New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 9407 for branches/2017/dev_merge_2017/DOC/tex_sub/chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2018-03-15T17:40:35+01:00 (6 years ago)
Author:
nicolasmartin
Message:

Complete refactoring of cross-referencing

  • Use of \autoref instead of simple \ref for contextual text depending on target type
  • creation of few prefixes for marker to identify the type reference: apdx|chap|eq|fig|sec|subsec|tab
File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2017/dev_merge_2017/DOC/tex_sub/chap_ZDF.tex

    r9393 r9407  
    55% ================================================================ 
    66\chapter{Vertical Ocean Physics (ZDF)} 
    7 \label{ZDF} 
     7\label{chap:ZDF} 
    88\minitoc 
    99 
     
    1919% ================================================================ 
    2020\section{Vertical mixing} 
    21 \label{ZDF_zdf} 
     21\label{sec:ZDF_zdf} 
    2222 
    2323The discrete form of the ocean subgrid scale physics has been presented in  
    24 \S\ref{TRA_zdf} and \S\ref{DYN_zdf}. At the surface and bottom boundaries,  
     24\autoref{sec:TRA_zdf} and \autoref{sec:DYN_zdf}. At the surface and bottom boundaries,  
    2525the turbulent fluxes of momentum, heat and salt have to be defined. At the  
    26 surface they are prescribed from the surface forcing (see Chap.~\ref{SBC}),  
     26surface they are prescribed from the surface forcing (see \autoref{chap:SBC}),  
    2727while at the bottom they are set to zero for heat and salt, unless a geothermal  
    2828flux forcing is prescribed as a bottom boundary condition ($i.e.$ \key{trabbl}  
    29 defined, see \S\ref{TRA_bbc}), and specified through a bottom friction  
    30 parameterisation for momentum (see \S\ref{ZDF_bfr}). 
     29defined, see \autoref{subsec:TRA_bbc}), and specified through a bottom friction  
     30parameterisation for momentum (see \autoref{sec:ZDF_bfr}). 
    3131 
    3232In this section we briefly discuss the various choices offered to compute  
    3333the vertical eddy viscosity and diffusivity coefficients, $A_u^{vm}$ ,  
    3434$A_v^{vm}$ and $A^{vT}$ ($A^{vS}$), defined at $uw$-, $vw$- and $w$-  
    35 points, respectively (see \S\ref{TRA_zdf} and \S\ref{DYN_zdf}). These  
     35points, respectively (see \autoref{sec:TRA_zdf} and \autoref{sec:DYN_zdf}). These  
    3636coefficients can be assumed to be either constant, or a function of the local  
    3737Richardson number, or computed from a turbulent closure model (either  
     
    4444(namelist parameter \np{ln\_zdfexp}\forcode{ = .true.}) or a backward time stepping  
    4545scheme (\np{ln\_zdfexp}\forcode{ = .false.}) depending on the magnitude of the mixing  
    46 coefficients, and thus of the formulation used (see \S\ref{STP}). 
     46coefficients, and thus of the formulation used (see \autoref{chap:STP}). 
    4747 
    4848% ------------------------------------------------------------------------------------------------------------- 
     
    5050% ------------------------------------------------------------------------------------------------------------- 
    5151\subsection{Constant (\protect\key{zdfcst})} 
    52 \label{ZDF_cst} 
     52\label{subsec:ZDF_cst} 
    5353%--------------------------------------------namzdf--------------------------------------------------------- 
    5454\forfile{../namelists/namzdf} 
     
    7575% ------------------------------------------------------------------------------------------------------------- 
    7676\subsection{Richardson number dependent (\protect\key{zdfric})} 
    77 \label{ZDF_ric} 
     77\label{subsec:ZDF_ric} 
    7878 
    7979%--------------------------------------------namric--------------------------------------------------------- 
     
    9191ratio of stratification to vertical shear). Following \citet{Pacanowski_Philander_JPO81}, the following  
    9292formulation has been implemented: 
    93 \begin{equation} \label{Eq_zdfric} 
     93\begin{equation} \label{eq:zdfric} 
    9494   \left\{      \begin{aligned} 
    9595         A^{vT} &= \frac {A_{ric}^{vT}}{\left( 1+a \; Ri \right)^n} + A_b^{vT}       \\ 
     
    9898\end{equation} 
    9999where $Ri = N^2 / \left(\partial_z \textbf{U}_h \right)^2$ is the local Richardson  
    100 number, $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \S\ref{TRA_bn2}),  
     100number, $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2}),  
    101101$A_b^{vT} $ and $A_b^{vm}$ are the constant background values set as in the  
    102 constant case (see \S\ref{ZDF_cst}), and $A_{ric}^{vT} = 10^{-4}~m^2.s^{-1}$  
     102constant case (see \autoref{subsec:ZDF_cst}), and $A_{ric}^{vT} = 10^{-4}~m^2.s^{-1}$  
    103103is the maximum value that can be reached by the coefficient when $Ri\leq 0$,  
    104104$a=5$ and $n=2$. The last three values can be modified by setting the  
     
