New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6225 for branches/2014/dev_r4704_NOC5_MPP_BDY_UPDATE/DOC/TexFiles/Chapters/Chap_SBC.tex – NEMO

Ignore:
Timestamp:
2016-01-08T10:35:19+01:00 (8 years ago)
Author:
jamesharle
Message:

Update MPP_BDY_UPDATE branch to be consistent with head of trunk

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2014/dev_r4704_NOC5_MPP_BDY_UPDATE/DOC/TexFiles/Chapters/Chap_SBC.tex

    r4661 r6225  
    11% ================================================================ 
    2 % Chapter � Surface Boundary Condition (SBC, ICB)  
    3 % ================================================================ 
    4 \chapter{Surface Boundary Condition (SBC, ICB) } 
     2% Chapter � Surface Boundary Condition (SBC, ISF, ICB)  
     3% ================================================================ 
     4\chapter{Surface Boundary Condition (SBC, ISF, ICB) } 
    55\label{SBC} 
    66\minitoc 
     
    4848below ice-covered areas (using observed ice-cover or a sea-ice model)  
    4949(\np{nn\_ice}~=~0,1, 2 or 3); the addition of river runoffs as surface freshwater  
    50 fluxes or lateral inflow (\np{ln\_rnf}~=~true); the addition of a freshwater flux adjustment  
    51 in order to avoid a mean sea-level drift (\np{nn\_fwb}~=~0,~1~or~2); the  
     50fluxes or lateral inflow (\np{ln\_rnf}~=~true); the addition of isf melting as lateral inflow (parameterisation)  
     51 or as surface flux at the land-ice ocean interface (\np{ln\_isf}=~true);  
     52the addition of a freshwater flux adjustment in order to avoid a mean sea-level drift (\np{nn\_fwb}~=~0,~1~or~2); the  
    5253transformation of the solar radiation (if provided as daily mean) into a diurnal  
    5354cycle (\np{ln\_dm2dc}~=~true); and a neutral drag coefficient can be read from an external wave  
     
    6061Finally, the different options that further modify the fluxes applied to the ocean are discussed. 
    6162One of these is modification by icebergs (see \S\ref{ICB_icebergs}), which act as drifting sources of fresh water. 
     63Another example of modification is that due to the ice shelf melting/freezing (see \S\ref{SBC_isf}),  
     64which provides additional sources of fresh water. 
    6265 
    6366 
     
    686689air temperature, sea-surface temperature, cloud cover and relative humidity. 
    687690Sensible heat and latent heat fluxes are computed by classical 
    688 bulk formulae parameterized according to \citet{Kondo1975}. 
     691bulk formulae parameterised according to \citet{Kondo1975}. 
    689692Details on the bulk formulae used can be found in \citet{Maggiore_al_PCE98} and \citet{Castellari_al_JMS1998}. 
    690693 
     
    826829\Pi-g\delta = (1+k-h) \Pi_{A}(\lambda,\phi) 
    827830\end{equation} 
    828 with $k$ a number of Love estimated to 0.6 which parametrized the astronomical tidal land, 
    829 and $h$ a number of Love to 0.3 which parametrized the parametrization due to the astronomical tidal land. 
     831with $k$ a number of Love estimated to 0.6 which parameterised the astronomical tidal land, 
     832and $h$ a number of Love to 0.3 which parameterised the parameterisation due to the astronomical tidal land. 
    830833 
    831834% ================================================================ 
     
