New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6625 for branches/UKMO/dev_r5518_v3.4_asm_nemovar_community/DOC/TexFiles/Chapters/Chap_Model_Basics.tex – NEMO

Ignore:
Timestamp:
2016-05-26T11:08:07+02:00 (8 years ago)
Author:
kingr
Message:

Rolled back to r6613

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/UKMO/dev_r5518_v3.4_asm_nemovar_community/DOC/TexFiles/Chapters/Chap_Model_Basics.tex

    r6617 r6625  
    247247sufficient to solve a linearized version of (\ref{Eq_PE_ssh}), which still allows  
    248248to take into account freshwater fluxes applied at the ocean surface \citep{Roullet_Madec_JGR00}. 
    249 Nevertheless, with the linearization, an exact conservation of heat and salt contents is lost. 
    250249 
    251250The filtering of EGWs in models with a free surface is usually a matter of discretisation  
    252 of the temporal derivatives, using a split-explicit method \citep{Killworth_al_JPO91, Zhang_Endoh_JGR92}  
    253 or the implicit scheme \citep{Dukowicz1994} or the addition of a filtering force in the momentum equation  
    254 \citep{Roullet_Madec_JGR00}. With the present release, \NEMO offers the choice between  
    255 an explicit free surface (see \S\ref{DYN_spg_exp}) or a split-explicit scheme strongly  
    256 inspired the one proposed by \citet{Shchepetkin_McWilliams_OM05} (see \S\ref{DYN_spg_ts}). 
    257  
    258 %\newpage 
    259 %$\ $\newline    % force a new line 
     251of the temporal derivatives, using the time splitting method \citep{Killworth_al_JPO91, Zhang_Endoh_JGR92}  
     252or the implicit scheme \citep{Dukowicz1994}. In \NEMO, we use a slightly different approach  
     253developed by \citet{Roullet_Madec_JGR00}: the damping of EGWs is ensured by introducing an  
     254additional force in the momentum equation. \eqref{Eq_PE_dyn} becomes:  
     255\begin{equation} \label{Eq_PE_flt} 
     256\frac{\partial {\rm {\bf U}}_h }{\partial t}= {\rm {\bf M}} 
     257- g \nabla \left( \tilde{\rho} \ \eta \right)  
     258- g \ T_c \nabla \left( \widetilde{\rho} \ \partial_t \eta \right)  
     259\end{equation} 
     260where $T_c$, is a parameter with dimensions of time which characterizes the force,  
     261$\widetilde{\rho} = \rho / \rho_o$ is the dimensionless density, and $\rm {\bf M}$  
     262represents the collected contributions of the Coriolis, hydrostatic pressure gradient,  
     263non-linear and viscous terms in \eqref{Eq_PE_dyn}. 
     264 
     265The new force can be interpreted as a diffusion of vertically integrated volume flux divergence.  
     266The time evolution of $D$ is thus governed by a balance of two terms, $-g$ \textbf{A} $\eta$  
     267and $g \, T_c \,$ \textbf{A} $D$, associated with a propagative regime and a diffusive regime  
     268in the temporal spectrum, respectively. In the diffusive regime, the EGWs no longer propagate,  
     269$i.e.$ they are stationary and damped. The diffusion regime applies to the modes shorter than  
     270$T_c$. For longer ones, the diffusion term vanishes. Hence, the temporally unresolved EGWs  
     271can be damped by choosing $T_c > \rdt$. \citet{Roullet_Madec_JGR00} demonstrate that  
     272(\ref{Eq_PE_flt}) can be integrated with a leap frog scheme except the additional term which  
     273has to be computed implicitly. This is not surprising since the use of a large time step has a  
     274necessarily numerical cost. Two gains arise in comparison with the previous formulations.  
     275Firstly, the damping of EGWs can be quantified through the magnitude of the additional term.  
     276Secondly, the numerical scheme does not need any tuning. Numerical stability is ensured as  
     277soon as $T_c > \rdt$. 
     278 
     279When the variations of free surface elevation are small compared to the thickness of the first  
     280model layer, the free surface equation (\ref{Eq_PE_ssh}) can be linearized. As emphasized  
     281by \citet{Roullet_Madec_JGR00} the linearization of (\ref{Eq_PE_ssh}) has consequences on the  
     282conservation of salt in the model. With the nonlinear free surface equation, the time evolution  
     283of the total salt content is  
     284\begin{equation} \label{Eq_PE_salt_content} 
     285    \frac{\partial }{\partial t}\int\limits_{D\eta } {S\;dv}  
     286                        =\int\limits_S {S\;(-\frac{\partial \eta }{\partial t}-D+P-E)\;ds} 
     287\end{equation} 
     288where $S$ is the salinity, and the total salt is integrated over the whole ocean volume  
     289$D_\eta$ bounded by the time-dependent free surface. The right hand side (which is an  
     290integral over the free surface) vanishes when the nonlinear equation (\ref{Eq_PE_ssh})  
     291is satisfied, so that the salt is perfectly conserved. When the free surface equation is  
     292linearized, \citet{Roullet_Madec_JGR00} show that the total salt content integrated in the fixed  
     293volume $D$ (bounded by the surface $z=0$) is no longer conserved: 
     294\begin{equation} \label{Eq_PE_salt_content_linear} 
     295         \frac{\partial }{\partial t}\int\limits_D {S\;dv}  
     296               = - \int\limits_S {S\;\frac{\partial \eta }{\partial t}ds}  
     297\end{equation} 
     298 
     299The right hand side of (\ref{Eq_PE_salt_content_linear}) is small in equilibrium solutions  
     300\citep{Roullet_Madec_JGR00}. It can be significant when the freshwater forcing is not balanced and  
     301the globally averaged free surface is drifting. An increase in sea surface height \textit{$\eta $}  
     302results in a decrease of the salinity in the fixed volume $D$. Even in that case though,  
     303the total salt integrated in the variable volume $D_{\eta}$ varies much less, since  
     304(\ref{Eq_PE_salt_content_linear}) can be rewritten as  
     305\begin{equation} \label{Eq_PE_salt_content_corrected} 
     306\frac{\partial }{\partial t}\int\limits_{D\eta } {S\;dv}  
     307=\frac{\partial}{\partial t} \left[ \;{\int\limits_D {S\;dv} +\int\limits_S {S\eta \;ds} } \right] 
     308=\int\limits_S {\eta \;\frac{\partial S}{\partial t}ds} 
     309\end{equation} 
     310 
     311Although the total salt content is not exactly conserved with the linearized free surface,  
     312its variations are driven by correlations of the time variation of surface salinity with the  
     313sea surface height, which is a negligible term. This situation contrasts with the case of  
     314the rigid lid approximation in which case freshwater forcing is represented by a virtual  
     315salt flux, leading to a spurious source of salt at the ocean surface  
     316\citep{Huang_JPO93, Roullet_Madec_JGR00}. 
     317 
     318\newpage 
     319$\ $\newline    % force a new ligne 
    260320 
    261321% ================================================================ 
     
