New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6625 for branches/UKMO/dev_r5518_v3.4_asm_nemovar_community/DOC/TexFiles/Chapters/Annex_C.tex – NEMO

Ignore:
Timestamp:
2016-05-26T11:08:07+02:00 (8 years ago)
Author:
kingr
Message:

Rolled back to r6613

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/UKMO/dev_r5518_v3.4_asm_nemovar_community/DOC/TexFiles/Chapters/Annex_C.tex

    r6617 r6625  
    410410\end{aligned}   } \right. 
    411411\end{equation}  
    412 where the indices $i_p$ and $j_p$ take the following value:  
     412where the indices $i_p$ and $k_p$ take the following value:  
    413413$i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$, 
    414414and the vorticity triads, ${^i_j}\mathbb{Q}^{i_p}_{j_p}$, defined at $T$-point, are given by:  
     
    11031103The discrete formulation of the horizontal diffusion of momentum ensures the  
    11041104conservation of potential vorticity and the horizontal divergence, and the  
    1105 dissipation of the square of these quantities ($i.e.$ enstrophy and the  
     1105dissipation of the square of these quantities (i.e. enstrophy and the  
    11061106variance of the horizontal divergence) as well as the dissipation of the  
    11071107horizontal kinetic energy. In particular, when the eddy coefficients are  
     
    11271127&\int \limits_D \frac{1} {e_3 } \textbf{k} \cdot \nabla \times  
    11281128   \Bigl[    \nabla_h  \left( A^{\,lm}\;\chi  \right) 
    1129            - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)    \Bigr]\;dv   \\  
    1130 %\end{flalign*} 
     1129             - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)    \Bigr]\;dv  = 0 
     1130\end{flalign*} 
    11311131%%%%%%%%%%  recheck here....  (gm) 
    1132 %\begin{flalign*} 
    1133 =& \int \limits_D  -\frac{1} {e_3 } \textbf{k} \cdot \nabla \times  
    1134    \Bigl[ \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)  \Bigr]\;dv \\  
    1135 %\end{flalign*} 
    1136 %\begin{flalign*} 
     1132\begin{flalign*} 
     1133= \int \limits_D  -\frac{1} {e_3 } \textbf{k} \cdot \nabla \times  
     1134   \Bigl[ \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)  \Bigr]\;dv &&& \\  
     1135\end{flalign*} 
     1136\begin{flalign*} 
    11371137\equiv& \sum\limits_{i,j} 
    11381138   \left\{ 
    1139      \delta_{i+1/2} \left[  \frac {e_{2v}} {e_{1v}\,e_{3v}}  \delta_i \left[ A_f^{\,lm} e_{3f} \zeta  \right]  \right] 
    1140    + \delta_{j+1/2} \left[  \frac {e_{1u}} {e_{2u}\,e_{3u}}  \delta_j \left[ A_f^{\,lm} e_{3f} \zeta  \right]  \right] 
    1141    \right\}     \\  
     1139   \delta_{i+1/2}  
     1140   \left[  
     1141   \frac {e_{2v}} {e_{1v}\,e_{3v}}  \delta_i 
     1142      \left[ A_f^{\,lm} e_{3f} \zeta  \right] 
     1143    \right] 
     1144   + \delta_{j+1/2}  
     1145   \left[  
     1146   \frac {e_{1u}} {e_{2u}\,e_{3u}} \delta_j  
     1147      \left[ A_f^{\,lm} e_{3f} \zeta  \right] 
     1148   \right] 
     1149   \right\}  
     1150   && \\  
    11421151% 
    11431152\intertext{Using \eqref{DOM_di_adj}, it follows:} 
     
    11451154\equiv& \sum\limits_{i,j,k}  
    11461155   -\,\left\{ 
    1147       \frac{e_{2v}} {e_{1v}\,e_{3v}}  \delta_i  \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_i \left[ 1\right] 
    1148     + \frac{e_{1u}} {e_{2u}\,e_{3u}}  \delta_j  \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_j \left[ 1\right] 
     1156      \frac{e_{2v}} {e_{1v}\,e_{3v}}  \delta_i 
     1157      \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_i \left[ 1\right] 
     1158   + \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j  
     1159      \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_j \left[ 1\right] 
    11491160   \right\} \quad \equiv 0  
    1150     \\  
     1161   && \\  
    11511162\end{flalign*} 
    11521163 
     
    11561167\subsection{Dissipation of Horizontal Kinetic Energy} 
    11571168\label{Apdx_C.3.2} 
     1169 
    11581170 
    11591171The lateral momentum diffusion term dissipates the horizontal kinetic energy: 
     
    12091221\label{Apdx_C.3.3} 
    12101222 
     1223 
    12111224The lateral momentum diffusion term dissipates the enstrophy when the eddy  
    12121225coefficients are horizontally uniform: 
     
