    181 u-cell and the $i,k+k_p$ w-cell. Expressing the slopes $s_i$ and 
    182 $s'_i$ in \eqref{eq:i13} and \eqref{eq:i31} in this notation, we have 
     225Each triad $\{_i^k\:_{i_p}^{k_p}\}$ is associated (Fig.~\ref{fig:triad:qcells}) with the quarter 
     226cell that is the intersection of the $i,k$ $T$-cell, the $i+i_p,k$ 
     227$u$-cell and the $i,k+k_p$ $w$-cell. Expressing the slopes $s_i$ and 
     228$s'_i$ in \eqref{eq:triad:i13} and \eqref{eq:triad:i31} in this notation, we have 
    183229e.g.\ $s_1=s'_1={\:}_i^k \mathbb{R}_{1/2}^{1/2}$. Each triad slope $_i^k 
    184230\mathbb{R}_{i_p}^{k_p}$ is used once (as an $s$) to calculate the 
    185 lateral flux along its u-arm, at $(i+i_p,k)$, and then again as an 
    186 $s'$ to calculate the vertical flux along its w-arm at 
     231lateral flux along its $u$-arm, at $(i+i_p,k)$, and then again as an 
     232$s'$ to calculate the vertical flux along its $w$-arm at 
    187233$(i,k+k_p)$. Each vertical area $a_i$ used to calculate the lateral 
    188234flux and horizontal area $a'_i$ used to calculate the vertical flux 
    189 can also be identified as the area across the u- and w-arms of a 
    190 unique triad, and we can notate these areas, similarly to the triad 
     235can also be identified as the area across the $u$- and $w$-arms of a 
     236unique triad, and we notate these areas, similarly to the triad 
    191237slopes, as $_i^k{\mathbb{A}_u}_{i_p}^{k_p}$, 
    192 $_i^k{\mathbb{A}_w}_{i_p}^{k_p}$, where e.g. in \eqref{eq:i13} 
    193 $a_{1}={\:}_i^k{\mathbb{A}_u}_{1/2}^{1/2}$, and in \eqref{eq:i31} 
     238$_i^k{\mathbb{A}_w}_{i_p}^{k_p}$, where e.g. in \eqref{eq:triad:i13} 
     239$a_{1}={\:}_i^k{\mathbb{A}_u}_{1/2}^{1/2}$, and in \eqref{eq:triad:i31} 
    194240$a'_{1}={\:}_i^k{\mathbb{A}_w}_{1/2}^{1/2}$. 
    195241 
    196242\subsection{The full triad fluxes} 
    197 A key property of isoneutral diffusion is that it should not affect 
     243A key property of iso-neutral diffusion is that it should not affect 
    198244the (locally referenced) density. In particular there should be no 
    199245lateral or vertical density flux. The lateral density flux disappears so long as the 
     
    202248form 
    203249\begin{equation} 
    204   \label{eq:i11} 
     250  \label{eq:triad:i11} 
    205251  \left( F_u^{11} \right) _{i+\frac{1}{2}} ^{k} = 
    206   - \left( \kappa_i^{k+1} a_{1} + \kappa_i^{k+1} a_{2} + \kappa_i^k 
    207     a_{3} + \kappa_i^k a_{4} \right) 
     252  - \left( \Alts_i^{k+1} a_{1} + \Alts_i^{k+1} a_{2} + \Alts_i^k 
     253    a_{3} + \Alts_i^k a_{4} \right) 
    208254  \frac{\delta _{i+1/2} \left[ T^k\right]}{{e_{1u}}_{\,i+1/2}^{\,k}}, 
    209255\end{equation} 
    210 where the areas $a_i$ are as in \eqref{eq:i13}. In this case, 
    211 separating the total lateral flux, the sum of \eqref{eq:i13} and 
    212 \eqref{eq:i11}, into triad components, a lateral tracer 
     256where the areas $a_i$ are as in \eqref{eq:triad:i13}. In this case, 
     257separating the total lateral flux, the sum of \eqref{eq:triad:i13} and 
     258\eqref{eq:triad:i11}, into triad components, a lateral tracer 
    213259flux 
    214260\begin{equation} 
    215   \label{eq:latflux-triad} 
    216   _i^k {\mathbb{F}_u}_{i_p}^{k_p} (T) = -A_i^k{ \:}_i^k{\mathbb{A}_u}_{i_p}^{k_p} 
     261  \label{eq:triad:latflux-triad} 
     262  _i^k {\mathbb{F}_u}_{i_p}^{k_p} (T) = - \Alts_i^k{ \:}_i^k{\mathbb{A}_u}_{i_p}^{k_p} 
    217263  \left( 
    218264    \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} } 
     
    227273density flux associated with each triad separately disappears. 
    228274\begin{equation} 
    229   \label{eq:latflux-rho} 
     275  \label{eq:triad:latflux-rho} 
    230276  {\mathbb{F}_u}_{i_p}^{k_p} (\rho)=-\alpha _i^k {\:}_i^k {\mathbb{F}_u}_{i_p}^{k_p} (T) + \beta_i^k {\:}_i^k {\mathbb{F}_u}_{i_p}^{k_p} (S)=0 
    231277\end{equation} 
     
    234280to $i+1,k$ must also vanish since it is a sum of four such triad fluxes. 
    235281 
    236 The squared slope $r_1^2$ in the expression \eqref{eq:i33c} for the 
     282The squared slope $r_1^2$ in the expression \eqref{eq:triad:i33c} for the 
    237283$_{33}$ component is also expressed in terms of area-weighted 
    238284squared triad slopes, so the area-integrated vertical flux from tracer 
    239285cell $i,k$ to $i,k+1$ resulting from the $r_1^2$ term is 
    240286\begin{equation} 
    241   \label{eq:i33} 
     287  \label{eq:triad:i33} 
    242288  \left( F_w^{33} \right) _i^{k+\frac{1}{2}} = 
    243     - \left( \kappa_i^{k+1} a_{1}' s_{1}'^2 
    244     + \kappa_i^{k+1} a_{2}' s_{2}'^2 
    245     + \kappa_i^k a_{3}' s_{3}'^2 
    246     + \kappa_i^k a_{4}' s_{4}'^2 \right)\delta_{k+\frac{1}{2}} \left[ T^{i+1} \right], 
     289    - \left( \Alts_i^{k+1} a_{1}' s_{1}'^2 
     290    + \Alts_i^{k+1} a_{2}' s_{2}'^2 
     291    + \Alts_i^k a_{3}' s_{3}'^2 
     292    + \Alts_i^k a_{4}' s_{4}'^2 \right)\delta_{k+\frac{1}{2}} \left[ T^{i+1} \right], 
    247293\end{equation} 
    248294where the areas $a'$ and slopes $s'$ are the same as in 
    249 \eqref{eq:i31}. 
    250 Then, separating the total vertical flux, the sum of \eqref{eq:i31} and 
    251 \eqref{eq:i33}, into triad components,  a vertical flux  
     295\eqref{eq:triad:i31}. 
     296Then, separating the total vertical flux, the sum of \eqref{eq:triad:i31} and 
     297\eqref{eq:triad:i33}, into triad components,  a vertical flux 
    252298\begin{align} 
    253   \label{eq:vertflux-triad} 
     299  \label{eq:triad:vertflux-triad} 
    254300  _i^k {\mathbb{F}_w}_{i_p}^{k_p} (T) 
    255   &= A_i^k{\: }_i^k{\mathbb{A}_w}_{i_p}^{k_p} 
     301  &= \Alts_i^k{\: }_i^k{\mathbb{A}_w}_{i_p}^{k_p} 
    256302  \left( 
    257303    {_i^k\mathbb{R}_{i_p}^{k_p}}\frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} } 
     
    260306  \right) \\ 
    261307  &= - \left(\left.{ }_i^k{\mathbb{A}_w}_{i_p}^{k_p}\right/{ }_i^k{\mathbb{A}_u}_{i_p}^{k_p}\right) 
    262    {_i^k\mathbb{R}_{i_p}^{k_p}}{\: }_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T) \label{eq:vertflux-triad2} 
     308   {_i^k\mathbb{R}_{i_p}^{k_p}}{\: }_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T) \label{eq:triad:vertflux-triad2} 
    263309\end{align} 
    264310may be associated with each triad. Each vertical density flux $_i^k {\mathbb{F}_w}_{i_p}^{k_p} (\rho)$ 
     
    270316fluxes. 
    271317 
    272 We can explicitly identify (Fig.~\ref{qcells}) the triads associated with the $s_i$, $a_i$, and $s'_i$, $a'_i$ used in the definition of 
    273 the u-fluxes and w-fluxes in 
    274 \eqref{eq:i31}, \eqref{eq:i13}, \eqref{eq:i11} \eqref{eq:i33} and 
    275 Fig.~\ref{Fig_triad} to  write out the iso-neutral fluxes at $u$- and 
     318We can explicitly identify (Fig.~\ref{fig:triad:qcells}) the triads associated with the $s_i$, $a_i$, and $s'_i$, $a'_i$ used in the definition of 
     319the $u$-fluxes and $w$-fluxes in 
     320\eqref{eq:triad:i31}, \eqref{eq:triad:i13}, \eqref{eq:triad:i11} \eqref{eq:triad:i33} and 
     321Fig.~\ref{fig:triad:ISO_triad} to  write out the iso-neutral fluxes at $u$- and 
    276322$w$-points as sums of the triad fluxes that cross the $u$- and $w$-faces: 
    277323%(Fig.~\ref{Fig_ISO_triad}): 
    278 \begin{flalign} \label{Eq_iso_flux} \textbf{F}_{iso}(T) &\equiv 
     324\begin{flalign} \label{Eq_iso_flux} \vect{F}_\mathrm{iso}(T) &\equiv 
    279325  \sum_{\substack{i_p,\,k_p}} 
    280326  \begin{pmatrix} 
     
