New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6625 for branches/UKMO/dev_r5518_v3.4_asm_nemovar_community/DOC/TexFiles/Chapters/Chap_LDF.tex – NEMO

Ignore:
Timestamp:
2016-05-26T11:08:07+02:00 (8 years ago)
Author:
kingr
Message:

Rolled back to r6613

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/UKMO/dev_r5518_v3.4_asm_nemovar_community/DOC/TexFiles/Chapters/Chap_LDF.tex

    r6617 r6625  
    11 
    22% ================================================================ 
    3 % Chapter ——— Lateral Ocean Physics (LDF) 
     3% Chapter Lateral Ocean Physics (LDF) 
    44% ================================================================ 
    55\chapter{Lateral Ocean Physics (LDF)} 
     
    6868When none of the \textbf{key\_dynldf\_...} and \textbf{key\_traldf\_...} keys are  
    6969defined, a constant value is used over the whole ocean for momentum and  
    70 tracers, which is specified through the \np{rn\_ahm\_0\_lap} and \np{rn\_aht\_0} namelist  
     70tracers, which is specified through the \np{rn\_ahm0} and \np{rn\_aht0} namelist  
    7171parameters. 
    7272 
     
    7777mixing coefficients will require 3D arrays. In the 1D option, a hyperbolic variation  
    7878of the lateral mixing coefficient is introduced in which the surface value is  
    79 \np{rn\_aht\_0} (\np{rn\_ahm\_0\_lap}), the bottom value is 1/4 of the surface value,  
     79\np{rn\_aht0} (\np{rn\_ahm0}), the bottom value is 1/4 of the surface value,  
    8080and the transition takes place around z=300~m with a width of 300~m  
    8181($i.e.$ both the depth and the width of the inflection point are set to 300~m).  
     
    9393\end{equation} 
    9494where $e_{max}$ is the maximum of $e_1$ and $e_2$ taken over the whole masked  
    95 ocean domain, and $A_o^l$ is the \np{rn\_ahm\_0\_lap} (momentum) or \np{rn\_aht\_0} (tracer)  
     95ocean domain, and $A_o^l$ is the \np{rn\_ahm0} (momentum) or \np{rn\_aht0} (tracer)  
    9696namelist parameter. This variation is intended to reflect the lesser need for subgrid  
    9797scale eddy mixing where the grid size is smaller in the domain. It was introduced in  
     
    105105Other formulations can be introduced by the user for a given configuration.  
    106106For example, in the ORCA2 global ocean model (see Configurations), the laplacian  
    107 viscosity operator uses \np{rn\_ahm\_0\_lap}~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$  
    108 north and south and decreases linearly to \np{rn\_aht\_0}~= 2.10$^3$ m$^2$/s  
     107viscosity operator uses \np{rn\_ahm0}~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$  
     108north and south and decreases linearly to \np{rn\_aht0}~= 2.10$^3$ m$^2$/s  
    109109at the equator \citep{Madec_al_JPO96, Delecluse_Madec_Bk00}. This modification  
    110110can be found in routine \rou{ldf\_dyn\_c2d\_orca} defined in \mdl{ldfdyn\_c2d}.  
     
