New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6289 for trunk/DOC/TexFiles/Chapters/Chap_Model_Basics.tex – NEMO

Ignore:
Timestamp:
2016-02-05T00:47:05+01:00 (8 years ago)
Author:
gm
Message:

#1673 DOC of the trunk - Update, see associated wiki page for description

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/DOC/TexFiles/Chapters/Chap_Model_Basics.tex

    r6140 r6289  
    257257 
    258258%\newpage 
    259 %$\ $\newline    % force a new ligne 
     259%$\ $\newline    % force a new line 
    260260 
    261261% ================================================================ 
     
    988988\label{PE_zco_tilde} 
    989989 
    990 The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM10s}. 
     990The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM11}. 
    991991It is available in \NEMO since the version 3.4. Nevertheless, it is currently not robust enough  
    992992to be used in all possible configurations. Its use is therefore not recommended. 
    993 We  
     993 
    994994 
    995995\newpage  
     
    11131113 
    11141114All these parameterisations of subgrid scale physics have advantages and  
    1115 drawbacks. There are not all available in \NEMO. In the $z$-coordinate  
    1116 formulation, five options are offered for active tracers (temperature and  
    1117 salinity): second order geopotential operator, second order isoneutral  
    1118 operator, \citet{Gent1990} parameterisation, fourth order  
    1119 geopotential operator, and various slightly diffusive advection schemes.  
    1120 The same options are available for momentum, except  
    1121 \citet{Gent1990} parameterisation which only involves tracers. In the 
    1122 $s$-coordinate formulation, additional options are offered for tracers: second  
    1123 order operator acting along $s-$surfaces, and for momentum: fourth order  
    1124 operator acting along $s-$surfaces (see \S\ref{LDF}). 
    1125  
    1126 \subsubsection{Lateral second order tracer diffusive operator} 
    1127  
    1128 The lateral second order tracer diffusive operator is defined by (see Appendix~\ref{Apdx_B}): 
     1115drawbacks. There are not all available in \NEMO. For active tracers (temperature and  
     1116salinity) the main ones are: Laplacian and bilaplacian operators acting along  
     1117geopotential or iso-neutral surfaces, \citet{Gent1990} parameterisation,  
     1118and various slightly diffusive advection schemes.  
     1119For momentum, the main ones are: Laplacian and bilaplacian operators acting along  
     1120geopotential surfaces, and UBS advection schemes when flux form is chosen for the momentum advection. 
     1121 
     1122\subsubsection{Lateral Laplacian tracer diffusive operator} 
     1123 
     1124The lateral Laplacian tracer diffusive operator is defined by (see Appendix~\ref{Apdx_B}): 
    11291125\begin{equation} \label{Eq_PE_iso_tensor} 
    11301126D^{lT}=\nabla {\rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad  
     
    11581154but have similar expressions in $z$- and $s$-coordinates. In $z$-coordinates: 
    11591155\begin{equation} \label{Eq_PE_iso_slopes} 
    1160 r_1 =\frac{e_3 }{e_1 }  \left( {\frac{\partial \rho }{\partial i}} \right) 
    1161                   \left( {\frac{\partial \rho }{\partial k}} \right)^{-1} \ , \quad 
    1162 r_1 =\frac{e_3 }{e_1 }  \left( {\frac{\partial \rho }{\partial i}} \right) 
    1163                   \left( {\frac{\partial \rho }{\partial k}} \right)^{-1}, 
    1164 \end{equation} 
    1165 while in $s$-coordinates $\partial/\partial k$ is replaced by 
    1166 $\partial/\partial s$. 
     1156r_1 =\frac{e_3 }{e_1 }  \left( \pd[\rho]{i} \right) \left( \pd[\rho]{k} \right)^{-1} \, \quad 
     1157r_2 =\frac{e_3 }{e_2 }  \left( \pd[\rho]{j} \right) \left( \pd[\rho]{k} \right)^{-1} \, 
     1158\end{equation} 
     1159while in $s$-coordinates $\pd[]{k}$ is replaced by $\pd[]{s}$. 
    11671160 
    11681161\subsubsection{Eddy induced velocity} 
     