    284330  \end{pmatrix}. 
    285331\end{flalign} 
    286 \subsection{Ensuring the scheme cannot increase tracer variance} 
    287 \label{sec:variance} 
    288  
    289 We now require that this operator cannot increase the 
     332\subsection{Ensuring the scheme does not increase tracer variance} 
     333\label{sec:triad:variance} 
     334 
     335We now require that this operator should not increase the 
    290336globally-integrated tracer variance. 
    291337%This changes according to 
    292338% \begin{align*} 
    293339% &\int_D  D_l^T \; T \;dv \equiv  \sum_{i,k} \left\{ T \ D_l^T \ b_T \right\}    \\ 
    294 % &\equiv + \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{   
    295 %     \delta_{i} \left[{_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \right]  
     340% &\equiv + \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 
     341%     \delta_{i} \left[{_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \right] 
    296342%       + \delta_{k} \left[ {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}} \right]  \ T \right\}    \\ 
    297 % &\equiv  - \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{   
     343% &\equiv  - \sum_{i,k} \sum_{\substack{i_p,\,k_p}} \left\{ 
    298344%                 {_{i+1/2-i_p}^k {\mathbb{F}_u }_{i_p}^{k_p}} \ \delta_{i+1/2} [T] 
    299345%              + {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p}}  \ \delta_{k+1/2} [T]   \right\}      \\ 
    300346% \end{align*} 
    301347Each triad slope $_i^k\mathbb{R}_{i_p}^{k_p}$ drives a lateral flux 
    302 $_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)$ across the u-point $i+i_p,k$ and 
     348$_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)$ across the $u$-point $i+i_p,k$ and 
    303349a vertical flux $_i^k{\mathbb{F}_w}_{i_p}^{k_p} (T)$ across the 
    304 w-point $i,k+k_p$.  The lateral flux drives a net rate of change of 
    305 variance at points $i+i_p-\half,k$ and $i+i_p+\half,k$ of 
     350$w$-point $i,k+k_p$.  The lateral flux drives a net rate of change of 
     351variance, summed over the two $T$-points $i+i_p-\half,k$ and $i+i_p+\half,k$, of 
    306352\begin{multline} 
    307353  {b_T}_{i+i_p-1/2}^k\left(\frac{\partial T}{\partial t}T\right)_{i+i_p-1/2}^k+ 
     
    311357  &= -T_{i+i_p-1/2}^k{\;} _i^k{\mathbb{F}_u}_{i_p}^{k_p} (T) \quad + \quad  T_{i+i_p+1/2}^k 
    312358  {\;}_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T) \\ 
    313   &={\;} _i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)\,\delta_{i+ i_p}[T^k], \label{locFdtdx} 
     359  &={\;} _i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)\,\delta_{i+ i_p}[T^k], \label{eq:triad:dvar_iso_i} 
    314360 \end{split} 
    315361\end{multline} 
    316 while the vertical flux similarly drives a net rate of change of variance at points $i,k+k_p-\half$ and 
    317 $i,k+k_p+\half$ of 
    318 \begin{equation} 
    319 \label{locFdtdz} 
     362while the vertical flux similarly drives a net rate of change of 
     363variance summed over the $T$-points $i,k+k_p-\half$ (above) and 
     364$i,k+k_p+\half$ (below) of 
     365\begin{equation} 
     366\label{eq:triad:dvar_iso_k} 
    320367  _i^k{\mathbb{F}_w}_{i_p}^{k_p} (T) \,\delta_{k+ k_p}[T^i]. 
    321368\end{equation} 
    322369The total variance tendency driven by the triad is the sum of these 
    323370two. Expanding $_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)$ and 
    324 $_i^k{\mathbb{F}_w}_{i_p}^{k_p} (T)$ with \eqref{eq:latflux-triad} and 
    325 \eqref{eq:vertflux-triad}, it is 
     371$_i^k{\mathbb{F}_w}_{i_p}^{k_p} (T)$ with \eqref{eq:triad:latflux-triad} and 
     372\eqref{eq:triad:vertflux-triad}, it is 
    326373\begin{multline*} 
    327 -A_i^k\left \{ 
     374-\Alts_i^k\left \{ 
    328375{ } _i^k{\mathbb{A}_u}_{i_p}^{k_p} 
    329376  \left( 
     
    343390to be related to a triad volume $_i^k\mathbb{V}_{i_p}^{k_p}$ by 
    344391\begin{equation} 
    345   \label{eq:V-A} 
     392  \label{eq:triad:V-A} 
    346393  _i^k\mathbb{V}_{i_p}^{k_p} 
    347394  ={\;}_i^k{\mathbb{A}_u}_{i_p}^{k_p}\,{e_{1u}}_{\,i + i_p}^{\,k} 
     
    350397the variance tendency reduces to the perfect square 
    351398\begin{equation} 
    352   \label{eq:perfect-square} 
    353   -A_i^k{\:} _i^k\mathbb{V}_{i_p}^{k_p} 
     399  \label{eq:triad:perfect-square} 
     400  -\Alts_i^k{\:} _i^k\mathbb{V}_{i_p}^{k_p} 
    354401  \left( 
    355402    \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} } 
     
    358405  \right)^2\leq 0. 
    359406\end{equation} 
    360 Thus, the constraint \eqref{eq:V-A} ensures that the fluxes associated 
     407Thus, the constraint \eqref{eq:triad:V-A} ensures that the fluxes (\ref{eq:triad:latflux-triad}, \ref{eq:triad:vertflux-triad}) associated 
    361408with a given slope triad $_i^k\mathbb{R}_{i_p}^{k_p}$ do not increase 
    362409the net variance. Since the total fluxes are sums of such fluxes from 
     
    365412increase. 
    366413 
    367 The expression \eqref{eq:V-A} can be interpreted as a discretization 
     414The expression \eqref{eq:triad:V-A} can be interpreted as a discretization 
    368415of the global integral 
    369416\begin{equation} 
    370   \label{eq:cts-var} 
    371   \frac{\partial}{\partial t}\int\half T^2\, dV = 
    372   \int\mathbf{F}\cdot\nabla T\, dV, 
     417  \label{eq:triad:cts-var} 
     418  \frac{\partial}{\partial t}\int\!\half T^2\, dV = 
     419  \int\!\mathbf{F}\cdot\nabla T\, dV, 
    373420\end{equation} 
    374421where, within each triad volume $_i^k\mathbb{V}_{i_p}^{k_p}$, the 
     
    376423\[ 
    377424\mathbf{F}=\left( 
    378 _i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)/_i^k{\mathbb{A}_u}_{i_p}^{k_p}, 
    379 {\:}_i^k{\mathbb{F}_w}_{i_p}^{k_p} (T)/_i^k{\mathbb{A}_w}_{i_p}^{k_p} 
     425\left.{}_i^k{\mathbb{F}_u}_{i_p}^{k_p} (T)\right/{}_i^k{\mathbb{A}_u}_{i_p}^{k_p}, 
     426\left.{\:}_i^k{\mathbb{F}_w}_{i_p}^{k_p} (T)\right/{}_i^k{\mathbb{A}_w}_{i_p}^{k_p} 
    380427 \right) 
    381428\] 
    382429and the gradient 
    383430 \[\nabla T = \left( 
    384 \delta_{i+ i_p}[T^k] / {e_{1u}}_{\,i + i_p}^{\,k}, 
    385 \delta_{k+ k_p}[T^i] / {e_{3w}}_{\,i}^{\,k + k_p} 
     431\left.\delta_{i+ i_p}[T^k] \right/ {e_{1u}}_{\,i + i_p}^{\,k}, 
     432\left.\delta_{k+ k_p}[T^i] \right/ {e_{3w}}_{\,i}^{\,k + k_p} 
    386433\right) 
    387434\] 
     
    390437volumes $_i^k\mathbb{V}_{i_p}^{k_p}$. \citet{Griffies_al_JPO98} identify 
    391438these $_i^k\mathbb{V}_{i_p}^{k_p}$ as the volumes of the quarter 
    392 cells, defined in terms of the distances between T, u,f and 
    393 w-points. This is the natural discretization of 
    394 \eqref{eq:cts-var}. The \NEMO model, however, operates with scale 
     439cells, defined in terms of the distances between $T$, $u$,$f$ and 
     440$w$-points. This is the natural discretization of 
     441\eqref{eq:triad:cts-var}. The \NEMO model, however, operates with scale 
    395442factors instead of grid sizes, and scale factors for the quarter 
    396443cells are not defined. Instead, therefore we simply choose 
    397444\begin{equation} 
    398   \label{eq:V-NEMO} 
     445  \label{eq:triad:V-NEMO} 
    399446  _i^k\mathbb{V}_{i_p}^{k_p}=\quarter {b_u}_{i+i_p}^k, 
    400447\end{equation} 
    401 as a quarter of the volume of the u-cell inside which the triad 
     448as a quarter of the volume of the $u$-cell inside which the triad 
    402449quarter-cell lies. This has the nice property that when the slopes 
    403450$\mathbb{R}$ vanish, the lateral flux from tracer cell $i,k$ to 
    404451$i+1,k$ reduces to the classical form 
    405452\begin{equation} 
    406   \label{eq:lat-normal} 
    407 -\overline{A}_{\,i+1/2}^k\; 
     453  \label{eq:triad:lat-normal} 
     454-\overline\Alts_{\,i+1/2}^k\; 
    408455\frac{{b_u}_{i+1/2}^k}{{e_{1u}}_{\,i + i_p}^{\,k}} 
    409456\;\frac{\delta_{i+ 1/2}[T^k] }{{e_{1u}}_{\,i + i_p}^{\,k}} 
    410  = -\overline{A}_{\,i+1/2}^k\;\frac{{e_{1w}}_{\,i + 1/2}^{\,k}\:{e_{1v}}_{\,i + 1/2}^{\,k}}{{e_{1u}}_{\,i + 1/2}^{\,k}}. 
    411 \end{equation} 
    412 In fact if the diffusive coefficient is defined at u-points, so that 
    413 we employ $A_{i+i_p}^k$ instead of $A_i^k$ in the definitions of the 
    414 triad fluxes \eqref{eq:latflux-triad} and \eqref{eq:vertflux-triad}, 
     457 = -\overline\Alts_{\,i+1/2}^k\;\frac{{e_{1w}}_{\,i + 1/2}^{\,k}\:{e_{1v}}_{\,i + 1/2}^{\,k}\;\delta_{i+ 1/2}[T^k]}{{e_{1u}}_{\,i + 1/2}^{\,k}}. 
     458\end{equation} 
     459In fact if the diffusive coefficient is defined at $u$-points, so that 
     460we employ $\Alts_{i+i_p}^k$ instead of  $\Alts_i^k$ in the definitions of the 
     461triad fluxes \eqref{eq:triad:latflux-triad} and \eqref{eq:triad:vertflux-triad}, 
    415462we can replace $\overline{A}_{\,i+1/2}^k$ by $A_{i+1/2}^k$ in the above. 
    416463 
    417464\subsection{Summary of the scheme} 
    418 The divergence of the expression \eqref{Eq_iso_flux} for the fluxes gives the iso-neutral diffusion tendency at 
     465The iso-neutral fluxes at $u$- and 
     466$w$-points are the sums of the triad fluxes that cross the $u$- and 
     467$w$-faces \eqref{Eq_iso_flux}: 
     468\begin{subequations}\label{eq:triad:alltriadflux} 
     469  \begin{flalign}\label{eq:triad:vect_isoflux} 
     470    \vect{F}_\mathrm{iso}(T) &\equiv 
     471    \sum_{\substack{i_p,\,k_p}} 
     472    \begin{pmatrix} 
     473      {_{i+1/2-i_p}^k {\mathbb{F}_u}_{i_p}^{k_p} } (T)      \\ 
     474      \\ 
     475      {_i^{k+1/2-k_p} {\mathbb{F}_w}_{i_p}^{k_p} } (T)  
     476    \end{pmatrix}, 
     477  \end{flalign} 
     478  where \eqref{eq:triad:latflux-triad}: 
     479  \begin{align} 
     480    \label{eq:triad:triadfluxu} 
     481    _i^k {\mathbb{F}_u}_{i_p}^{k_p} (T) &= - \Alts_i^k{ 
     482      \:}\frac{{{}_i^k\mathbb{V}}_{i_p}^{k_p}}{{e_{1u}}_{\,i + i_p}^{\,k}} 
     483    \left( 
     484      \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} } 
     485      -\ {_i^k\mathbb{R}_{i_p}^{k_p}} \ 
     486      \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} } 
     487    \right),\\ 
     488    \intertext{and} 
     489    _i^k {\mathbb{F}_w}_{i_p}^{k_p} (T) 
     490    &= \Alts_i^k{\: }\frac{{{}_i^k\mathbb{V}}_{i_p}^{k_p}}{{e_{3w}}_{\,i}^{\,k+k_p}} 
     491    \left( 
     492      {_i^k\mathbb{R}_{i_p}^{k_p}}\frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} } 
     493      -\ \left({_i^k\mathbb{R}_{i_p}^{k_p}}\right)^2 \ 
     494      \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} } 
     495    \right),\label{eq:triad:triadfluxw} 
     496  \end{align} 
     497  with \eqref{eq:triad:V-NEMO} 
     498  \begin{equation} 
     499    \label{eq:triad:V-NEMO2} 
     500    _i^k{\mathbb{V}}_{i_p}^{k_p}=\quarter {b_u}_{i+i_p}^k. 
     501  \end{equation} 
     502\end{subequations} 
     503 
     504 The divergence of the expression \eqref{Eq_iso_flux} for the fluxes gives the iso-neutral diffusion tendency at 
    419505each tracer point: 
    420 \begin{equation} \label{Gf_operator} D_l^T = \frac{1}{b_T} 
     506\begin{equation} \label{eq:triad:iso_operator} D_l^T = \frac{1}{b_T} 
    421507  \sum_{\substack{i_p,\,k_p}} \left\{ \delta_{i} \left[{_{i+1/2-i_p}^k 
    422508        {\mathbb{F}_u }_{i_p}^{k_p}} \right] + \delta_{k} \left[ 
     
