New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6275 for branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Annex_C.tex – NEMO

Ignore:
Timestamp:
2016-02-01T03:35:04+01:00 (8 years ago)
Author:
gm
Message:

#1629: DOC of v3.6_stable. Upadate, see associated wiki page for description

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2015/nemo_v3_6_STABLE/DOC/TexFiles/Chapters/Annex_C.tex

    r3294 r6275  
    410410\end{aligned}   } \right. 
    411411\end{equation}  
    412 where the indices $i_p$ and $k_p$ take the following value:  
     412where the indices $i_p$ and $j_p$ take the following value:  
    413413$i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$, 
    414414and the vorticity triads, ${^i_j}\mathbb{Q}^{i_p}_{j_p}$, defined at $T$-point, are given by:  
     
    11031103The discrete formulation of the horizontal diffusion of momentum ensures the  
    11041104conservation of potential vorticity and the horizontal divergence, and the  
    1105 dissipation of the square of these quantities (i.e. enstrophy and the  
     1105dissipation of the square of these quantities ($i.e.$ enstrophy and the  
    11061106variance of the horizontal divergence) as well as the dissipation of the  
    11071107horizontal kinetic energy. In particular, when the eddy coefficients are  
     
    11271127&\int \limits_D \frac{1} {e_3 } \textbf{k} \cdot \nabla \times  
    11281128   \Bigl[    \nabla_h  \left( A^{\,lm}\;\chi  \right) 
    1129              - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)    \Bigr]\;dv  = 0 
    1130 \end{flalign*} 
     1129           - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)    \Bigr]\;dv   \\  
     1130%\end{flalign*} 
    11311131%%%%%%%%%%  recheck here....  (gm) 
    1132 \begin{flalign*} 
    1133 = \int \limits_D  -\frac{1} {e_3 } \textbf{k} \cdot \nabla \times  
    1134    \Bigl[ \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)  \Bigr]\;dv &&& \\  
    1135 \end{flalign*} 
    1136 \begin{flalign*} 
     1132%\begin{flalign*} 
     1133=& \int \limits_D  -\frac{1} {e_3 } \textbf{k} \cdot \nabla \times  
     1134   \Bigl[ \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)  \Bigr]\;dv \\  
     1135%\end{flalign*} 
     1136%\begin{flalign*} 
    11371137\equiv& \sum\limits_{i,j} 
    11381138   \left\{ 
    1139    \delta_{i+1/2}  
    1140    \left[  
    1141    \frac {e_{2v}} {e_{1v}\,e_{3v}}  \delta_i 
    1142       \left[ A_f^{\,lm} e_{3f} \zeta  \right] 
    1143     \right] 
    1144    + \delta_{j+1/2}  
    1145    \left[  
    1146    \frac {e_{1u}} {e_{2u}\,e_{3u}} \delta_j  
    1147       \left[ A_f^{\,lm} e_{3f} \zeta  \right] 
    1148    \right] 
    1149    \right\}  
    1150    && \\  
     1139     \delta_{i+1/2} \left[  \frac {e_{2v}} {e_{1v}\,e_{3v}}  \delta_i \left[ A_f^{\,lm} e_{3f} \zeta  \right]  \right] 
     1140   + \delta_{j+1/2} \left[  \frac {e_{1u}} {e_{2u}\,e_{3u}}  \delta_j \left[ A_f^{\,lm} e_{3f} \zeta  \right]  \right] 
     1141   \right\}     \\  
    11511142% 
    11521143\intertext{Using \eqref{DOM_di_adj}, it follows:} 
     
    11541145\equiv& \sum\limits_{i,j,k}  
    11551146   -\,\left\{ 
    1156       \frac{e_{2v}} {e_{1v}\,e_{3v}}  \delta_i 
    1157       \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_i \left[ 1\right] 
    1158    + \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j  
    1159       \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_j \left[ 1\right] 
     1147      \frac{e_{2v}} {e_{1v}\,e_{3v}}  \delta_i  \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_i \left[ 1\right] 
     1148    + \frac{e_{1u}} {e_{2u}\,e_{3u}}  \delta_j  \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_j \left[ 1\right] 
    11601149   \right\} \quad \equiv 0  
    1161    && \\  
     1150    \\  
    11621151\end{flalign*} 
    11631152 
     
    11671156\subsection{Dissipation of Horizontal Kinetic Energy} 
    11681157\label{Apdx_C.3.2} 
    1169  
    11701158 
    11711159The lateral momentum diffusion term dissipates the horizontal kinetic energy: 
     
    12211209\label{Apdx_C.3.3} 
    12221210 
    1223  
    12241211The lateral momentum diffusion term dissipates the enstrophy when the eddy  
    12251212coefficients are horizontally uniform: 
     