    133133% ------------------------------------------------------------------------------------------------------------- 
    134134\subsection{TKE turbulent closure scheme (\protect\key{zdftke})} 
    135 \label{ZDF_tke} 
     135\label{subsec:ZDF_tke} 
    136136 
    137137%--------------------------------------------namzdf_tke-------------------------------------------------- 
     
    150150$\bar{e}$ through vertical shear, its destruction through stratification, its vertical  
    151151diffusion, and its dissipation of \citet{Kolmogorov1942} type: 
    152 \begin{equation} \label{Eq_zdftke_e} 
     152\begin{equation} \label{eq:zdftke_e} 
    153153\frac{\partial \bar{e}}{\partial t} =  
    154154\frac{K_m}{{e_3}^2 }\;\left[ {\left( {\frac{\partial u}{\partial k}} \right)^2 
     
    159159- c_\epsilon \;\frac{\bar {e}^{3/2}}{l_\epsilon } 
    160160\end{equation} 
    161 \begin{equation} \label{Eq_zdftke_kz} 
     161\begin{equation} \label{eq:zdftke_kz} 
    162162   \begin{split} 
    163163         K_m &= C_k\  l_k\  \sqrt {\bar{e}\; }     \\ 
     
    165165   \end{split} 
    166166\end{equation} 
    167 where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \S\ref{TRA_bn2}),  
     167where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2}),  
    168168$l_{\epsilon }$ and $l_{\kappa }$ are the dissipation and mixing length scales,  
    169169$P_{rt}$ is the Prandtl number, $K_m$ and $K_\rho$ are the vertical eddy viscosity  
     
    173173$P_{rt}$ can be set to unity or, following \citet{Blanke1993}, be a function  
    174174of the local Richardson number, $R_i$: 
    175 \begin{align*} \label{Eq_prt} 
     175\begin{align*} \label{eq:prt} 
    176176P_{rt} = \begin{cases} 
    177177                    \ \ \ 1 &      \text{if $\ R_i \leq 0.2$}  \\ 
     
    187187namelist parameter. The default value of $e_{bb}$ is 3.75. \citep{Gaspar1990}),  
    188188however a much larger value can be used when taking into account the  
    189 surface wave breaking (see below Eq. \eqref{ZDF_Esbc}).  
     189surface wave breaking (see below Eq. \autoref{eq:ZDF_Esbc}).  
    190190The bottom value of TKE is assumed to be equal to the value of the level just above.  
    191191The time integration of the $\bar{e}$ equation may formally lead to negative values  
     
    199199instabilities associated with too weak vertical diffusion. They must be  
    200200specified at least larger than the molecular values, and are set through  
    201 \np{rn\_avm0} and \np{rn\_avt0} (namzdf namelist, see \S\ref{ZDF_cst}). 
     201\np{rn\_avm0} and \np{rn\_avt0} (namzdf namelist, see \autoref{subsec:ZDF_cst}). 
    202202 
    203203\subsubsection{Turbulent length scale} 
     
    207207parameter. The first two are based on the following first order approximation  
    208208\citep{Blanke1993}: 
    209 \begin{equation} \label{Eq_tke_mxl0_1} 
     209\begin{equation} \label{eq:tke_mxl0_1} 
    210210l_k = l_\epsilon = \sqrt {2 \bar{e}\; } / N 
    211211\end{equation} 
     
    219219\np{nn\_mxl}\forcode{ = 2..3} cases, which add an extra assumption concerning the vertical  
    220220gradient of the computed length scale. So, the length scales are first evaluated  
    221 as in \eqref{Eq_tke_mxl0_1} and then bounded such that: 
    222 \begin{equation} \label{Eq_tke_mxl_constraint} 
     221as in \autoref{eq:tke_mxl0_1} and then bounded such that: 
     222\begin{equation} \label{eq:tke_mxl_constraint} 
    223223\frac{1}{e_3 }\left| {\frac{\partial l}{\partial k}} \right| \leq 1 
    224224\qquad \text{with }\  l =  l_k = l_\epsilon 
    225225\end{equation} 
    226 \eqref{Eq_tke_mxl_constraint} means that the vertical variations of the length  
     226\autoref{eq:tke_mxl_constraint} means that the vertical variations of the length  
    227227scale cannot be larger than the variations of depth. It provides a better  
    228228approximation of the \citet{Gaspar1990} formulation while being much less  
     
    230230by the distance to the surface or to the ocean bottom but also by the distance  
    231231to a strongly stratified portion of the water column such as the thermocline  
    232 (Fig.~\ref{Fig_mixing_length}). In order to impose the \eqref{Eq_tke_mxl_constraint}  
     232(\autoref{fig:mixing_length}). In order to impose the \autoref{eq:tke_mxl_constraint}  
    233233constraint, we introduce two additional length scales: $l_{up}$ and $l_{dwn}$,  
    234234the upward and downward length scales, and evaluate the dissipation and  
     