    427513\begin{description} 
    428514\item[$\bullet$ horizontal diffusion] The discretization of the 
    429   diffusion operator recovers \eqref{eq:lat-normal} the traditional five-point Laplacian in 
     515  diffusion operator recovers \eqref{eq:triad:lat-normal} the traditional five-point Laplacian in 
    430516  the limit of flat iso-neutral direction : 
    431   \begin{equation} \label{Gf_property1a} D_l^T = \frac{1}{b_T} \ 
     517  \begin{equation} \label{eq:triad:iso_property0} D_l^T = \frac{1}{b_T} \ 
    432518    \delta_{i} \left[ \frac{e_{2u}\,e_{3u}}{e_{1u}} \; 
    433       \overline{A}^{\,i} \; \delta_{i+1/2}[T] \right] \qquad 
     519      \overline\Alts^{\,i} \; \delta_{i+1/2}[T] \right] \qquad 
    434520    \text{when} \quad { _i^k \mathbb{R}_{i_p}^{k_p} }=0 
    435521  \end{equation} 
     
    437523\item[$\bullet$ implicit treatment in the vertical] Only tracer values 
    438524  associated with a single water column appear in the expression 
    439   \eqref{eq:i33} for the $_{33}$ fluxes, vertical fluxes driven by 
     525  \eqref{eq:triad:i33} for the $_{33}$ fluxes, vertical fluxes driven by 
    440526  vertical gradients. This is of paramount importance since it means 
    441   that an implicit in time algorithm can be used to solve the vertical 
    442   diffusion equation. This is a necessity since the vertical eddy 
     527  that a time-implicit algorithm can be used to solve the vertical 
     528  diffusion equation. This is necessary 
     529 since the vertical eddy 
    443530  diffusivity associated with this term, 
    444531  \begin{equation} 
    445     \frac{1}{b_w}\sum_{\substack{i_p, \,k_p}} \left\{   
    446       {\:}_i^k\mathbb{V}_{i_p}^{k_p} \:A_i^k \: \left(_i^k \mathbb{R}_{i_p}^{k_p}\right)^2 
    447     \right\}  =  
    448     \frac{1}{4b_w}\sum_{\substack{i_p, \,k_p}} \left\{   
    449       {b_u}_{i+i_p}^k\:A_i^k \: \left(_i^k \mathbb{R}_{i_p}^{k_p}\right)^2 
     532    \frac{1}{b_w}\sum_{\substack{i_p, \,k_p}} \left\{ 
     533      {\:}_i^k\mathbb{V}_{i_p}^{k_p} \: \Alts_i^k \: \left(_i^k \mathbb{R}_{i_p}^{k_p}\right)^2 
     534    \right\}  = 
     535    \frac{1}{4b_w}\sum_{\substack{i_p, \,k_p}} \left\{ 
     536      {b_u}_{i+i_p}^k\: \Alts_i^k \: \left(_i^k \mathbb{R}_{i_p}^{k_p}\right)^2 
    450537    \right\}, 
    451538 \end{equation} 
     
    454541\item[$\bullet$ pure iso-neutral operator] The iso-neutral flux of 
    455542  locally referenced potential density is zero. See 
    456   \eqref{eq:latflux-rho} and \eqref{eq:vertflux-triad2}. 
     543  \eqref{eq:triad:latflux-rho} and \eqref{eq:triad:vertflux-triad2}. 
    457544 
    458545\item[$\bullet$ conservation of tracer] The iso-neutral diffusion 
    459546  conserves tracer content, $i.e.$ 
    460   \begin{equation} \label{Gf_property1} \sum_{i,j,k} \left\{ D_l^T \ 
     547  \begin{equation} \label{eq:triad:iso_property1} \sum_{i,j,k} \left\{ D_l^T \ 
    461548      b_T \right\} = 0 
    462549  \end{equation} 
     
    466553\item[$\bullet$ no increase of tracer variance] The iso-neutral diffusion 
    467554  does not increase the tracer variance, $i.e.$ 
    468   \begin{equation} \label{Gf_property1} \sum_{i,j,k} \left\{ T \ D_l^T 
     555  \begin{equation} \label{eq:triad:iso_property2} \sum_{i,j,k} \left\{ T \ D_l^T 
    469556      \ b_T \right\} \leq 0 
    470557  \end{equation} 
    471558  The property is demonstrated in 
    472   \ref{sec:variance} above. It is a key property for a diffusion 
    473   term. It means that it is also a dissipation term, $i.e.$ it is a 
    474   diffusion of the square of the quantity on which it is applied.  It 
     559  \S\ref{sec:triad:variance} above. It is a key property for a diffusion 
     560  term. It means that it is also a dissipation term, $i.e.$ it 
     561  dissipates the square of the quantity on which it is applied.  It 
    475562  therefore ensures that, when the diffusivity coefficient is large 
    476   enough, the field on which it is applied become free of grid-point 
     563  enough, the field on which it is applied becomes free of grid-point 
    477564  noise. 
    478565 
    479566\item[$\bullet$ self-adjoint operator] The iso-neutral diffusion 
    480567  operator is self-adjoint, $i.e.$ 
    481   \begin{equation} \label{Gf_property1} \sum_{i,j,k} \left\{ S \ D_l^T 
     568  \begin{equation} \label{eq:triad:iso_property3} \sum_{i,j,k} \left\{ S \ D_l^T 
    482569      \ b_T \right\} = \sum_{i,j,k} \left\{ D_l^S \ T \ b_T \right\} 
    483570  \end{equation} 
     
    486573  routine. This property can be demonstrated similarly to the proof of 
    487574  the `no increase of tracer variance' property. The contribution by a 
    488   single triad towards the left hand side of \eqref{Gf_property1}, can 
    489   be found by replacing $\delta[T]$ by $\delta[S]$ in \eqref{locFdtdx} 
    490   and \eqref{locFdtdx}. This results in a term similar to 
    491   \eqref{eq:perfect-square}, 
    492 \begin{equation} 
    493   \label{eq:TScovar} 
    494   -A_i^k{\:} _i^k\mathbb{V}_{i_p}^{k_p} 
     575  single triad towards the left hand side of \eqref{eq:triad:iso_property3}, can 
     576  be found by replacing $\delta[T]$ by $\delta[S]$ in \eqref{eq:triad:dvar_iso_i} 
     577  and \eqref{eq:triad:dvar_iso_k}. This results in a term similar to 
     578  \eqref{eq:triad:perfect-square}, 
     579\begin{equation} 
     580  \label{eq:triad:TScovar} 
     581  - \Alts_i^k{\:} _i^k\mathbb{V}_{i_p}^{k_p} 
    495582  \left( 
    496583    \frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} } 
     