    12151228   \left[   \nabla_h \left( A^{\,lm}\;\chi  \right) 
    12161229          - \nabla_h \times \left( A^{\,lm}\;\zeta \; \textbf{k} \right)   \right]\;dv &&&\\ 
    1217 &\quad = A^{\,lm} \int \limits_D \zeta \textbf{k} \cdot \nabla \times  
     1230&= A^{\,lm} \int \limits_D \zeta \textbf{k} \cdot \nabla \times  
    12181231   \left[    \nabla_h \times \left( \zeta \; \textbf{k} \right)   \right]\;dv &&&\\ 
    1219 &\quad \equiv A^{\,lm} \sum\limits_{i,j,k}  \zeta \;e_{3f}  
     1232&\equiv A^{\,lm} \sum\limits_{i,j,k}  \zeta \;e_{3f}  
    12201233   \left\{     \delta_{i+1/2} \left[  \frac{e_{2v}} {e_{1v}\,e_{3v}} \delta_i \left[ e_{3f} \zeta  \right]   \right] 
    12211234             + \delta_{j+1/2} \left[  \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j \left[ e_{3f} \zeta  \right]   \right]      \right\}   &&&\\  
     
    12231236\intertext{Using \eqref{DOM_di_adj}, it follows:} 
    12241237% 
    1225 &\quad \equiv  - A^{\,lm} \sum\limits_{i,j,k}  
     1238&\equiv  - A^{\,lm} \sum\limits_{i,j,k}  
    12261239   \left\{    \left(  \frac{1} {e_{1v}\,e_{3v}}  \delta_i \left[ e_{3f} \zeta  \right]  \right)^2   b_v 
    1227             + \left(  \frac{1} {e_{2u}\,e_{3u}}  \delta_j \left[ e_{3f} \zeta  \right] \right)^2   b_u  \right\}  \quad \leq \;0    &&&\\ 
     1240            + \left(  \frac{1} {e_{2u}\,e_{3u}}  \delta_j \left[ e_{3f} \zeta  \right] \right)^2   b_u  \right\}      &&&\\ 
     1241& \leq \;0       &&&\\  
    12281242\end{flalign*} 
    12291243 
     
    12361250When the horizontal divergence of the horizontal diffusion of momentum  
    12371251(discrete sense) is taken, the term associated with the vertical curl of the  
    1238 vorticity is zero locally, due to \eqref{Eq_DOM_div_curl}.  
    1239 The resulting term conserves the $\chi$ and dissipates $\chi^2$  
    1240 when the eddy coefficients are horizontally uniform. 
     1252vorticity is zero locally, due to (!!! II.1.8  !!!!!). The resulting term conserves the  
     1253$\chi$ and dissipates $\chi^2$ when the eddy coefficients are  
     1254horizontally uniform. 
    12411255\begin{flalign*} 
    12421256& \int\limits_D  \nabla_h \cdot  
    12431257   \Bigl[     \nabla_h \left( A^{\,lm}\;\chi \right) 
    12441258             - \nabla_h \times \left( A^{\,lm}\;\zeta \;\textbf{k} \right)    \Bigr]  dv 
    1245 = \int\limits_D  \nabla_h \cdot \nabla_h \left( A^{\,lm}\;\chi  \right)   dv   \\ 
     1259= \int\limits_D  \nabla_h \cdot \nabla_h \left( A^{\,lm}\;\chi  \right)   dv   &&&\\ 
    12461260% 
    12471261&\equiv \sum\limits_{i,j,k}  
    12481262   \left\{   \delta_i \left[ A_u^{\,lm} \frac{e_{2u}\,e_{3u}} {e_{1u}}  \delta_{i+1/2} \left[ \chi \right]  \right] 
    1249            + \delta_j \left[ A_v^{\,lm} \frac{e_{1v}\,e_{3v}} {e_{2v}}  \delta_{j+1/2} \left[ \chi \right]  \right]    \right\}    \\  
     1263           + \delta_j \left[ A_v^{\,lm} \frac{e_{1v}\,e_{3v}} {e_{2v}}  \delta_{j+1/2} \left[ \chi \right]  \right]    \right\}    &&&\\  
    12501264% 
    12511265\intertext{Using \eqref{DOM_di_adj}, it follows:} 
     