    713773\end{equation} 
    714774 
    715 The equations solved by the ocean model \eqref{Eq_PE} in $s-$coordinate can be written as follows (see Appendix~\ref{Apdx_A_momentum}): 
     775The equations solved by the ocean model \eqref{Eq_PE} in $s-$coordinate can be written as follows: 
    716776 
    717777 \vspace{0.5cm} 
    718 $\bullet$ Vector invariant form of the momentum equation : 
     778* momentum equation: 
    719779\begin{multline} \label{Eq_PE_sco_u} 
    720 \frac{\partial  u  }{\partial t}= 
     780\frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t}= 
    721781   +   \left( {\zeta +f} \right)\,v                                     
    722782   -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)  
     
    727787\end{multline} 
    728788\begin{multline} \label{Eq_PE_sco_v} 
    729 \frac{\partial v }{\partial t}= 
     789\frac{1}{e_3} \frac{\partial \left(  e_3\,v  \right) }{\partial t}= 
    730790   -   \left( {\zeta +f} \right)\,u    
    731791   -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^2  \right)         
     
    735795   +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
    736796\end{multline} 
    737  
    738  \vspace{0.5cm} 
    739 $\bullet$ Vector invariant form of the momentum equation : 
    740 \begin{multline} \label{Eq_PE_sco_u} 
    741 \frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t}= 
    742    +   \left( { f + \frac{1}{e_1 \; e_2 } 
    743                \left(    v \frac{\partial e_2}{\partial i} 
    744                   -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, v    \\ 
    745    - \frac{1}{e_1 \; e_2 \; e_3 }   \left(  
    746                \frac{\partial \left( {e_2 \, e_3 \, u\,u} \right)}{\partial i} 
    747       +        \frac{\partial \left( {e_1 \, e_3 \, v\,u} \right)}{\partial j}   \right) 
    748    - \frac{1}{e_3 }\frac{\partial \left( { \omega\,u} \right)}{\partial k}    \\ 
    749    - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho _o}    \right)     
    750    +  g\frac{\rho }{\rho _o}\sigma _1  
    751    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} \quad 
    752 \end{multline} 
    753 \begin{multline} \label{Eq_PE_sco_v} 
    754 \frac{1}{e_3} \frac{\partial \left(  e_3\,v  \right) }{\partial t}= 
    755    -   \left( { f + \frac{1}{e_1 \; e_2} 
    756                \left(    v \frac{\partial e_2}{\partial i} 
    757                   -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, u   \\ 
    758    - \frac{1}{e_1 \; e_2 \; e_3 }   \left(  
    759                \frac{\partial \left( {e_2 \; e_3  \,u\,v} \right)}{\partial i} 
    760       +        \frac{\partial \left( {e_1 \; e_3  \,v\,v} \right)}{\partial j}   \right) 
    761                  - \frac{1}{e_3 } \frac{\partial \left( { \omega\,v} \right)}{\partial k}    \\ 
    762    -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho _o}  \right)  
    763     +  g\frac{\rho }{\rho _o }\sigma _2    
    764    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
    765 \end{multline} 
    766  
    767797where the relative vorticity, \textit{$\zeta $}, the surface pressure gradient, and the hydrostatic  
    768798pressure have the same expressions as in $z$-coordinates although they do not represent  
    769799exactly the same quantities. $\omega$ is provided by the continuity equation  
    770800(see Appendix~\ref{Apdx_A}): 
     801 
    771802\begin{equation} \label{Eq_PE_sco_continuity} 
    772803\frac{\partial e_3}{\partial t} + e_3 \; \chi + \frac{\partial \omega }{\partial s} = 0    
     