    506593This is symmetrical in $T $ and $S$, so exactly the same term arises 
    507594from the discretization of this triad's contribution towards the 
    508 RHS of \eqref{Gf_property1}. 
     595RHS of \eqref{eq:triad:iso_property3}. 
    509596\end{description} 
    510  
    511  
    512 $\ $\newline %force an empty line 
     597\subsection{Treatment of the triads at the boundaries}\label{sec:triad:iso_bdry} 
     598The triad slope can only be defined where both the grid boxes centred at 
     599the end of the arms exist. Triads that would poke up 
     600through the upper ocean surface into the atmosphere, or down into the 
     601ocean floor, must be masked out. See Fig.~\ref{fig:triad:bdry_triads}. Surface layer triads 
     602$\triad{i}{1}{R}{1/2}{-1/2}$ (magenta) and 
     603$\triad{i+1}{1}{R}{-1/2}{-1/2}$ (blue) that require density to be 
     604specified above the ocean surface are masked (Fig.~\ref{fig:triad:bdry_triads}a): this ensures that lateral 
     605tracer gradients produce no flux through the ocean surface. However, 
     606to prevent surface noise, it is customary to retain the $_{11}$ contributions towards 
     607the lateral triad fluxes $\triad[u]{i}{1}{F}{1/2}{-1/2}$ and 
     608$\triad[u]{i+1}{1}{F}{-1/2}{-1/2}$; this drives diapycnal tracer 
     609fluxes. Similar comments apply to triads that would intersect the 
     610ocean floor (Fig.~\ref{fig:triad:bdry_triads}b). Note that both near bottom 
     611triad slopes $\triad{i}{k}{R}{1/2}{1/2}$ and 
     612$\triad{i+1}{k}{R}{-1/2}{1/2}$ are masked when either of the $i,k+1$ 
     613or $i+1,k+1$ tracer points is masked, i.e.\ the $i,k+1$ $u$-point is 
     614masked. The associated lateral fluxes (grey-black dashed line) are 
     615masked if \nlv{ln\_botmix\_grif=.false.}, but left unmasked, 
     616giving bottom mixing, if \nlv{ln\_botmix\_grif=.true.}. 
     617 
     618The default option \nlv{ln\_botmix\_grif=.false.} is suitable when the 
     619bbl mixing option is enabled (\key{trabbl}, with \nlv{nn\_bbl\_ldf=1}), 
     620or  for simple idealized  problems. For setups with topography without 
     621bbl mixing, \nlv{ln\_botmix\_grif=.true.} may be necessary. 
     622% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     623\begin{figure}[h] \begin{center} 
     624    \includegraphics[width=0.60\textwidth]{./TexFiles/Figures/Fig_bdry_triads} 
     625    \caption{  \label{fig:triad:bdry_triads} 
     626      (a) Uppermost model layer $k=1$ with $i,1$ and $i+1,1$ tracer 
     627      points (black dots), and $i+1/2,1$ $u$-point (blue square). Triad 
     628      slopes $\triad{i}{1}{R}{1/2}{-1/2}$ (magenta) and $\triad{i+1}{1}{R}{-1/2}{-1/2}$ 
     629      (blue) poking through the ocean surface are masked (faded in 
     630      figure). However, the lateral $_{11}$ contributions towards 
     631      $\triad[u]{i}{1}{F}{1/2}{-1/2}$ and $\triad[u]{i+1}{1}{F}{-1/2}{-1/2}$ 
     632      (yellow line) are still applied, giving diapycnal diffusive 
     633      fluxes.\\ 
     634      (b) Both near bottom triad slopes $\triad{i}{k}{R}{1/2}{1/2}$ and 
     635      $\triad{i+1}{k}{R}{-1/2}{1/2}$ are masked when either of the $i,k+1$ 
     636      or $i+1,k+1$ tracer points is masked, i.e.\ the $i,k+1$ $u$-point 
     637      is masked. The associated lateral fluxes (grey-black dashed 
     638      line) are masked if \smnlv{ln\_botmix\_grif=.false.}, but left 
     639      unmasked, giving bottom mixing, if \smnlv{ln\_botmix\_grif=.true.}} 
     640 \end{center} \end{figure} 
     641% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     642\subsection{ Limiting of the slopes within the interior}\label{sec:triad:limit} 
     643As discussed in \S\ref{LDF_slp_iso}, iso-neutral slopes relative to 
     644geopotentials must be bounded everywhere, both for consistency with the small-slope 
     645approximation and for numerical stability \citep{Cox1987, 
     646  Griffies_Bk04}. The bound chosen in \NEMO is applied to each 
     647component of the slope separately and has a value of $1/100$ in the ocean interior. 
     648%, ramping linearly down above 70~m depth to zero at the surface 
     649It is of course relevant to the iso-neutral slopes $\tilde{r}_i=r_i+\sigma_i$ relative to 
     650geopotentials (here the $\sigma_i$ are the slopes of the coordinate surfaces relative to 
     651geopotentials) \eqref{Eq_PE_slopes_eiv} rather than the slope $r_i$ relative to coordinate 
     652surfaces, so we require 
     653\begin{equation*} 
     654  |\tilde{r}_i|\leq \tilde{r}_\mathrm{max}=0.01. 
     655\end{equation*} 
     656and then recalculate the slopes $r_i$ relative to coordinates. 
     657Each individual triad slope 
     658 \begin{equation} 
     659   \label{eq:triad:Rtilde} 
     660_i^k\tilde{\mathbb{R}}_{i_p}^{k_p} = {}_i^k\mathbb{R}_{i_p}^{k_p}  + \frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}} 
     661 \end{equation} 
     662is limited like this and then the corresponding 
     663$_i^k\mathbb{R}_{i_p}^{k_p} $ are recalculated and combined to form the fluxes. 
     664Note that where the slopes have been limited, there is now a non-zero 
     665iso-neutral density flux that drives dianeutral mixing.  In particular this iso-neutral density flux 
     666is always downwards, and so acts to reduce gravitational potential energy. 
     667\subsection{Tapering within the surface mixed layer} 
     668Additional tapering of the iso-neutral fluxes is necessary within the 
     669surface mixed layer. When the Griffies triads are used, we offer two 
     670options for this. 
     671\subsubsection{Linear slope tapering within the surface mixed layer}\label{sec:triad:lintaper} 
     672This is the option activated by the default choice 
     673\nlv{ln\_triad\_iso=.false.}. Slopes $\tilde{r}_i$ relative to 
     674geopotentials are tapered linearly from their value immediately below the mixed layer to zero at the 
     675surface, as described in option (c) of Fig.~\ref{Fig_eiv_slp}, to values 
     676\begin{subequations} 
     677  \begin{equation} 
     678   \label{eq:triad:rmtilde} 
     679     \rMLt = 
     680  -\frac{z}{h}\left.\tilde{r}_i\right|_{z=-h}\quad \text{ for  } z>-h, 
     681  \end{equation} 
     682and then the $r_i$ relative to vertical coordinate surfaces are appropriately 
     683adjusted to 
     684  \begin{equation} 
     685   \label{eq:triad:rm} 
     686 \rML =\rMLt -\sigma_i \quad \text{ for  } z>-h. 
     687  \end{equation} 
     688\end{subequations} 
     689Thus the diffusion operator within the mixed layer is given by: 
     690\begin{equation} \label{eq:triad:iso_tensor_ML} 
     691D^{lT}=\nabla {\rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad 
     692\mbox{with}\quad \;\;\Re =\left( {{\begin{array}{*{20}c} 
     693 1 \hfill & 0 \hfill & {-\rML[1]}\hfill \\ 
     694 0 \hfill & 1 \hfill & {-\rML[2]} \hfill \\ 
     695 {-\rML[1]}\hfill &   {-\rML[2]} \hfill & {\rML[1]^2+\rML[2]^2} \hfill 
     696\end{array} }} \right) 
     697\end{equation} 
     698 
     699This slope tapering gives a natural connection between tracer in the 
     700mixed-layer and in isopycnal layers immediately below, in the 
     701thermocline. It is consistent with the way the $\tilde{r}_i$ are 
     702tapered within the mixed layer (see \S\ref{sec:triad:taperskew} below) 
     703so as to ensure a uniform GM eddy-induced velocity throughout the 
     704mixed layer. However, it gives a downwards density flux and so acts so 
     705as to reduce potential energy in the same way as does the slope 
     706limiting discussed above in \S\ref{sec:triad:limit}. 
     707  
     708As in \S\ref{sec:triad:limit} above, the tapering 
     709\eqref{eq:triad:rmtilde} is applied separately to each triad 
     710$_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}$, and the 
     711$_i^k\mathbb{R}_{i_p}^{k_p}$ adjusted. For clarity, we assume 
     712$z$-coordinates in the following; the conversion from 
     713$\mathbb{R}$ to $\tilde{\mathbb{R}}$ and back to $\mathbb{R}$ follows exactly as described 
     714above by \eqref{eq:triad:Rtilde}. 
     715\begin{enumerate} 
     716\item Mixed-layer depth is defined so as to avoid including regions of weak 
     717vertical stratification in the slope definition. 
     718 At each $i,j$ (simplified to $i$ in 
     719Fig.~\ref{fig:triad:MLB_triad}), we define the mixed-layer by setting 
     720the vertical index of the tracer point immediately below the mixed 
     721layer, $k_\mathrm{ML}$, as the maximum $k$ (shallowest tracer point) 
     722such that the potential density 
     723${\rho_0}_{i,k}>{\rho_0}_{i,k_{10}}+\Delta\rho_c$, where $i,k_{10}$ is 
     724the tracer gridbox within which the depth reaches 10~m. See the left 
     725side of Fig.~\ref{fig:triad:MLB_triad}. We use the $k_{10}$-gridbox 
     726instead of the surface gridbox to avoid problems e.g.\ with thin 
     727daytime mixed-layers. Currently we use the same 
     728$\Delta\rho_c=0.01\;\mathrm{kg\:m^{-3}}$ for ML triad tapering as is 
     729used to output the diagnosed mixed-layer depth 
     730$h_\mathrm{ML}=|z_{W}|_{k_\mathrm{ML}+1/2}$, the depth of the $w$-point 
     731above the $i,k_\mathrm{ML}$ tracer point. 
     732 
     733\item We define `basal' triad slopes 