    12281215   \left[   \nabla_h \left( A^{\,lm}\;\chi  \right) 
    12291216          - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)   \right]\;dv &&&\\ 
    1230 &= A^{\,lm} \int \limits_D \zeta \textbf{k} \cdot \nabla \times  
     1217&\quad = A^{\,lm} \int \limits_D \zeta \textbf{k} \cdot \nabla \times  
    12311218   \left[    \nabla_h \times \left( \zeta \; \textbf{k} \right)   \right]\;dv &&&\\ 
    1232 &\equiv A^{\,lm} \sum\limits_{i,j,k}  \zeta \;e_{3f}  
     1219&\quad \equiv A^{\,lm} \sum\limits_{i,j,k}  \zeta \;e_{3f}  
    12331220   \left\{     \delta_{i+1/2} \left[  \frac{e_{2v}} {e_{1v}\,e_{3v}} \delta_i \left[ e_{3f} \zeta  \right]   \right] 
    12341221             + \delta_{j+1/2} \left[  \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j \left[ e_{3f} \zeta  \right]   \right]      \right\}   &&&\\  
     
    12361223\intertext{Using \eqref{DOM_di_adj}, it follows:} 
    12371224% 
    1238 &\equiv  - A^{\,lm} \sum\limits_{i,j,k}  
     1225&\quad \equiv  - A^{\,lm} \sum\limits_{i,j,k}  
    12391226   \left\{    \left(  \frac{1} {e_{1v}\,e_{3v}}  \delta_i \left[ e_{3f} \zeta  \right]  \right)^2   b_v 
    1240             + \left(  \frac{1} {e_{2u}\,e_{3u}}  \delta_j \left[ e_{3f} \zeta  \right] \right)^2   b_u  \right\}      &&&\\ 
    1241 & \leq \;0       &&&\\  
     1227            + \left(  \frac{1} {e_{2u}\,e_{3u}}  \delta_j \left[ e_{3f} \zeta  \right] \right)^2   b_u  \right\}  \quad \leq \;0    &&&\\ 
    12421228\end{flalign*} 
    12431229 
     
    12501236When the horizontal divergence of the horizontal diffusion of momentum  
    12511237(discrete sense) is taken, the term associated with the vertical curl of the  
    1252 vorticity is zero locally, due to (!!! II.1.8  !!!!!). The resulting term conserves the  
    1253 $\chi$ and dissipates $\chi^2$ when the eddy coefficients are  
    1254 horizontally uniform. 
     1238vorticity is zero locally, due to \eqref{Eq_DOM_div_curl}.  
     1239The resulting term conserves the $\chi$ and dissipates $\chi^2$  
     1240when the eddy coefficients are horizontally uniform. 
    12551241\begin{flalign*} 
    12561242& \int\limits_D  \nabla_h \cdot  
    12571243   \Bigl[     \nabla_h \left( A^{\,lm}\;\chi \right) 
    12581244             - \nabla_h \times \left( A^{\,lm}\;\zeta \;\textbf{k} \right)    \Bigr]  dv 
    1259 = \int\limits_D  \nabla_h \cdot \nabla_h \left( A^{\,lm}\;\chi  \right)   dv   &&&\\ 
     1245= \int\limits_D  \nabla_h \cdot \nabla_h \left( A^{\,lm}\;\chi  \right)   dv   \\ 
    12601246% 
    12611247&\equiv \sum\limits_{i,j,k}  
    12621248   \left\{   \delta_i \left[ A_u^{\,lm} \frac{e_{2u}\,e_{3u}} {e_{1u}}  \delta_{i+1/2} \left[ \chi \right]  \right] 
    1263            + \delta_j \left[ A_v^{\,lm} \frac{e_{1v}\,e_{3v}} {e_{2v}}  \delta_{j+1/2} \left[ \chi \right]  \right]    \right\}    &&&\\  
     1249           + \delta_j \left[ A_v^{\,lm} \frac{e_{1v}\,e_{3v}} {e_{2v}}  \delta_{j+1/2} \left[ \chi \right]  \right]    \right\}    \\  
    12641250% 
    12651251\intertext{Using \eqref{DOM_di_adj}, it follows:} 
     
