New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6440 for branches/UKMO/dev_r5518_GC3p0_package/DOC/TexFiles/Chapters/Chap_Model_Basics.tex – NEMO

Ignore:
Timestamp:
2016-04-07T16:32:24+02:00 (8 years ago)
Author:
dancopsey
Message:

Merged in nemo_v3_6_STABLE_copy up to revision 6436.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/UKMO/dev_r5518_GC3p0_package/DOC/TexFiles/Chapters/Chap_Model_Basics.tex

    r3294 r6440  
    247247sufficient to solve a linearized version of (\ref{Eq_PE_ssh}), which still allows  
    248248to take into account freshwater fluxes applied at the ocean surface \citep{Roullet_Madec_JGR00}. 
     249Nevertheless, with the linearization, an exact conservation of heat and salt contents is lost. 
    249250 
    250251The filtering of EGWs in models with a free surface is usually a matter of discretisation  
    251 of the temporal derivatives, using the time splitting method \citep{Killworth_al_JPO91, Zhang_Endoh_JGR92}  
    252 or the implicit scheme \citep{Dukowicz1994}. In \NEMO, we use a slightly different approach  
    253 developed by \citet{Roullet_Madec_JGR00}: the damping of EGWs is ensured by introducing an  
    254 additional force in the momentum equation. \eqref{Eq_PE_dyn} becomes:  
    255 \begin{equation} \label{Eq_PE_flt} 
    256 \frac{\partial {\rm {\bf U}}_h }{\partial t}= {\rm {\bf M}} 
    257 - g \nabla \left( \tilde{\rho} \ \eta \right)  
    258 - g \ T_c \nabla \left( \widetilde{\rho} \ \partial_t \eta \right)  
    259 \end{equation} 
    260 where $T_c$, is a parameter with dimensions of time which characterizes the force,  
    261 $\widetilde{\rho} = \rho / \rho_o$ is the dimensionless density, and $\rm {\bf M}$  
    262 represents the collected contributions of the Coriolis, hydrostatic pressure gradient,  
    263 non-linear and viscous terms in \eqref{Eq_PE_dyn}. 
    264  
    265 The new force can be interpreted as a diffusion of vertically integrated volume flux divergence.  
    266 The time evolution of $D$ is thus governed by a balance of two terms, $-g$ \textbf{A} $\eta$  
    267 and $g \, T_c \,$ \textbf{A} $D$, associated with a propagative regime and a diffusive regime  
    268 in the temporal spectrum, respectively. In the diffusive regime, the EGWs no longer propagate,  
    269 $i.e.$ they are stationary and damped. The diffusion regime applies to the modes shorter than  
    270 $T_c$. For longer ones, the diffusion term vanishes. Hence, the temporally unresolved EGWs  
    271 can be damped by choosing $T_c > \rdt$. \citet{Roullet_Madec_JGR00} demonstrate that  
    272 (\ref{Eq_PE_flt}) can be integrated with a leap frog scheme except the additional term which  
    273 has to be computed implicitly. This is not surprising since the use of a large time step has a  
    274 necessarily numerical cost. Two gains arise in comparison with the previous formulations.  
    275 Firstly, the damping of EGWs can be quantified through the magnitude of the additional term.  
    276 Secondly, the numerical scheme does not need any tuning. Numerical stability is ensured as  
    277 soon as $T_c > \rdt$. 
    278  
    279 When the variations of free surface elevation are small compared to the thickness of the first  
    280 model layer, the free surface equation (\ref{Eq_PE_ssh}) can be linearized. As emphasized  
    281 by \citet{Roullet_Madec_JGR00} the linearization of (\ref{Eq_PE_ssh}) has consequences on the  
    282 conservation of salt in the model. With the nonlinear free surface equation, the time evolution  
    283 of the total salt content is  
    284 \begin{equation} \label{Eq_PE_salt_content} 
    285     \frac{\partial }{\partial t}\int\limits_{D\eta } {S\;dv}  
    286                         =\int\limits_S {S\;(-\frac{\partial \eta }{\partial t}-D+P-E)\;ds} 
    287 \end{equation} 
    288 where $S$ is the salinity, and the total salt is integrated over the whole ocean volume  
    289 $D_\eta$ bounded by the time-dependent free surface. The right hand side (which is an  
    290 integral over the free surface) vanishes when the nonlinear equation (\ref{Eq_PE_ssh})  
    291 is satisfied, so that the salt is perfectly conserved. When the free surface equation is  
    292 linearized, \citet{Roullet_Madec_JGR00} show that the total salt content integrated in the fixed  
    293 volume $D$ (bounded by the surface $z=0$) is no longer conserved: 
    294 \begin{equation} \label{Eq_PE_salt_content_linear} 
    295          \frac{\partial }{\partial t}\int\limits_D {S\;dv}  
    296                = - \int\limits_S {S\;\frac{\partial \eta }{\partial t}ds}  
    297 \end{equation} 
    298  
    299 The right hand side of (\ref{Eq_PE_salt_content_linear}) is small in equilibrium solutions  
    300 \citep{Roullet_Madec_JGR00}. It can be significant when the freshwater forcing is not balanced and  
    301 the globally averaged free surface is drifting. An increase in sea surface height \textit{$\eta $}  
    302 results in a decrease of the salinity in the fixed volume $D$. Even in that case though,  
    303 the total salt integrated in the variable volume $D_{\eta}$ varies much less, since  
    304 (\ref{Eq_PE_salt_content_linear}) can be rewritten as  
    305 \begin{equation} \label{Eq_PE_salt_content_corrected} 
    306 \frac{\partial }{\partial t}\int\limits_{D\eta } {S\;dv}  
    307 =\frac{\partial}{\partial t} \left[ \;{\int\limits_D {S\;dv} +\int\limits_S {S\eta \;ds} } \right] 
    308 =\int\limits_S {\eta \;\frac{\partial S}{\partial t}ds} 
    309 \end{equation} 
    310  
    311 Although the total salt content is not exactly conserved with the linearized free surface,  
    312 its variations are driven by correlations of the time variation of surface salinity with the  
    313 sea surface height, which is a negligible term. This situation contrasts with the case of  
    314 the rigid lid approximation in which case freshwater forcing is represented by a virtual  
    315 salt flux, leading to a spurious source of salt at the ocean surface  
    316 \citep{Huang_JPO93, Roullet_Madec_JGR00}. 
    317  
    318 \newpage 
    319 $\ $\newline    % force a new ligne 
     252of the temporal derivatives, using a split-explicit method \citep{Killworth_al_JPO91, Zhang_Endoh_JGR92}  
     253or the implicit scheme \citep{Dukowicz1994} or the addition of a filtering force in the momentum equation  
     254\citep{Roullet_Madec_JGR00}. With the present release, \NEMO offers the choice between  
     255an explicit free surface (see \S\ref{DYN_spg_exp}) or a split-explicit scheme strongly  
     256inspired the one proposed by \citet{Shchepetkin_McWilliams_OM05} (see \S\ref{DYN_spg_ts}). 
     257 
     258%\newpage 
     259%$\ $\newline    % force a new line 
    320260 
    321261% ================================================================ 
     