     734${\:}_i{\mathbb{R}_\mathrm{base}}_{\,i_p}^{k_p}$ as the slopes 
     735of those triads whose vertical `arms' go down from the 
     736$i,k_\mathrm{ML}$ tracer point to the $i,k_\mathrm{ML}-1$ tracer point 
     737below. This is to ensure that the vertical density gradients 
     738associated with these basal triad slopes 
     739${\:}_i{\mathbb{R}_\mathrm{base}}_{\,i_p}^{k_p}$ are 
     740representative of the thermocline. The four basal triads defined in the bottom part 
     741of Fig.~\ref{fig:triad:MLB_triad} are then 
     742\begin{align} 
     743  {\:}_i{\mathbb{R}_\mathrm{base}}_{\,i_p}^{k_p} &= 
     744 {\:}^{k_\mathrm{ML}-k_p-1/2}_i{\mathbb{R}_\mathrm{base}}_{\,i_p}^{k_p}, \label{eq:triad:Rbase} 
     745\\ 
     746\intertext{with e.g.\ the green triad} 
     747{\:}_i{\mathbb{R}_\mathrm{base}}_{1/2}^{-1/2}&= 
     748{\:}^{k_\mathrm{ML}}_i{\mathbb{R}_\mathrm{base}}_{\,1/2}^{-1/2}. \notag 
     749\end{align} 
     750The vertical flux associated with each of these triads passes through the $w$-point 
     751$i,k_\mathrm{ML}-1/2$ lying \emph{below} the $i,k_\mathrm{ML}$ tracer point, 
     752so it is this depth 
     753\begin{equation} 
     754  \label{eq:triad:zbase} 
     755  {z_\mathrm{base}}_{\,i}={z_{w}}_{k_\mathrm{ML}-1/2} 
     756\end{equation} 
     757(one gridbox deeper than the 
     758diagnosed ML depth $z_\mathrm{ML})$ that sets the $h$ used to taper 
     759the slopes in \eqref{eq:triad:rmtilde}. 
     760\item Finally, we calculate the adjusted triads 
     761${\:}_i^k{\mathbb{R}_\mathrm{ML}}_{\,i_p}^{k_p}$ within the mixed 
     762layer, by multiplying the appropriate 
     763${\:}_i{\mathbb{R}_\mathrm{base}}_{\,i_p}^{k_p}$ by the ratio of 
     764the depth of the $w$-point ${z_w}_{k+k_p}$ to ${z_\mathrm{base}}_{\,i}$. For 
     765instance the green triad centred on $i,k$ 
     766\begin{align} 
     767  {\:}_i^k{\mathbb{R}_\mathrm{ML}}_{\,1/2}^{-1/2} &= 
     768\frac{{z_w}_{k-1/2}}{{z_\mathrm{base}}_{\,i}}{\:}_i{\mathbb{R}_\mathrm{base}}_{\,1/2}^{-1/2} 
     769\notag \\ 
     770\intertext{and more generally} 
     771 {\:}_i^k{\mathbb{R}_\mathrm{ML}}_{\,i_p}^{k_p} &= 
     772\frac{{z_w}_{k+k_p}}{{z_\mathrm{base}}_{\,i}}{\:}_i{\mathbb{R}_\mathrm{base}}_{\,i_p}^{k_p}.\label{eq:triad:RML} 
     773\end{align} 
     774\end{enumerate} 
     775 
     776% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     777\begin{figure}[h] 
     778  \fcapside {\caption{\label{fig:triad:MLB_triad} Definition of 
     779      mixed-layer depth and calculation of linearly tapered 
     780      triads. The figure shows a water column at a given $i,j$ 
     781      (simplified to $i$), with the ocean surface at the top. Tracer points are denoted by 
     782      bullets, and black lines the edges of the tracer cells; $k$ 
     783      increases upwards. \\ 
     784      \hspace{5 em}We define the mixed-layer by setting the vertical index 
     785      of the tracer point immediately below the mixed layer, 
     786      $k_\mathrm{ML}$, as the maximum $k$ (shallowest tracer point) 
     787      such that ${\rho_0}_{i,k}>{\rho_0}_{i,k_{10}}+\Delta\rho_c$, 
     788      where $i,k_{10}$ is the tracer gridbox within which the depth 
     789      reaches 10~m. We calculate the triad slopes within the mixed 
     790      layer by linearly tapering them from zero (at the surface) to 
     791      the `basal' slopes, the slopes of the four triads passing through the 
     792      $w$-point $i,k_\mathrm{ML}-1/2$ (blue square), 
     793      ${\:}_i{\mathbb{R}_\mathrm{base}}_{\,i_p}^{k_p}$. Triads with 
     794    different $i_p,k_p$, denoted by different colours, (e.g. the green 
     795    triad $i_p=1/2,k_p=-1/2$) are tapered to the appropriate basal triad.}} 
     796  {\includegraphics[width=0.60\textwidth]{./TexFiles/Figures/Fig_triad_MLB}} 
     797\end{figure} 
     798% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     799 
     800\subsubsection{Additional truncation of skew iso-neutral flux components} 
     801The alternative option is activated by setting \nlv{ln\_triad\_iso = 
     802  .true.}. This retains the same tapered slope $\rML$  described above for the 
     803calculation of the $_{33}$ term of the iso-neutral diffusion tensor (the 
     804vertical tracer flux driven by vertical tracer gradients), but 
     805replaces the $\rML$ in the skew term by 
     806\begin{equation} 
     807  \label{eq:triad:rm*} 
     808  \rML^*=\left.\rMLt^2\right/\tilde{r}_i-\sigma_i, 
     809\end{equation} 
     810giving a ML diffusive operator 
     811\begin{equation} \label{eq:triad:iso_tensor_ML2} 
     812D^{lT}=\nabla {\rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad 
     813\mbox{with}\quad \;\;\Re =\left( {{\begin{array}{*{20}c} 
     814 1 \hfill & 0 \hfill & {-\rML[1]^*}\hfill \\ 
     815 0 \hfill & 1 \hfill & {-\rML[2]^*} \hfill \\ 
     816 {-\rML[1]^*}\hfill &   {-\rML[2]^*} \hfill & {\rML[1]^2+\rML[2]^2} \hfill \\ 
     817\end{array} }} \right). 
     818\end{equation} 
     819This operator 
     820\footnote{To ensure good behaviour where horizontal density 
     821  gradients are weak, we in fact follow \citet{Gerdes1991} and set 
     822$\rML^*=\mathrm{sgn}(\tilde{r}_i)\min(|\rMLt^2/\tilde{r}_i|,|\tilde{r}_i|)-\sigma_i$.} 
     823then has the property it gives no vertical density flux, and so does 
     824not change the potential energy. 
     825This approach is similar to multiplying the iso-neutral  diffusion 
     826coefficient by $\tilde{r}_\mathrm{max}^{-2}\tilde{r}_i^{-2}$ for steep 
     827slopes, as suggested by \citet{Gerdes1991} (see also \citet{Griffies_Bk04}). 
     828Again it is applied separately to each triad $_i^k\mathbb{R}_{i_p}^{k_p}$ 
     829 
     830In practice, this approach gives weak vertical tracer fluxes through 
     831the mixed-layer, as well as vanishing density fluxes. While it is 
     832theoretically advantageous that it does not change the potential 
     833energy, it may give a discontinuity between the 
     834fluxes within the mixed-layer (purely horizontal) and just below (along 
     835iso-neutral surfaces). 
     836% This may give strange looking results, 
     837% particularly where the mixed-layer depth varies strongly laterally. 
    513838% ================================================================ 
    514839% Skew flux formulation for Eddy Induced Velocity : 
    515840% ================================================================ 
    516 \section{ Eddy induced velocity and Skew flux formulation} 
    517  
    518 When Gent and McWilliams's [1990] diffusion is used (\key{traldf\_eiv} defined),  
    519 an additional advection term is added. The associated velocity is the so called  
     841\section{Eddy induced advection and its formulation as a skew flux} 
     842 
     843\subsection{The continuous skew flux formulation}\label{sec:triad:continuous-skew-flux} 
     844 
     845 When Gent and McWilliams's [1990] diffusion is used (\key{traldf\_eiv} defined), 
     846an additional advection term is added. The associated velocity is the so called 
    520847eddy induced velocity, the formulation of which depends on the slopes of iso- 
    521 neutral surfaces. Contrary to the case of iso-neutral mixing, the slopes used  
    522 here are referenced to the geopotential surfaces, $i.e.$ \eqref{Eq_ldfslp_geo}  
     848neutral surfaces. Contrary to the case of iso-neutral mixing, the slopes used 
     849here are referenced to the geopotential surfaces, $i.e.$ \eqref{Eq_ldfslp_geo} 
    523850is used in $z$-coordinate, and the sum \eqref{Eq_ldfslp_geo} 
    524 + \eqref{Eq_ldfslp_iso} in $z^*$ or $s$-coordinates.  
    525  
    526 The eddy induced velocity is given by:  
    527 \begin{equation} \label{Eq_eiv_v} 
     851+ \eqref{Eq_ldfslp_iso} in $z^*$ or $s$-coordinates. 
     852 
     853The eddy induced velocity is given by: 
     854\begin{equation} \label{eq:triad:eiv_v} 
    528855\begin{split} 
    529  u^* & = - \frac{1}{e_{2}e_{3}}\;          \partial_k \left( e_{2} \, A_{e} \; r_i \right)   \\ 
    530  v^* & = - \frac{1}{e_{1}e_{3}}\;          \partial_k \left( e_{1} \, A_{e} \; r_j \right)   \\ 
    531 w^* & =    \frac{1}{e_{1}e_{2}}\; \left\{ \partial_i  \left( e_{2} \, A_{e} \; r_i \right)  
    532                          + \partial_j  \left( e_{1} \, A_{e} \;r_j \right) \right\} \\ 
     856 u^* & = - \frac{1}{e_{3}}\;          \partial_k \left( A_{e} \; \tilde{r}_1 \right)   \\ 
     857 v^* & = - \frac{1}{e_{3}}\;          \partial_k \left( A_{e} \; \tilde{r}_2 \right)   \\ 
     858w^* & =    \frac{1}{e_{1}e_{2}}\; \left\{ \partial_i  \left( e_{2} \, A_{e} \; \tilde{r}_1 \right) 
     859                         + \partial_j  \left( e_{1} \, A_{e} \;\tilde{r}_2 \right) \right\} 
    533860\end{split} 
    534861\end{equation} 
    535 where $A_{e}$ is the eddy induced velocity coefficient, and $r_i$ and $r_j$ the slopes between the iso-neutral and the geopotential surfaces.  
    536  
    537 The traditional way to implement this additional advection is to add it to the Eulerian  
    538 velocity prior to computing the tracer advection. This allows us to take advantage of  
    539 all the advection schemes offered for the tracers (see \S\ref{TRA_adv}) and not just  