    778809 
    779810 \vspace{0.5cm} 
    780 $\bullet$ tracer equations: 
     811* tracer equations: 
    781812\begin{multline} \label{Eq_PE_sco_t} 
    782813\frac{1}{e_3} \frac{\partial \left(  e_3\,T  \right) }{\partial t}= 
     
    9921023\label{PE_zco_tilde} 
    9931024 
    994 The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM11}. 
    995 It is available in \NEMO since the version 3.4. Nevertheless, it is currently not robust enough  
    996 to be used in all possible configurations. Its use is therefore not recommended. 
    997  
     1025The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM10s}. 
     1026It is not available in the current version of \NEMO. 
    9981027 
    9991028\newpage  
     
    11281157operator acting along $s-$surfaces (see \S\ref{LDF}). 
    11291158 
    1130 \subsubsection{Lateral Laplacian tracer diffusive operator} 
    1131  
    1132 The lateral Laplacian tracer diffusive operator is defined by (see Appendix~\ref{Apdx_B}): 
     1159\subsubsection{Lateral second order tracer diffusive operator} 
     1160 
     1161The lateral second order tracer diffusive operator is defined by (see Appendix~\ref{Apdx_B}): 
    11331162\begin{equation} \label{Eq_PE_iso_tensor} 
    11341163D^{lT}=\nabla {\rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad  
     
    11511180ocean (see Appendix~\ref{Apdx_B}). 
    11521181 
    1153 For \textit{iso-level} diffusion, $r_1$ and $r_2 $ are zero. $\Re $ reduces to the identity  
    1154 in the horizontal direction, no rotation is applied.  
    1155  
    11561182For \textit{geopotential} diffusion, $r_1$ and $r_2 $ are the slopes between the  
    1157 geopotential and computational surfaces: they are equal to $\sigma _1$ and $\sigma _2$,  
    1158 respectively (see \eqref{Eq_PE_sco_slope} ). 
     1183geopotential and computational surfaces: in $z$-coordinates they are zero  
     1184($r_1 = r_2 = 0$) while in $s$-coordinate (including $\textit{z*}$ case) they are  
     1185equal to $\sigma _1$ and $\sigma _2$, respectively (see \eqref{Eq_PE_sco_slope} ). 
    11591186 
    11601187For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between the isoneutral  
     
    12041231to zero in the vicinity of the boundaries. The latter strategy is used in \NEMO (cf. Chap.~\ref{LDF}). 
    12051232 
    1206 \subsubsection{Lateral bilaplacian tracer diffusive operator} 
    1207  
    1208 The lateral bilaplacian tracer diffusive operator is defined by: 
     1233\subsubsection{Lateral fourth order tracer diffusive operator} 
     1234 
     1235The lateral fourth order tracer diffusive operator is defined by: 
    12091236\begin{equation} \label{Eq_PE_bilapT} 
    12101237D^{lT}=\Delta \left( {A^{lT}\;\Delta T} \right)  
    12111238\qquad \text{where} \  D^{lT}=\Delta \left( {A^{lT}\;\Delta T} \right) 
    12121239 \end{equation} 
     1240 
    12131241It is the second order operator given by \eqref{Eq_PE_iso_tensor} applied twice with  
    12141242the eddy diffusion coefficient correctly placed.  
    12151243 
    1216 \subsubsection{Lateral Laplacian momentum diffusive operator} 
    1217  
    1218 The Laplacian momentum diffusive operator along $z$- or $s$-surfaces is found by  
     1244 
     1245\subsubsection{Lateral second order momentum diffusive operator} 
     1246 
     1247The second order momentum diffusive operator along $z$- or $s$-surfaces is found by  
    12191248applying \eqref{Eq_PE_lap_vector} to the horizontal velocity vector (see Appendix~\ref{Apdx_B}): 
    12201249\begin{equation} \label{Eq_PE_lapU} 
     
    12501279of the Equator in a geographical coordinate system \citep{Lengaigne_al_JGR03}. 
    12511280 
    1252 \subsubsection{lateral bilaplacian momentum diffusive operator} 
     1281\subsubsection{lateral fourth order momentum diffusive operator} 
    12531282 
    12541283As for tracers, the fourth order momentum diffusive operator along $z$ or $s$-surfaces  
Note: See TracChangeset for help on using the changeset viewer.