    773713\end{equation} 
    774714 
    775 The equations solved by the ocean model \eqref{Eq_PE} in $s-$coordinate can be written as follows: 
     715The equations solved by the ocean model \eqref{Eq_PE} in $s-$coordinate can be written as follows (see Appendix~\ref{Apdx_A_momentum}): 
    776716 
    777717 \vspace{0.5cm} 
    778 * momentum equation: 
     718$\bullet$ Vector invariant form of the momentum equation : 
    779719\begin{multline} \label{Eq_PE_sco_u} 
    780 \frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t}= 
     720\frac{\partial  u  }{\partial t}= 
    781721   +   \left( {\zeta +f} \right)\,v                                     
    782722   -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)  
     
    787727\end{multline} 
    788728\begin{multline} \label{Eq_PE_sco_v} 
    789 \frac{1}{e_3} \frac{\partial \left(  e_3\,v  \right) }{\partial t}= 
     729\frac{\partial v }{\partial t}= 
    790730   -   \left( {\zeta +f} \right)\,u    
    791731   -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^2  \right)         
     
    795735   +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
    796736\end{multline} 
     737 
     738 \vspace{0.5cm} 
     739$\bullet$ Vector invariant form of the momentum equation : 
     740\begin{multline} \label{Eq_PE_sco_u} 
     741\frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t}= 
     742   +   \left( { f + \frac{1}{e_1 \; e_2 } 
     743               \left(    v \frac{\partial e_2}{\partial i} 
     744                  -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, v    \\ 
     745   - \frac{1}{e_1 \; e_2 \; e_3 }   \left(  
     746               \frac{\partial \left( {e_2 \, e_3 \, u\,u} \right)}{\partial i} 
     747      +        \frac{\partial \left( {e_1 \, e_3 \, v\,u} \right)}{\partial j}   \right) 
     748   - \frac{1}{e_3 }\frac{\partial \left( { \omega\,u} \right)}{\partial k}    \\ 
     749   - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho _o}    \right)     
     750   +  g\frac{\rho }{\rho _o}\sigma _1  
     751   +   D_u^{\vect{U}}  +   F_u^{\vect{U}} \quad 
     752\end{multline} 
     753\begin{multline} \label{Eq_PE_sco_v} 
     754\frac{1}{e_3} \frac{\partial \left(  e_3\,v  \right) }{\partial t}= 
     755   -   \left( { f + \frac{1}{e_1 \; e_2} 
     756               \left(    v \frac{\partial e_2}{\partial i} 
     757                  -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, u   \\ 
     758   - \frac{1}{e_1 \; e_2 \; e_3 }   \left(  
     759               \frac{\partial \left( {e_2 \; e_3  \,u\,v} \right)}{\partial i} 
     760      +        \frac{\partial \left( {e_1 \; e_3  \,v\,v} \right)}{\partial j}   \right) 
     761                 - \frac{1}{e_3 } \frac{\partial \left( { \omega\,v} \right)}{\partial k}    \\ 
     762   -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho _o}  \right)  
     763    +  g\frac{\rho }{\rho _o }\sigma _2    
     764   +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
     765\end{multline} 
     766 
    797767where the relative vorticity, \textit{$\zeta $}, the surface pressure gradient, and the hydrostatic  
    798768pressure have the same expressions as in $z$-coordinates although they do not represent  
    799769exactly the same quantities. $\omega$ is provided by the continuity equation  
    800770(see Appendix~\ref{Apdx_A}): 
    801  
    802771\begin{equation} \label{Eq_PE_sco_continuity} 
    803772\frac{\partial e_3}{\partial t} + e_3 \; \chi + \frac{\partial \omega }{\partial s} = 0    
     