    540 a $2^{nd}$ order advection scheme. This is particularly useful for passive tracers  
    541 where \emph{positivity} of the advection scheme is of paramount importance.  
    542  
    543 \citet{Griffies_JPO98} introduces another way to implement the eddy induced advection,  
    544 the so-called skew form. It is based on a transformation of the advective fluxes  
    545 using the non-divergent nature of the eddy induced velocity.  
    546 For example in the (\textbf{i},\textbf{k}) plane, the tracer advective fluxes can be  
     862where $A_{e}$ is the eddy induced velocity coefficient, and $\tilde{r}_1$ and $\tilde{r}_2$ the slopes between the iso-neutral and the geopotential surfaces. 
     863 
     864The traditional way to implement this additional advection is to add it to the Eulerian 
     865velocity prior to computing the tracer advection. This allows us to take advantage of 
     866all the advection schemes offered for the tracers (see \S\ref{TRA_adv}) and not just 
     867a $2^{nd}$ order advection scheme. This is particularly useful for passive tracers 
     868where \emph{positivity} of the advection scheme is of paramount importance. 
     869 
     870\citet{Griffies_JPO98} introduces another way to implement the eddy induced advection, 
     871the so-called skew form. It is based on a transformation of the advective fluxes 
     872using the non-divergent nature of the eddy induced velocity. 
     873For example in the (\textbf{i},\textbf{k}) plane, the tracer advective 
     874fluxes per unit area in $ijk$ space can be 
    547875transformed as follows: 
    548876\begin{flalign*} 
    549877\begin{split} 
    550 \textbf{F}_{eiv}^T =  
    551 \begin{pmatrix}  
     878\textbf{F}_\mathrm{eiv}^T = 
     879\begin{pmatrix} 
    552880           {e_{2}\,e_{3}\;  u^*}       \\ 
    553881      {e_{1}\,e_{2}\; w^*}  \\ 
    554882\end{pmatrix}   \;   T 
    555883&= 
    556 \begin{pmatrix}  
    557            { - \partial_k \left( e_{2} \, A_{e} \; r_i \right) \; T \;}       \\ 
    558       {+ \partial_i  \left( e_{2} \, A_{e} \; r_i \right) \; T \;}    \\ 
     884\begin{pmatrix} 
     885           { - \partial_k \left( e_{2} \, A_{e} \; \tilde{r}_1 \right) \; T \;}     \\ 
     886      {+ \partial_i  \left( e_{2} \, A_{e} \; \tilde{r}_1 \right) \; T \;}  \\ 
    559887\end{pmatrix}        \\ 
    560 &=        
    561 \begin{pmatrix}  
    562            { - \partial_k \left( e_{2} \, A_{e} \; r_i  \; T \right) \;}  \\ 
    563       {+ \partial_i  \left( e_{2} \, A_{e} \; r_i  \; T \right) \;}   \\ 
    564 \end{pmatrix}         
    565  +  
    566 \begin{pmatrix}  
    567            {+ e_{2} \, A_{e} \; r_i  \; \partial_k T}  \\ 
    568       { - e_{2} \, A_{e} \; r_i  \; \partial_i  T}  \\ 
    569 \end{pmatrix}    
     888&= 
     889\begin{pmatrix} 
     890           { - \partial_k \left( e_{2} \, A_{e} \; \tilde{r}_1  \; T \right) \;}  \\ 
     891      {+ \partial_i  \left( e_{2} \, A_{e} \; \tilde{r}_1  \; T \right) \;}    \\ 
     892\end{pmatrix} 
     893 + 
     894\begin{pmatrix} 
     895           {+ e_{2} \, A_{e} \; \tilde{r}_1  \; \partial_k T}  \\ 
     896      { - e_{2} \, A_{e} \; \tilde{r}_1  \; \partial_i  T}   \\ 
     897\end{pmatrix} 
    570898\end{split} 
    571899\end{flalign*} 
    572 and since the eddy induces velocity field is no-divergent, we end up with the skew  
    573 form of the eddy induced advective fluxes: 
    574 \begin{equation} \label{Eq_eiv_skew_continuous} 
    575 \textbf{F}_{eiv}^T = \begin{pmatrix}  
    576            {+ e_{2} \, A_{e} \; r_i  \; \partial_k T}   \\ 
    577       { - e_{2} \, A_{e} \; r_i  \; \partial_i  T}  \\ 
     900and since the eddy induced velocity field is non-divergent, we end up with the skew 
     901form of the eddy induced advective fluxes per unit area in $ijk$ space: 
     902\begin{equation} \label{eq:triad:eiv_skew_ijk} 
     903\textbf{F}_\mathrm{eiv}^T = \begin{pmatrix} 
     904           {+ e_{2} \, A_{e} \; \tilde{r}_1  \; \partial_k T}   \\ 
     905      { - e_{2} \, A_{e} \; \tilde{r}_1  \; \partial_i  T}   \\ 
    578906                                 \end{pmatrix} 
    579907\end{equation} 
    580 The tendency associated with eddy induced velocity is then simply the divergence  
    581 of the \eqref{Eq_eiv_skew_continuous} fluxes. It naturally conserves the tracer  
    582 content, as it is expressed in flux form. It also preserve the tracer variance. 
    583  
    584 The discrete form of  \eqref{Eq_eiv_skew_continuous} using the slopes \eqref{Gf_slopes} and defining $A_e$ at $T$-point is then given by: 
    585 \begin{flalign} \label{Eq_eiv_skew}   \begin{split} 
    586 \textbf{F}_{eiv}^T   \equiv                                    
    587                         \sum_{\substack{i_p,\,k_p}} \begin{pmatrix}  
    588 +{e_{2u}}_{i+1/2-i_p}^{k}                                    \ {A_{e}}_{i+1/2-i_p}^{k}  
    589 \ \ { _{i+1/2-i_p}^k \mathbb{R}_{i_p}^{k_p} }    \ \ \delta_{k+k_p}[T_{i+1/2-i_p}]      \\ 
    590     \\ 
    591 - {e_{2u}}_i^{k+1/2-k_p}                                      \ {A_{e}}_i^{k+1/2-k_p}  
    592 \ \ { _i^{k+1/2-k_p} \mathbb{R}_{i_p}^{k_p} }    \ \delta_{i+i_p}[T^{k+1/2-k_p}]    \\    
    593                                                                        \end{pmatrix}    
    594 \end{split}   \end{flalign} 
    595 Note that \eqref{Eq_eiv_skew} is valid in $z$-coordinate with or without partial cells. In $z^*$ or $s$-coordinate, the the slope between the level and the geopotential surfaces must be added to $\mathbb{R}$ for the discret form to be exact.  
    596  
    597 Such a choice of discretisation is consistent with the iso-neutral operator as it uses the same definition for the slopes. It also ensures the conservation of the tracer variance (see Appendix \ref{Apdx_eiv_skew}), $i.e.$ it does not include a diffusive component but is a `pure' advection term. 
    598  
    599  
    600  
     908The total fluxes per unit physical area are then 
     909\begin{equation}\label{eq:triad:eiv_skew_physical} 
     910\begin{split} 
     911 f^*_1 & = \frac{1}{e_{3}}\; A_{e} \; \tilde{r}_1 \partial_k T   \\ 
     912 f^*_2 & = \frac{1}{e_{3}}\; A_{e} \; \tilde{r}_2 \partial_k T   \\ 
     913 f^*_3 & =  -\frac{1}{e_{1}e_{2}}\; A_{e} \left\{ e_{2} \tilde{r}_1 \partial_i T 
     914   + e_{1} \tilde{r}_2 \partial_j T \right\}. \\ 
     915\end{split} 
     916\end{equation} 
     917Note that Eq.~ \eqref{eq:triad:eiv_skew_physical} takes the same form whatever the 
     918vertical coordinate, though of course the slopes 
     919$\tilde{r}_i$ are relative to geopotentials. 
     920The tendency associated with eddy induced velocity is then simply the convergence 
     921of the fluxes (\ref{eq:triad:eiv_skew_ijk}, \ref{eq:triad:eiv_skew_physical}), so 
     922\begin{equation} \label{eq:triad:skew_eiv_conv} 
     923\frac{\partial T}{\partial t}= -\frac{1}{e_1 \, e_2 \, e_3 }      \left[ 
     924  \frac{\partial}{\partial i} \left( e_2  A_{e} \; \tilde{r}_1 \partial_k T\right) 
     925  + \frac{\partial}{\partial j} \left( e_1  A_{e} \; 
     926    \tilde{r}_2 \partial_k T\right) 
     927 -  \frac{\partial}{\partial k} A_{e} \left( e_{2} \tilde{r}_1 \partial_i T 
     928   + e_{1} \tilde{r}_2 \partial_j T \right)  \right] 
     929\end{equation} 
     930 It naturally conserves the tracer content, as it is expressed in flux 
     931 form. Since it has the same divergence as the advective form it also 
     932 preserves the tracer variance. 
     933 
     934\subsection{The discrete skew flux formulation} 
     935The skew fluxes in (\ref{eq:triad:eiv_skew_physical}, \ref{eq:triad:eiv_skew_ijk}), like the off-diagonal terms 
     936(\ref{eq:triad:i13c}, \ref{eq:triad:i31c}) of the small angle diffusion tensor, are best 
     937expressed in terms of the triad slopes, as in Fig.~\ref{fig:triad:ISO_triad} 
     938and Eqs~(\ref{eq:triad:i13}, \ref{eq:triad:i31}); but now in terms of the triad slopes 
     939$\tilde{\mathbb{R}}$ relative to geopotentials instead of the 
     940$\mathbb{R}$ relative to coordinate surfaces. The discrete form of 
     941\eqref{eq:triad:eiv_skew_ijk} using the slopes \eqref{eq:triad:R} and 
     942defining $A_e$ at $T$-points is then given by: 
     943 
     944 
     945\begin{subequations}\label{eq:triad:allskewflux} 
     946  \begin{flalign}\label{eq:triad:vect_skew_flux} 
     947    \vect{F}_\mathrm{eiv}(T) &\equiv 
     948    \sum_{\substack{i_p,\,k_p}} 
     949    \begin{pmatrix} 
     950      {_{i+1/2-i_p}^k {\mathbb{S}_u}_{i_p}^{k_p} } (T)      \\ 
     951      \\ 
     952      {_i^{k+1/2-k_p} {\mathbb{S}_w}_{i_p}^{k_p} } (T)      \\ 
     953    \end{pmatrix}, 
     954  \end{flalign} 
     955  where the skew flux in the $i$-direction associated with a given 
     956  triad is (\ref{eq:triad:latflux-triad}, \ref{eq:triad:triadfluxu}): 
     957  \begin{align} 
     958    \label{eq:triad:skewfluxu} 
     959    _i^k {\mathbb{S}_u}_{i_p}^{k_p} (T) &= + \quarter {A_e}_i^k{ 
     960      \:}\frac{{b_u}_{i+i_p}^k}{{e_{1u}}_{\,i + i_p}^{\,k}} 
     961     \ {_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}} \ 
     962      \frac{ \delta_{k+k_p} [T^i] }{{e_{3w}}_{\,i}^{\,k+k_p} }, 
     963   \\ 
     964    \intertext{and \eqref{eq:triad:triadfluxw} in the $k$-direction, changing the sign 