    11811174 w^\ast &=  -\frac{1}{e_1 e_2 }\left[  
    11821175                      \frac{\partial }{\partial i}\left( {A^{eiv}\;e_2\,\tilde{r}_1 } \right) 
    1183                     +\frac{\partial }{\partial j}\left( {A^{eiv}\;e_1\,\tilde{r}_2 } \right)      \right] 
     1176                     +\frac{\partial }{\partial j}\left( {A^{eiv}\;e_1\,\tilde{r}_2 } \right)      \right] 
    11841177   \end{split} 
    11851178\end{equation} 
     
    11901183\begin{align} \label{Eq_PE_slopes_eiv} 
    11911184\tilde{r}_n = \begin{cases} 
    1192    r_n                  &      \text{in $z$-coordinate}    \\ 
     1185   r_n            &      \text{in $z$-coordinate}    \\ 
    11931186   r_n + \sigma_n &      \text{in \textit{z*} and $s$-coordinates}   
    1194                    \end{cases} 
     1187              \end{cases} 
    11951188\quad \text{where } n=1,2 
    11961189\end{align} 
     
    12001193to zero in the vicinity of the boundaries. The latter strategy is used in \NEMO (cf. Chap.~\ref{LDF}). 
    12011194 
    1202 \subsubsection{Lateral fourth order tracer diffusive operator} 
    1203  
    1204 The lateral fourth order tracer diffusive operator is defined by: 
     1195\subsubsection{Lateral bilaplacian tracer diffusive operator} 
     1196 
     1197The lateral bilaplacian tracer diffusive operator is defined by: 
    12051198\begin{equation} \label{Eq_PE_bilapT} 
    1206 D^{lT}=\Delta \left( \;\Delta T \right)  
     1199D^{lT}= - \Delta \left( \;\Delta T \right)  
    12071200\qquad \text{where} \;\; \Delta \bullet = \nabla \left( {\sqrt{B^{lT}\,}\;\Re \;\nabla \bullet} \right) 
    12081201 \end{equation} 
    1209 It is the second order operator given by \eqref{Eq_PE_iso_tensor} applied twice with  
     1202It is the Laplacian operator given by \eqref{Eq_PE_iso_tensor} applied twice with  
    12101203the harmonic eddy diffusion coefficient set to the square root of the biharmonic one.  
    12111204 
    12121205 
    1213 \subsubsection{Lateral second order momentum diffusive operator} 
    1214  
    1215 The second order momentum diffusive operator along $z$- or $s$-surfaces is found by  
     1206\subsubsection{Lateral Laplacian momentum diffusive operator} 
     1207 
     1208The Laplacian momentum diffusive operator along $z$- or $s$-surfaces is found by  
    12161209applying \eqref{Eq_PE_lap_vector} to the horizontal velocity vector (see Appendix~\ref{Apdx_B}): 
    12171210\begin{equation} \label{Eq_PE_lapU} 
     
    12471240of the Equator in a geographical coordinate system \citep{Lengaigne_al_JGR03}. 
    12481241 
    1249 \subsubsection{lateral fourth order momentum diffusive operator} 
    1250  
    1251 As for tracers, the fourth order momentum diffusive operator along $z$ or $s$-surfaces  
    1252 is a re-entering second order operator \eqref{Eq_PE_lapU} or \eqref{Eq_PE_lapU_iso}  
    1253 with the harmonic eddy diffusion coefficient set to the square root of the biharmonic one. 
    1254  
     1242\subsubsection{lateral bilaplacian momentum diffusive operator} 
     1243 
     1244As for tracers, the bilaplacian order momentum diffusive operator is a  
     1245re-entering Laplacian operator with the harmonic eddy diffusion coefficient  
     1246set to the square root of the biharmonic one. Nevertheless it is currently  
     1247not available in the iso-neutral case. 
     1248 
Note: See TracChangeset for help on using the changeset viewer.