    945948 
    946949%} 
    947  
    948  
     950% ================================================================ 
     951%        Ice shelf melting 
     952% ================================================================ 
     953\section   [Ice shelf melting (\textit{sbcisf})] 
     954                        {Ice shelf melting (\mdl{sbcisf})} 
     955\label{SBC_isf} 
     956%------------------------------------------namsbc_isf---------------------------------------------------- 
     957\namdisplay{namsbc_isf} 
     958%-------------------------------------------------------------------------------------------------------- 
     959Namelist variable in \ngn{namsbc}, \np{nn\_isf}, control the kind of ice shelf representation used.  
     960\begin{description} 
     961\item[\np{nn\_isf}~=~1] 
     962The ice shelf cavity is represented. The fwf and heat flux are computed. 2 bulk formulations are available: the ISOMIP one (\np{nn\_isfblk = 1}) described in (\np{nn\_isfblk = 2}), the 3 equation formulation described in \citet{Jenkins1991}. In addition to this,  
     9633 different way to compute the exchange coefficient are available. $\gamma\_{T/S}$ is constant (\np{nn\_gammablk = 0}), $\gamma\_{T/S}$ is velocity dependant \citep{Jenkins2010} (\np{nn\_gammablk = 1}) and $\gamma\_{T/S}$ is velocity dependant and stratification dependent \citep{Holland1999} (\np{nn\_gammablk = 2}). For each of them, the thermal/salt exchange coefficient (\np{rn\_gammat0} and \np{rn\_gammas0}) have to be specified (the default values are for the ISOMIP case).  
     964Full description, sensitivity and validation in preparation.  
     965 
     966\item[\np{nn\_isf}~=~2] 
     967A parameterisation of isf is used. The ice shelf cavity is not represented.  
     968The fwf is distributed along the ice shelf edge between the depth of the average grounding line (GL) 
     969(\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front (\np{sn\_depmin\_isf}) as in (\np{nn\_isf}~=~3).  
     970Furthermore the fwf is computed using the \citet{Beckmann2003} parameterisation of isf melting.  
     971The effective melting length (\np{sn\_Leff\_isf}) is read from a file and the exchange coefficients are set as (\np{rn\_gammat0}) and (\np{rn\_gammas0}). 
     972 
     973\item[\np{nn\_isf}~=~3] 
     974A simple parameterisation of isf is used. The ice shelf cavity is not represented.  
     975The fwf (\np{sn\_rnfisf}) is distributed along the ice shelf edge between the depth of the average grounding line (GL) 
     976(\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front (\np{sn\_depmin\_isf}). 
     977Full description, sensitivity and validation in preparation. 
     978 
     979\item[\np{nn\_isf}~=~4] 
     980The ice shelf cavity is represented. However, the fwf (\np{sn\_fwfisf}) and heat flux (\np{sn\_qisf}) are  
     981not computed but specified from file.  
     982\end{description} 
     983 
     984\np{nn\_isf}~=~1 and \np{nn\_isf}~=~2 compute a melt rate based on the water masse properties, ocean velocities and depth. 
     985 This flux is thus highly dependent of the model resolution (horizontal and vertical), realism of the water masse onto the shelf ... 
     986 
     987\np{nn\_isf}~=~3 and \np{nn\_isf}~=~4 read the melt rate and heat flux from a file. You have total control of the fwf scenario. 
     988 
     989This can be usefull if the water masses on the shelf are not realistic or the resolution (horizontal/vertical) are too  
     990coarse to have realistic melting or for sensitivity studies where you want to control your input.  
     991Full description, sensitivity and validation in preparation.  
     992 
     993\np{rn\_hisf\_tbl} is the top boundary layer (tbl) thickness used by the Losch parametrisation \citep{Losch2008} to compute the melt. if 0, temperature/salt/velocity in the top cell is used to compute the melt. 
     994Otherwise, NEMO used the mean value into the tbl.  
     995 
     996\section{ Ice sheet coupling} 
     997\label{SBC_iscpl} 
     998%------------------------------------------namsbc_iscpl---------------------------------------------------- 
     999\namdisplay{namsbc_iscpl} 
     1000%-------------------------------------------------------------------------------------------------------- 
     1001Ice sheet/ocean coupling is done through file exchange at the restart step. NEMO, at each restart step,  
     1002read the bathymetry and ice shelf draft variable in a netcdf file.  
     1003If \np{ln\_iscpl = ~true}, the isf draft is assume to be different at each restart step  
     1004with potentially some new wet/dry cells due to the ice sheet dynamics/thermodynamics. 
     1005The wetting and drying scheme applied on the restart is very simple and described below for the 6 different cases: 
     1006\begin{description} 
     1007\item[Thin a cell down:] 
     1008   T/S/ssh are unchanged and U/V in the top cell are corrected to keep the barotropic transport (bt) constant ($bt_b=bt_n$). 
     1009\item[Enlarge  a cell:] 
     1010   See case "Thin a cell down" 
     1011\item[Dry a cell:] 
     1012   mask, T/S, U/V and ssh are set to 0. Furthermore, U/V into the water column are modified to satisfy ($bt_b=bt_n$). 
     1013\item[Wet a cell:]  
     1014   mask is set to 1, T/S is extrapolated from neighbours, $ssh_n = ssh_b$ and U/V set to 0. If no neighbours along i,j and k, T/S/U/V and mask are set to 0. 
     1015\item[Dry a column:] 
     1016   mask, T/S, U/V are set to 0 everywhere in the column and ssh set to 0. 
     1017\item[Wet a column:] 
     1018   set mask to 1, T/S is extrapolated from neighbours, ssh is extrapolated from neighbours and U/V set to 0. If no neighbour, T/S/U/V and mask set to 0. 
     1019\end{description} 
     1020The extrapolation is call \np{nn\_drown} times. It means that if the grounding line retreat by more than \np{nn\_drown} cells between 2 coupling steps, 
     1021 the code will be unable to fill all the new wet cells properly. The default number is set up for the MISOMIP idealised experiments.\\ 
     1022This coupling procedure is able to take into account grounding line and calving front migration. However, it is a non-conservative processe.  
     1023This could lead to a trend in heat/salt content and volume. In order to remove the trend and keep the conservation level as close to 0 as possible, 
     1024 a simple conservation scheme is available with \np{ln\_hsb = ~true}. The heat/salt/vol. gain/loss is diagnose, as well as the location.  
     1025Based on what is done on sbcrnf to prescribed a source of heat/salt/vol., the heat/salt/vol. gain/loss is removed/added, 
     1026 over a period of \np{rn\_fiscpl} time step, into the system.  
     1027So after \np{rn\_fiscpl} time step, all the heat/salt/vol. gain/loss due to extrapolation process is canceled.\\ 
     1028 
     1029As the before and now fields are not compatible (modification of the geometry), the restart time step is prescribed to be an euler time step instead of a leap frog and $fields_b = fields_n$. 
     1030% 
    9491031% ================================================================ 
    9501032%        Handling of icebergs 
Note: See TracChangeset for help on using the changeset viewer.