     965      to be consistent with \eqref{eq:triad:eiv_skew_ijk}:} 
     966    _i^k {\mathbb{S}_w}_{i_p}^{k_p} (T) 
     967    &= -\quarter {A_e}_i^k{\: }\frac{{b_u}_{i+i_p}^k}{{e_{3w}}_{\,i}^{\,k+k_p}} 
     968     {_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}}\frac{ \delta_{i+ i_p}[T^k] }{ {e_{1u}}_{\,i + i_p}^{\,k} }.\label{eq:triad:skewfluxw} 
     969  \end{align} 
     970\end{subequations} 
     971 
     972Such a discretisation is consistent with the iso-neutral 
     973operator as it uses the same definition for the slopes.  It also 
     974ensures the following two key properties. 
     975\subsubsection{No change in tracer variance} 
     976The discretization conserves tracer variance, $i.e.$ it does not 
     977include a diffusive component but is a `pure' advection term. This can 
     978be seen either from Appendix \ref{Apdx_eiv_skew} or by considering the 
     979fluxes associated with a given triad slope 
     980$_i^k{\mathbb{R}}_{i_p}^{k_p} (T)$. For, following 
     981\S\ref{sec:triad:variance} and \eqref{eq:triad:dvar_iso_i}, the 
     982associated horizontal skew-flux $_i^k{\mathbb{S}_u}_{i_p}^{k_p} (T)$ 
     983drives a net rate of change of variance, summed over the two 
     984$T$-points $i+i_p-\half,k$ and $i+i_p+\half,k$, of 
     985\begin{equation} 
     986\label{eq:triad:dvar_eiv_i} 
     987  _i^k{\mathbb{S}_u}_{i_p}^{k_p} (T)\,\delta_{i+ i_p}[T^k], 
     988\end{equation} 
     989while the associated vertical skew-flux gives a variance change summed over the 
     990$T$-points $i,k+k_p-\half$ (above) and $i,k+k_p+\half$ (below) of 
     991\begin{equation} 
     992\label{eq:triad:dvar_eiv_k} 
     993  _i^k{\mathbb{S}_w}_{i_p}^{k_p} (T) \,\delta_{k+ k_p}[T^i]. 
     994\end{equation} 
     995Inspection of the definitions (\ref{eq:triad:skewfluxu}, \ref{eq:triad:skewfluxw}) 
     996shows that these two variance changes (\ref{eq:triad:dvar_eiv_i}, \ref{eq:triad:dvar_eiv_k}) 
     997sum to zero. Hence the two fluxes associated with each triad make no 
     998net contribution to the variance budget. 
     999 
     1000\subsubsection{Reduction in gravitational PE} 
     1001The vertical density flux associated with the vertical skew-flux 
     1002always has the same sign as the vertical density gradient; thus, so 
     1003long as the fluid is stable (the vertical density gradient is 
     1004negative) the vertical density flux is negative (downward) and hence 
     1005reduces the gravitational PE. 
     1006 
     1007For the change in gravitational PE driven by the $k$-flux is 
     1008\begin{align} 
     1009  \label{eq:triad:vert_densityPE} 
     1010  g {e_{3w}}_{\,i}^{\,k+k_p}{\mathbb{S}_w}_{i_p}^{k_p} (\rho) 
     1011  &=g {e_{3w}}_{\,i}^{\,k+k_p}\left[-\alpha _i^k {\:}_i^k 
     1012    {\mathbb{S}_w}_{i_p}^{k_p} (T) + \beta_i^k {\:}_i^k 
     1013    {\mathbb{S}_w}_{i_p}^{k_p} (S) \right]. \notag \\ 
     1014\intertext{Substituting  ${\:}_i^k {\mathbb{S}_w}_{i_p}^{k_p}$ from 
     1015  \eqref{eq:triad:skewfluxw}, gives} 
     1016% and separating out 
     1017% $\rtriadt{R}=\rtriad{R} + \delta_{i+i_p}[z_T^k]$, 
     1018% gives two terms. The 
     1019% first $\rtriad{R}$ term (the only term for $z$-coordinates) is: 
     1020 &=-\quarter g{A_e}_i^k{\: }{b_u}_{i+i_p}^k {_i^k\tilde{\mathbb{R}}_{i_p}^{k_p}} 
     1021\frac{ -\alpha _i^k\delta_{i+ i_p}[T^k]+ \beta_i^k\delta_{i+ i_p}[S^k]} { {e_{1u}}_{\,i + i_p}^{\,k} } \notag \\ 
     1022 &=+\quarter g{A_e}_i^k{\: }{b_u}_{i+i_p}^k 
     1023     \left({_i^k\mathbb{R}_{i_p}^{k_p}}+\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}\right) {_i^k\mathbb{R}_{i_p}^{k_p}} 
     1024\frac{-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]} {{e_{3w}}_{\,i}^{\,k+k_p}}, 
     1025\end{align} 
     1026using the definition of the triad slope $\rtriad{R}$, 
     1027\eqref{eq:triad:R} to express $-\alpha _i^k\delta_{i+ i_p}[T^k]+ 
     1028\beta_i^k\delta_{i+ i_p}[S^k]$ in terms of  $-\alpha_i^k \delta_{k+ 
     1029  k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]$. 
     1030 
     1031Where the coordinates slope, the $i$-flux gives a PE change 
     1032\begin{multline} 
     1033  \label{eq:triad:lat_densityPE} 
     1034 g \delta_{i+i_p}[z_T^k] 
     1035\left[ 
     1036-\alpha _i^k {\:}_i^k {\mathbb{S}_u}_{i_p}^{k_p} (T) + \beta_i^k {\:}_i^k {\mathbb{S}_u}_{i_p}^{k_p} (S) 
     1037\right] \\ 
     1038= +\quarter g{A_e}_i^k{\: }{b_u}_{i+i_p}^k 
     1039     \frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}} 
     1040\left({_i^k\mathbb{R}_{i_p}^{k_p}}+\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}\right) 
     1041\frac{-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]} {{e_{3w}}_{\,i}^{\,k+k_p}}, 
     1042\end{multline} 
     1043(using \eqref{eq:triad:skewfluxu}) and so the total PE change 
     1044\eqref{eq:triad:vert_densityPE} + \eqref{eq:triad:lat_densityPE} associated with the triad fluxes is 
     1045\begin{multline} 
     1046  \label{eq:triad:tot_densityPE} 
     1047  g{e_{3w}}_{\,i}^{\,k+k_p}{\mathbb{S}_w}_{i_p}^{k_p} (\rho) + 
     1048g\delta_{i+i_p}[z_T^k] {\:}_i^k {\mathbb{S}_u}_{i_p}^{k_p} (\rho) \\ 
     1049= +\quarter g{A_e}_i^k{\: }{b_u}_{i+i_p}^k 
     1050     \left({_i^k\mathbb{R}_{i_p}^{k_p}}+\frac{\delta_{i+i_p}[z_T^k]}{{e_{1u}}_{\,i + i_p}^{\,k}}\right)^2 
     1051\frac{-\alpha_i^k \delta_{k+ k_p}[T^i]+ \beta_i^k\delta_{k+ k_p}[S^i]} {{e_{3w}}_{\,i}^{\,k+k_p}}. 
     1052\end{multline} 
     1053Where the fluid is stable, with $-\alpha_i^k \delta_{k+ k_p}[T^i]+ 
     1054\beta_i^k\delta_{k+ k_p}[S^i]<0$, this PE change is negative. 
     1055 
     1056\subsection{Treatment of the triads at the boundaries}\label{sec:triad:skew_bdry} 
     1057Triad slopes \rtriadt{R} used for the calculation of the eddy-induced skew-fluxes 
     1058are masked at the boundaries in exactly the same way as are the triad 
     1059slopes \rtriad{R} used for the iso-neutral diffusive fluxes, as 
     1060described in \S\ref{sec:triad:iso_bdry} and 
     1061Fig.~\ref{fig:triad:bdry_triads}. Thus surface layer triads 
     1062$\triadt{i}{1}{R}{1/2}{-1/2}$ and $\triadt{i+1}{1}{R}{-1/2}{-1/2}$ are 
     1063masked, and both near bottom triad slopes $\triadt{i}{k}{R}{1/2}{1/2}$ 
     1064and $\triadt{i+1}{k}{R}{-1/2}{1/2}$ are masked when either of the 
     1065$i,k+1$ or $i+1,k+1$ tracer points is masked, i.e.\ the $i,k+1$ 
     1066$u$-point is masked. The namelist parameter \nlv{ln\_botmix\_grif} has 
     1067no effect on the eddy-induced skew-fluxes. 
     1068 
     1069\subsection{ Limiting of the slopes within the interior}\label{sec:triad:limitskew} 
     1070Presently, the iso-neutral slopes $\tilde{r}_i$ relative 
     1071to geopotentials are limited to be less than $1/100$, exactly as in 
     1072calculating the iso-neutral diffusion, \S \ref{sec:triad:limit}. Each 
     1073individual triad \rtriadt{R} is so limited. 
     1074 
     1075\subsection{Tapering within the surface mixed layer}\label{sec:triad:taperskew} 
     1076The slopes $\tilde{r}_i$ relative to 
     1077geopotentials (and thus the individual triads \rtriadt{R}) are always tapered linearly from their value immediately below the mixed layer to zero at the 
     1078surface \eqref{eq:triad:rmtilde}, as described in \S\ref{sec:triad:lintaper}. This is 
     1079option (c) of Fig.~\ref{Fig_eiv_slp}. This linear tapering for the 
     1080slopes used to calculate the eddy-induced fluxes is 
     1081unaffected by the value of \nlv{ln\_triad\_iso}. 
     1082 
     1083The justification for this linear slope tapering is that, for $A_e$ 
     1084that is constant or varies only in the horizontal (the most commonly 
     1085used options in \NEMO: see \S\ref{LDF_coef}), it is 
     1086equivalent to a horizontal eiv (eddy-induced velocity) that is uniform 
     1087within the mixed layer \eqref{eq:triad:eiv_v}. This ensures that the 
     1088eiv velocities do not restratify the mixed layer \citep{Treguier1997, 
     1089  Danabasoglu_al_2008}. Equivantly, in terms 
     1090of the skew-flux formulation we use here, the 
     1091linear slope tapering within the mixed-layer gives a linearly varying 
     1092vertical flux, and so a tracer convergence uniform in depth (the 
     1093horizontal flux convergence is relatively insignificant within the mixed-layer). 
     1094 
     1095\subsection{Streamfunction diagnostics}\label{sec:triad:sfdiag} 
     1096Where the namelist parameter \nlv{ln\_botmix\_grif=.true.}, diagnosed 
     1097mean eddy-induced velocities are output. Each time step, 
     1098streamfunctions are calculated in the $i$-$k$ and $j$-$k$ planes at 
     1099$uw$ (integer +1/2 $i$, integer $j$, integer +1/2 $k$) and $vw$ 
     1100(integer $i$, integer +1/2 $j$, integer +1/2 $k$) points (see Table 
     1101\ref{Tab_cell}) respectively. We follow \citep{Griffies_Bk04} and 
     1102calculate the streamfunction at a given $uw$-point from the 
     1103surrounding four triads according to: 
     1104\begin{equation} 
     1105  \label{eq:triad:sfdiagi} 
     1106  {\psi_{[i]}}_{i+1/2}^{k+1/2}={\quarter}\sum_{\substack{i_p,\,k_p}} 
     1107  {A_e}_{i+1/2-i_p}^{k+1/2-k_p}\:\triadd{i+1/2-i_p}{k+1/2-k_p}{R}{i_p}{k_p} 
     1108\end{equation} 
    6011109 
    6021110\newpage      %force an empty line 
     