    120120\subsubsection{Space and Time Varying Mixing Coefficients} 
    121121 
    122 There are no default specifications of space and time varying mixing coefficient.  One 
    123 available case is specific to the ORCA2 and ORCA05 global ocean configurations. It 
    124 provides only a tracer mixing coefficient for eddy induced velocity (ORCA2) or both 
    125 iso-neutral and eddy induced velocity (ORCA05) that depends on the local growth rate of 
    126 baroclinic instability. This specification is actually used when an ORCA key 
     122There is no default specification of space and time varying mixing coefficient.  
     123The only case available is specific to the ORCA2 and ORCA05 global ocean  
     124configurations. It provides only a tracer  
     125mixing coefficient for eddy induced velocity (ORCA2) or both iso-neutral and  
     126eddy induced velocity (ORCA05) that depends on the local growth rate of  
     127baroclinic instability. This specification is actually used when an ORCA key  
    127128and both \key{traldf\_eiv} and \key{traldf\_c2d} are defined. 
    128  
    129 \subsubsection{Smagorinsky viscosity (\key{dynldf\_c3d} and \key{dynldf\_smag})} 
    130  
    131 The \key{dynldf\_smag} key activates a 3D, time-varying viscosity that depends on the 
    132 resolved motions. Following \citep{Smagorinsky_93} the viscosity coefficient is set 
    133 proportional to a local deformation rate based on the horizontal shear and tension, 
    134 namely: 
    135  
    136 \begin{equation} 
    137 A_{m_{Smag}} = \left(\frac{{\sf CM_{Smag}}}{\pi}\right)^2L^2\vert{D}\vert 
    138 \end{equation} 
    139  
    140 \noindent where the deformation rate $\vert{D}\vert$ is given by  
    141  
    142 \begin{equation} 
    143 \vert{D}\vert=\sqrt{\left({\frac{\partial{u}} {\partial{x}}} 
    144                          -{\frac{\partial{v}} {\partial{y}}}\right)^2 
    145                  +  \left({\frac{\partial{u}} {\partial{y}}} 
    146                          +{\frac{\partial{v}} {\partial{x}}}\right)^2}  
    147 \end{equation} 
    148  
    149 \noindent and $L$ is the local gridscale given by: 
    150  
    151 \begin{equation} 
    152 L^2 = \frac{2{e_1}^2 {e_2}^2}{\left ( {e_1}^2 + {e_2}^2 \right )} 
    153 \end{equation} 
    154  
    155 \citep{Griffies_Hallberg_MWR00} suggest values in the range 2.2 to 4.0 of the coefficient 
    156 $\sf CM_{Smag}$ for oceanic flows. This value is set via the \np{rn\_cmsmag\_1} namelist 
    157 parameter. An additional parameter: \np{rn\_cmsh} is included in NEMO for experimenting 
    158 with the contribution of the shear term. A value of 1.0 (the default) calculates the 
    159 deformation rate as above; a value of 0.0 will discard the shear term entirely. 
    160  
    161 For numerical stability, the calculated viscosity is bounded according to the following: 
    162  
    163 \begin{equation} 
    164 {\rm MIN}\left ({ L^2\over {8\Delta{t}}}, rn\_ahm\_m\_lap\right ) \geq A_{m_{Smag}}  
    165                                                                   \geq rn\_ahm\_0\_lap 
    166 \end{equation} 
    167  
    168 \noindent with both parameters for the upper and lower bounds being provided via the 
    169 indicated namelist parameters. 
    170  
    171 \bigskip When $ln\_dynldf\_bilap = .true.$, a biharmonic version of the Smagorinsky 
    172 viscosity is also available which sets a coefficient for the biharmonic viscosity as: 
    173  
    174 \begin{equation} 
    175 B_{m_{Smag}} = - \left(\frac{{\sf CM_{bSmag}}}{\pi}\right)^2 {L^4\over 8}\vert{D}\vert 
    176 \end{equation} 
    177  
    178 \noindent which is bounded according to: 
    179  
    180 \begin{equation} 
    181 {\rm MAX}\left (-{ L^4\over {64\Delta{t}}}, rn\_ahm\_m\_blp\right ) \leq B_{m_{Smag}}  
    182                                                                     \leq rn\_ahm\_0\_blp 
    183 \end{equation} 
    184  
    185 \noindent Note the reversal of the inequalities here because NEMO requires the biharmonic 
    186 coefficients as negative numbers. $\sf CM_{bSmag}$ is set via the \np{rn\_cmsmag\_2} 
    187 namelist parameter and the bounding values have corresponding entries in the namelist too. 
    188  
    189 \bigskip The current implementation in NEMO also allows for 3D, time-varying diffusivities 
    190 to be set using the Smagorinsky approach. Users should note that this option is not 
    191 recommended for many applications since diffusivities will tend to be largest near 
    192 boundaries (where shears are greatest) leading to spurious upwellings 
    193 (\citep{Griffies_Bk04}, chapter 18.3.4). Nevertheless the option is there for those 
    194 wishing to experiment. This choice requires both \key{traldf\_c3d} and \key{traldf\_smag} 
    195 and uses the \np{rn\_chsmag} (${\sf CH_{Smag}}$), \np{rn\_smsh} and \np{rn\_aht\_m} 
    196 namelist parameters in an analogous way to \np{rn\_cmsmag\_1}, \np{rn\_cmsh} and 
    197 \np{rn\_ahm\_m\_lap} (see above) to set the diffusion coefficient: 
    198  
    199 \begin{equation} 
    200 A_{h_{Smag}} = \left(\frac{{\sf CH_{Smag}}}{\pi}\right)^2L^2\vert{D}\vert 
    201 \end{equation} 
    202  
    203   
    204 For numerical stability, the calculated diffusivity is bounded according to the following: 
    205  
    206 \begin{equation} 
    207 {\rm MIN}\left ({ L^2\over {8\Delta{t}}}, rn\_aht\_m\right ) \geq A_{h_{Smag}}  
    208                                                              \geq rn\_aht\_0 
    209 \end{equation} 
    210  
    211  
    212129 
    213130$\ $\newline    % force a new ligne 
     
    227144(3) for isopycnal diffusion on momentum or tracers, an additional purely  
    228145horizontal background diffusion with uniform coefficient can be added by  
    229 setting a non zero value of \np{rn\_ahmb\_0} or \np{rn\_ahtb\_0}, a background horizontal  
     146setting a non zero value of \np{rn\_ahmb0} or \np{rn\_ahtb0}, a background horizontal  
    230147eddy viscosity or diffusivity coefficient (namelist parameters whose default  
    231148values are $0$). However, the technique used to compute the isopycnal  
Note: See TracChangeset for help on using the changeset viewer.