    12671253&\equiv \sum\limits_{i,j,k}  
    12681254   - \left\{   \frac{e_{2u}\,e_{3u}} {e_{1u}}  A_u^{\,lm} \delta_{i+1/2} \left[ \chi \right] \delta_{i+1/2} \left[ 1 \right]  
    1269              + \frac{e_{1v}\,e_{3v}}  {e_{2v}}  A_v^{\,lm} \delta_{j+1/2} \left[ \chi \right] \delta_{j+1/2} \left[ 1 \right]    \right\}  
    1270    \qquad \equiv 0     &&& \\  
     1255             + \frac{e_{1v}\,e_{3v}} {e_{2v}}  A_v^{\,lm} \delta_{j+1/2} \left[ \chi \right] \delta_{j+1/2} \left[ 1 \right]    \right\}  
     1256   \quad \equiv 0      \\  
    12711257\end{flalign*} 
    12721258 
     
    12811267   \left[    \nabla_h              \left( A^{\,lm}\;\chi                    \right) 
    12821268           - \nabla_h   \times  \left( A^{\,lm}\;\zeta \;\textbf{k} \right)    \right]\;  dv 
    1283  = A^{\,lm}   \int\limits_D \chi \;\nabla_h \cdot \nabla_h \left( \chi \right)\;  dv    &&&\\  
     1269 = A^{\,lm}   \int\limits_D \chi \;\nabla_h \cdot \nabla_h \left( \chi \right)\;  dv    \\  
    12841270% 
    12851271&\equiv A^{\,lm}  \sum\limits_{i,j,k}  \frac{1} {e_{1t}\,e_{2t}\,e_{3t}}  \chi  
     
    12871273      \delta_i  \left[   \frac{e_{2u}\,e_{3u}} {e_{1u}}  \delta_{i+1/2} \left[ \chi \right]   \right] 
    12881274   + \delta_j  \left[   \frac{e_{1v}\,e_{3v}} {e_{2v}}   \delta_{j+1/2} \left[ \chi \right]   \right] 
    1289    \right\} \;   e_{1t}\,e_{2t}\,e_{3t}    &&&\\  
     1275   \right\} \;   e_{1t}\,e_{2t}\,e_{3t}    \\  
    12901276% 
    12911277\intertext{Using \eqref{DOM_di_adj}, it turns out to be:} 
     
    12931279&\equiv - A^{\,lm} \sum\limits_{i,j,k} 
    12941280   \left\{    \left(  \frac{1} {e_{1u}}  \delta_{i+1/2}  \left[ \chi \right]  \right)^2  b_u 
    1295                  + \left(  \frac{1} {e_{2v}}  \delta_{j+1/2}  \left[ \chi \right]  \right)^2  b_v    \right\} \;    &&&\\ 
    1296 % 
    1297 &\leq 0              &&&\\ 
     1281            + \left(  \frac{1} {e_{2v}}  \delta_{j+1/2}  \left[ \chi \right]  \right)^2  b_v    \right\}     
     1282\quad \leq 0             \\ 
    12981283\end{flalign*} 
    12991284 
     
    13031288\section{Conservation Properties on Vertical Momentum Physics} 
    13041289\label{Apdx_C_4} 
    1305  
    13061290 
    13071291As for the lateral momentum physics, the continuous form of the vertical diffusion  
     
    13191303   \left(   \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}   \right)\; dv    \quad &\leq 0     \\ 
    13201304\end{align*} 
     1305 
    13211306The first property is obvious. The second results from: 
    1322  
    13231307\begin{flalign*} 
    13241308\int\limits_D  
     
    13591343   e_{1f}\,e_{2f}\,e_{3f} \; \equiv 0   && \\ 
    13601344\end{flalign*} 
     1345 
    13611346If the vertical diffusion coefficient is uniform over the whole domain, the  
    13621347enstrophy is dissipated, $i.e.$ 
     
    13661351      \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}   \right)   \right)\; dv = 0   &&&\\ 
    13671352\end{flalign*} 
     1353 
    13681354This property is only satisfied in $z$-coordinates: 
    1369  
    13701355\begin{flalign*} 
    13711356\int\limits_D \zeta \, \textbf{k} \cdot \nabla \times  
     
    14771462 
    14781463The numerical schemes used for tracer subgridscale physics are written such  
    1479 that the heat and salt contents are conserved (equations in flux form, second  
    1480 order centered finite differences). Since a flux form is used to compute the  
    1481 temperature and salinity, the quadratic form of these quantities (i.e. their variance)  
    1482 globally tends to diminish. As for the advection term, there is generally no strict  
    1483 conservation of mass, even if in practice the mass is conserved to a very high  
    1484 accuracy.  
     1464that the heat and salt contents are conserved (equations in flux form).  
     1465Since a flux form is used to compute the temperature and salinity,  
     1466the quadratic form of these quantities ($i.e.$ their variance) globally tends to diminish.  
     1467As for the advection term, there is conservation of mass only if the Equation Of Seawater is linear.  
    14851468 
    14861469% ------------------------------------------------------------------------------------------------------------- 
Note: See TracChangeset for help on using the changeset viewer.