    6081116 
    6091117 
    610 Demonstration for the conservation of the tracer variance in the (\textbf{i},\textbf{j}) plane.  
     1118Demonstration for the conservation of the tracer variance in the (\textbf{i},\textbf{j}) plane. 
    6111119 
    6121120This have to be moved in an Appendix. 
     
    6141122The continuous property to be demonstrated is : 
    6151123\begin{align*} 
    616 \int_D \nabla \cdot \textbf{F}_{eiv}(T) \; T \;dv  \equiv 0 
     1124\int_D \nabla \cdot \textbf{F}_\mathrm{eiv}(T) \; T \;dv  \equiv 0 
    6171125\end{align*} 
    618 The discrete form of its left hand side is obtained using \eqref{Eq_eiv_skew} 
     1126The discrete form of its left hand side is obtained using \eqref{eq:triad:allskewflux} 
    6191127\begin{align*} 
    6201128 \sum\limits_{i,k} \sum_{\substack{i_p,\,k_p}}  \Biggl\{   \;\; 
    621  \delta_i  &\left[                                                     
    622 {e_{2u}}_{i+i_p+1/2}^{k}                                  \;\ \ {A_{e}}_{i+i_p+1/2}^{k}  
    623 \ \ \ { _{i+i_p+1/2}^k \mathbb{R}_{-i_p}^{k_p} }   \quad \delta_{k+k_p}[T_{i+i_p+1/2}]          
     1129 \delta_i  &\left[ 
     1130{e_{2u}}_{i+i_p+1/2}^{k}                                  \;\ \ {A_{e}}_{i+i_p+1/2}^{k} 
     1131\ \ \ { _{i+i_p+1/2}^k \mathbb{R}_{-i_p}^{k_p} }   \quad \delta_{k+k_p}[T_{i+i_p+1/2}] 
    6241132   \right] \; T_i^k      \\ 
    625 - \delta_k &\left[  
    626 {e_{2u}}_i^{k+k_p+1/2}                                     \ \ {A_{e}}_i^{k+k_p+1/2}  
    627 \ \ { _i^{k+k_p+1/2} \mathbb{R}_{i_p}^{-k_p} }   \ \ \delta_{i+i_p}[T^{k+k_p+1/2}]    
    628    \right] \; T_i^k      \         \Biggr\}    
     1133- \delta_k &\left[ 
     1134{e_{2u}}_i^{k+k_p+1/2}                                     \ \ {A_{e}}_i^{k+k_p+1/2} 
     1135\ \ { _i^{k+k_p+1/2} \mathbb{R}_{i_p}^{-k_p} }   \ \ \delta_{i+i_p}[T^{k+k_p+1/2}] 
     1136   \right] \; T_i^k      \         \Biggr\} 
    6291137\end{align*} 
    6301138apply the adjoint of delta operator, it becomes 
    6311139\begin{align*} 
    6321140 \sum\limits_{i,k} \sum_{\substack{i_p,\,k_p}}  \Biggl\{   \;\; 
    633   &\left(                                                     
    634 {e_{2u}}_{i+i_p+1/2}^{k}                                  \;\ \ {A_{e}}_{i+i_p+1/2}^{k}  
    635 \ \ \ { _{i+i_p+1/2}^k \mathbb{R}_{-i_p}^{k_p} }   \quad \delta_{k+k_p}[T_{i+i_p+1/2}]          
     1141  &\left( 
     1142{e_{2u}}_{i+i_p+1/2}^{k}                                  \;\ \ {A_{e}}_{i+i_p+1/2}^{k} 
     1143\ \ \ { _{i+i_p+1/2}^k \mathbb{R}_{-i_p}^{k_p} }   \quad \delta_{k+k_p}[T_{i+i_p+1/2}] 
    6361144   \right) \; \delta_{i+1/2}[T^{k}]      \\ 
    637 - &\left(  
    638 {e_{2u}}_i^{k+k_p+1/2}                                     \ \ {A_{e}}_i^{k+k_p+1/2}  
    639 \ \ { _i^{k+k_p+1/2} \mathbb{R}_{i_p}^{-k_p} }   \ \ \delta_{i+i_p}[T^{k+k_p+1/2}]    
    640      \right) \; \delta_{k+1/2}[T_{i}]       \         \Biggr\}        
     1145- &\left( 
     1146{e_{2u}}_i^{k+k_p+1/2}                                     \ \ {A_{e}}_i^{k+k_p+1/2} 
     1147\ \ { _i^{k+k_p+1/2} \mathbb{R}_{i_p}^{-k_p} }   \ \ \delta_{i+i_p}[T^{k+k_p+1/2}] 
     1148     \right) \; \delta_{k+1/2}[T_{i}]       \         \Biggr\} 
    6411149\end{align*} 
    6421150Expending the summation on $i_p$ and $k_p$, it becomes: 
    6431151\begin{align*} 
    644  \begin{matrix}   
    645 &\sum\limits_{i,k}   \Bigl\{  
    646   &+{e_{2u}}_{i+1}^{k}                             &{A_{e}}_{i+1    }^{k}  
     1152 \begin{matrix} 
     1153&\sum\limits_{i,k}   \Bigl\{ 
     1154  &+{e_{2u}}_{i+1}^{k}                             &{A_{e}}_{i+1    }^{k} 
    6471155  &\ {_{i+1}^k \mathbb{R}_{- 1/2}^{-1/2}} &\delta_{k-1/2}[T_{i+1}]    &\delta_{i+1/2}[T^{k}]   &\\ 
    648 &&+{e_{2u}}_i^{k\ \ \ \:}                            &{A_{e}}_{i}^{k\ \ \ \:}       
     1156&&+{e_{2u}}_i^{k\ \ \ \:}                            &{A_{e}}_{i}^{k\ \ \ \:} 
    6491157  &\ {\ \ \;_i^k \mathbb{R}_{+1/2}^{-1/2}}  &\delta_{k-1/2}[T_{i\ \ \ \;}]  &\delta_{i+1/2}[T^{k}] &\\ 
    650 &&+{e_{2u}}_{i+1}^{k}                             &{A_{e}}_{i+1    }^{k}  
     1158&&+{e_{2u}}_{i+1}^{k}                             &{A_{e}}_{i+1    }^{k} 
    6511159  &\ {_{i+1}^k \mathbb{R}_{- 1/2}^{+1/2}} &\delta_{k+1/2}[T_{i+1}]     &\delta_{i+1/2}[T^{k}] &\\ 
    652 &&+{e_{2u}}_i^{k\ \ \ \:}                            &{A_{e}}_{i}^{k\ \ \ \:}        
     1160&&+{e_{2u}}_i^{k\ \ \ \:}                            &{A_{e}}_{i}^{k\ \ \ \:} 
    6531161    &\ {\ \ \;_i^k \mathbb{R}_{+1/2}^{+1/2}} &\delta_{k+1/2}[T_{i\ \ \ \;}] &\delta_{i+1/2}[T^{k}] &\\ 
    6541162% 
    655 &&-{e_{2u}}_i^{k+1}                                &{A_{e}}_i^{k+1}  
    656   &{_i^{k+1} \mathbb{R}_{-1/2}^{- 1/2}}   &\delta_{i-1/2}[T^{k+1}]      &\delta_{k+1/2}[T_{i}] &\\    
    657 &&-{e_{2u}}_i^{k\ \ \ \:}                             &{A_{e}}_i^{k\ \ \ \:}  
     1163&&-{e_{2u}}_i^{k+1}                                &{A_{e}}_i^{k+1} 
     1164  &{_i^{k+1} \mathbb{R}_{-1/2}^{- 1/2}}   &\delta_{i-1/2}[T^{k+1}]      &\delta_{k+1/2}[T_{i}] &\\ 
     1165&&-{e_{2u}}_i^{k\ \ \ \:}                             &{A_{e}}_i^{k\ \ \ \:} 
    6581166  &{\ \ \;_i^k  \mathbb{R}_{-1/2}^{+1/2}}   &\delta_{i-1/2}[T^{k\ \ \ \:}]  &\delta_{k+1/2}[T_{i}] &\\ 
    659 &&-{e_{2u}}_i^{k+1    }                             &{A_{e}}_i^{k+1}  
    660   &{_i^{k+1} \mathbb{R}_{+1/2}^{- 1/2}}   &\delta_{i+1/2}[T^{k+1}]      &\delta_{k+1/2}[T_{i}] &\\    
    661 &&-{e_{2u}}_i^{k\ \ \ \:}                             &{A_{e}}_i^{k\ \ \ \:}  
    662   &{\ \ \;_i^k  \mathbb{R}_{+1/2}^{+1/2}}   &\delta_{i+1/2}[T^{k\ \ \ \:}]  &\delta_{k+1/2}[T_{i}]  
     1167&&-{e_{2u}}_i^{k+1    }                             &{A_{e}}_i^{k+1} 
     1168  &{_i^{k+1} \mathbb{R}_{+1/2}^{- 1/2}}   &\delta_{i+1/2}[T^{k+1}]      &\delta_{k+1/2}[T_{i}] &\\ 
     1169&&-{e_{2u}}_i^{k\ \ \ \:}                             &{A_{e}}_i^{k\ \ \ \:} 
     1170  &{\ \ \;_i^k  \mathbb{R}_{+1/2}^{+1/2}}   &\delta_{i+1/2}[T^{k\ \ \ \:}]  &\delta_{k+1/2}[T_{i}] 
    6631171&\Bigr\}  \\ 
    664 \end{matrix}    
     1172\end{matrix} 
    6651173\end{align*} 
    666 The two terms associated with the triad ${_i^k \mathbb{R}_{+1/2}^{+1/2}}$ are the  
    667 same but of opposite signs, they cancel out.  
    668 Exactly the same thing occurs for the triad ${_i^k \mathbb{R}_{-1/2}^{-1/2}}$.  
    669 The two terms associated with the triad ${_i^k \mathbb{R}_{+1/2}^{-1/2}}$ are the  
    670 same but both of opposite signs and shifted by 1 in $k$ direction. When summing over $k$  
    671 they cancel out with the neighbouring grid points.  
    672 Exactly the same thing occurs for the triad ${_i^k \mathbb{R}_{-1/2}^{+1/2}}$ in the  
    673 $i$ direction. Therefore the sum over the domain is zero, $i.e.$ the variance of the  
     1174The two terms associated with the triad ${_i^k \mathbb{R}_{+1/2}^{+1/2}}$ are the 
     1175same but of opposite signs, they cancel out. 
     1176Exactly the same thing occurs for the triad ${_i^k \mathbb{R}_{-1/2}^{-1/2}}$. 
     1177The two terms associated with the triad ${_i^k \mathbb{R}_{+1/2}^{-1/2}}$ are the 
     1178same but both of opposite signs and shifted by 1 in $k$ direction. When summing over $k$ 
     1179they cancel out with the neighbouring grid points. 
     1180Exactly the same thing occurs for the triad ${_i^k \mathbb{R}_{-1/2}^{+1/2}}$ in the 
     1181$i$ direction. Therefore the sum over the domain is zero, $i.e.$ the variance of the 
    6741182tracer is preserved by the discretisation of the skew fluxes. 
    6751183 
    676 %%% Local Variables:  
    677 %%% TeX-master: "../../NEMO_book.tex" 
    678 %%% End:  
     1184%%% Local Variables: 
     1185%%% TeX-master: "../../NEMO_book-luatex.tex" 
     1186%%% End: 
Note: See TracChangeset for help on using the changeset viewer.