    12531267&\equiv \sum\limits_{i,j,k}  
    12541268   - \left\{   \frac{e_{2u}\,e_{3u}} {e_{1u}}  A_u^{\,lm} \delta_{i+1/2} \left[ \chi \right] \delta_{i+1/2} \left[ 1 \right]  
    1255              + \frac{e_{1v}\,e_{3v}} {e_{2v}}  A_v^{\,lm} \delta_{j+1/2} \left[ \chi \right] \delta_{j+1/2} \left[ 1 \right]    \right\}  
    1256    \quad \equiv 0      \\  
     1269             + \frac{e_{1v}\,e_{3v}}  {e_{2v}}  A_v^{\,lm} \delta_{j+1/2} \left[ \chi \right] \delta_{j+1/2} \left[ 1 \right]    \right\}  
     1270   \qquad \equiv 0     &&& \\  
    12571271\end{flalign*} 
    12581272 
     
    12671281   \left[    \nabla_h              \left( A^{\,lm}\;\chi                    \right) 
    12681282           - \nabla_h   \times  \left( A^{\,lm}\;\zeta \;\textbf{k} \right)    \right]\;  dv 
    1269  = A^{\,lm}   \int\limits_D \chi \;\nabla_h \cdot \nabla_h \left( \chi \right)\;  dv    \\  
     1283 = A^{\,lm}   \int\limits_D \chi \;\nabla_h \cdot \nabla_h \left( \chi \right)\;  dv    &&&\\  
    12701284% 
    12711285&\equiv A^{\,lm}  \sum\limits_{i,j,k}  \frac{1} {e_{1t}\,e_{2t}\,e_{3t}}  \chi  
     
    12731287      \delta_i  \left[   \frac{e_{2u}\,e_{3u}} {e_{1u}}  \delta_{i+1/2} \left[ \chi \right]   \right] 
    12741288   + \delta_j  \left[   \frac{e_{1v}\,e_{3v}} {e_{2v}}   \delta_{j+1/2} \left[ \chi \right]   \right] 
    1275    \right\} \;   e_{1t}\,e_{2t}\,e_{3t}    \\  
     1289   \right\} \;   e_{1t}\,e_{2t}\,e_{3t}    &&&\\  
    12761290% 
    12771291\intertext{Using \eqref{DOM_di_adj}, it turns out to be:} 
     
    12791293&\equiv - A^{\,lm} \sum\limits_{i,j,k} 
    12801294   \left\{    \left(  \frac{1} {e_{1u}}  \delta_{i+1/2}  \left[ \chi \right]  \right)^2  b_u 
    1281             + \left(  \frac{1} {e_{2v}}  \delta_{j+1/2}  \left[ \chi \right]  \right)^2  b_v    \right\}     
    1282 \quad \leq 0             \\ 
     1295                 + \left(  \frac{1} {e_{2v}}  \delta_{j+1/2}  \left[ \chi \right]  \right)^2  b_v    \right\} \;    &&&\\ 
     1296% 
     1297&\leq 0              &&&\\ 
    12831298\end{flalign*} 
    12841299 
     
    12881303\section{Conservation Properties on Vertical Momentum Physics} 
    12891304\label{Apdx_C_4} 
     1305 
    12901306 
    12911307As for the lateral momentum physics, the continuous form of the vertical diffusion  
     
    13031319   \left(   \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}   \right)\; dv    \quad &\leq 0     \\ 
    13041320\end{align*} 
    1305  
    13061321The first property is obvious. The second results from: 
     1322 
    13071323\begin{flalign*} 
    13081324\int\limits_D  
     
    13431359   e_{1f}\,e_{2f}\,e_{3f} \; \equiv 0   && \\ 
    13441360\end{flalign*} 
    1345  
    13461361If the vertical diffusion coefficient is uniform over the whole domain, the  
    13471362enstrophy is dissipated, $i.e.$ 
     
    13511366      \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}   \right)   \right)\; dv = 0   &&&\\ 
    13521367\end{flalign*} 
    1353  
    13541368This property is only satisfied in $z$-coordinates: 
     1369 
    13551370\begin{flalign*} 
    13561371\int\limits_D \zeta \, \textbf{k} \cdot \nabla \times  
     
    14621477 
    14631478The numerical schemes used for tracer subgridscale physics are written such  
    1464 that the heat and salt contents are conserved (equations in flux form).  
    1465 Since a flux form is used to compute the temperature and salinity,  
    1466 the quadratic form of these quantities ($i.e.$ their variance) globally tends to diminish.  
    1467 As for the advection term, there is conservation of mass only if the Equation Of Seawater is linear.  
     1479that the heat and salt contents are conserved (equations in flux form, second  
     1480order centered finite differences). Since a flux form is used to compute the  
     1481temperature and salinity, the quadratic form of these quantities (i.e. their variance)  
     1482globally tends to diminish. As for the advection term, there is generally no strict  
     1483conservation of mass, even if in practice the mass is conserved to a very high  
     1484accuracy.  
    14681485 
    14691486% ------------------------------------------------------------------------------------------------------------- 
Note: See TracChangeset for help on using the changeset viewer.