    809778 
    810779 \vspace{0.5cm} 
    811 * tracer equations: 
     780$\bullet$ tracer equations: 
    812781\begin{multline} \label{Eq_PE_sco_t} 
    813782\frac{1}{e_3} \frac{\partial \left(  e_3\,T  \right) }{\partial t}= 
     
    1023992\label{PE_zco_tilde} 
    1024993 
    1025 The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM10s}. 
    1026 It is not available in the current version of \NEMO. 
     994The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM11}. 
     995It is available in \NEMO since the version 3.4. Nevertheless, it is currently not robust enough  
     996to be used in all possible configurations. Its use is therefore not recommended. 
     997 
    1027998 
    1028999\newpage  
     
    11571128operator acting along $s-$surfaces (see \S\ref{LDF}). 
    11581129 
    1159 \subsubsection{Lateral second order tracer diffusive operator} 
    1160  
    1161 The lateral second order tracer diffusive operator is defined by (see Appendix~\ref{Apdx_B}): 
     1130\subsubsection{Lateral Laplacian tracer diffusive operator} 
     1131 
     1132The lateral Laplacian tracer diffusive operator is defined by (see Appendix~\ref{Apdx_B}): 
    11621133\begin{equation} \label{Eq_PE_iso_tensor} 
    11631134D^{lT}=\nabla {\rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad  
     
    11801151ocean (see Appendix~\ref{Apdx_B}). 
    11811152 
     1153For \textit{iso-level} diffusion, $r_1$ and $r_2 $ are zero. $\Re $ reduces to the identity  
     1154in the horizontal direction, no rotation is applied.  
     1155 
    11821156For \textit{geopotential} diffusion, $r_1$ and $r_2 $ are the slopes between the  
    1183 geopotential and computational surfaces: in $z$-coordinates they are zero  
    1184 ($r_1 = r_2 = 0$) while in $s$-coordinate (including $\textit{z*}$ case) they are  
    1185 equal to $\sigma _1$ and $\sigma _2$, respectively (see \eqref{Eq_PE_sco_slope} ). 
     1157geopotential and computational surfaces: they are equal to $\sigma _1$ and $\sigma _2$,  
     1158respectively (see \eqref{Eq_PE_sco_slope} ). 
    11861159 
    11871160For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between the isoneutral  
     
    12311204to zero in the vicinity of the boundaries. The latter strategy is used in \NEMO (cf. Chap.~\ref{LDF}). 
    12321205 
    1233 \subsubsection{Lateral fourth order tracer diffusive operator} 
    1234  
    1235 The lateral fourth order tracer diffusive operator is defined by: 
     1206\subsubsection{Lateral bilaplacian tracer diffusive operator} 
     1207 
     1208The lateral bilaplacian tracer diffusive operator is defined by: 
    12361209\begin{equation} \label{Eq_PE_bilapT} 
    12371210D^{lT}=\Delta \left( {A^{lT}\;\Delta T} \right)  
    12381211\qquad \text{where} \  D^{lT}=\Delta \left( {A^{lT}\;\Delta T} \right) 
    12391212 \end{equation} 
    1240  
    12411213It is the second order operator given by \eqref{Eq_PE_iso_tensor} applied twice with  
    12421214the eddy diffusion coefficient correctly placed.  
    12431215 
    1244  
    1245 \subsubsection{Lateral second order momentum diffusive operator} 
    1246  
    1247 The second order momentum diffusive operator along $z$- or $s$-surfaces is found by  
     1216\subsubsection{Lateral Laplacian momentum diffusive operator} 
     1217 
     1218The Laplacian momentum diffusive operator along $z$- or $s$-surfaces is found by  
    12481219applying \eqref{Eq_PE_lap_vector} to the horizontal velocity vector (see Appendix~\ref{Apdx_B}): 
    12491220\begin{equation} \label{Eq_PE_lapU} 
     
    12791250of the Equator in a geographical coordinate system \citep{Lengaigne_al_JGR03}. 
    12801251 
    1281 \subsubsection{lateral fourth order momentum diffusive operator} 
     1252\subsubsection{lateral bilaplacian momentum diffusive operator} 
    12821253 
    12831254As for tracers, the fourth order momentum diffusive operator along $z$ or $s$-surfaces  
Note: See TracChangeset for help on using the changeset viewer.