    237237\begin{figure}[!t] \begin{center} 
    238238\includegraphics[width=1.00\textwidth]{Fig_mixing_length} 
    239 \caption{ \protect\label{Fig_mixing_length}  
     239\caption{ \protect\label{fig:mixing_length}  
    240240Illustration of the mixing length computation. } 
    241241\end{center}   
    242242\end{figure} 
    243243%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    244 \begin{equation} \label{Eq_tke_mxl2} 
     244\begin{equation} \label{eq:tke_mxl2} 
    245245\begin{aligned} 
    246246 l_{up\ \ }^{(k)} &= \min \left(  l^{(k)} \ , \ l_{up}^{(k+1)} + e_{3t}^{(k)}\ \ \ \;  \right) 
     
    250250\end{aligned} 
    251251\end{equation} 
    252 where $l^{(k)}$ is computed using \eqref{Eq_tke_mxl0_1},  
     252where $l^{(k)}$ is computed using \autoref{eq:tke_mxl0_1},  
    253253$i.e.$ $l^{(k)} = \sqrt {2 {\bar e}^{(k)} / {N^2}^{(k)} }$. 
    254254 
     
    257257\np{nn\_mxl}\forcode{ = 3} case, the dissipation and mixing turbulent length scales are give  
    258258as in \citet{Gaspar1990}: 
    259 \begin{equation} \label{Eq_tke_mxl_gaspar} 
     259\begin{equation} \label{eq:tke_mxl_gaspar} 
    260260\begin{aligned} 
    261261& l_k          = \sqrt{\  l_{up} \ \ l_{dwn}\ }    \\ 
     
    282282 
    283283Following \citet{Craig_Banner_JPO94}, the boundary condition on surface TKE value is : 
    284 \begin{equation}  \label{ZDF_Esbc} 
     284\begin{equation}  \label{eq:ZDF_Esbc} 
    285285\bar{e}_o = \frac{1}{2}\,\left(  15.8\,\alpha_{CB} \right)^{2/3} \,\frac{|\tau|}{\rho_o} 
    286286\end{equation} 
     
    289289younger waves \citep{Mellor_Blumberg_JPO04}.  
    290290The boundary condition on the turbulent length scale follows the Charnock's relation: 
    291 \begin{equation} \label{ZDF_Lsbc} 
     291\begin{equation} \label{eq:ZDF_Lsbc} 
    292292l_o = \kappa \beta \,\frac{|\tau|}{g\,\rho_o} 
    293293\end{equation} 
     
    297297As the surface boundary condition on TKE is prescribed through $\bar{e}_o = e_{bb} |\tau| / \rho_o$,  
    298298with $e_{bb}$ the \np{rn\_ebb} namelist parameter, setting \np{rn\_ebb}\forcode{ = 67.83} corresponds  
    299 to $\alpha_{CB} = 100$. Further setting  \np{ln\_mxl0} to true applies \eqref{ZDF_Lsbc}  
     299to $\alpha_{CB} = 100$. Further setting  \np{ln\_mxl0} to true applies \autoref{eq:ZDF_Lsbc}  
    300300as surface boundary condition on length scale, with $\beta$ hard coded to the Stacey's value. 
    301301Note that a minimal threshold of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters)  
     
    316316The parameterization, tuned against large-eddy simulation, includes the whole effect 
    317317of LC in an extra source terms of TKE, $P_{LC}$. 
    318 The presence of $P_{LC}$ in \eqref{Eq_zdftke_e}, the TKE equation, is controlled  
     318The presence of $P_{LC}$ in \autoref{eq:zdftke_e}, the TKE equation, is controlled  
    319319by setting \np{ln\_lc} to \forcode{.true.} in the namtke namelist. 
    320320  
     
    368368When using this parameterization ($i.e.$ when \np{nn\_etau}\forcode{ = 1}), the TKE input to the ocean ($S$)  
    369369imposed by the winds in the form of near-inertial oscillations, swell and waves is parameterized  
    370 by \eqref{ZDF_Esbc} the standard TKE surface boundary condition, plus a depth depend one given by: 
    371 \begin{equation}  \label{ZDF_Ehtau} 
     370by \autoref{eq:ZDF_Esbc} the standard TKE surface boundary condition, plus a depth depend one given by: 
     371\begin{equation}  \label{eq:ZDF_Ehtau} 
    372372S = (1-f_i) \; f_r \; e_s \; e^{-z / h_\tau}  
    373373\end{equation} 
     
    385385 
    386386Note that two other option existe, \np{nn\_etau}\forcode{ = 2..3}. They correspond to applying  
    387 \eqref{ZDF_Ehtau} only at the base of the mixed layer, or to using the high frequency part  
     387\autoref{eq:ZDF_Ehtau} only at the base of the mixed layer, or to using the high frequency part  
    388388of the stress to evaluate the fraction of TKE that penetrate the ocean.  
    389389Those two options are obsolescent features introduced for test purposes. 
     
    406406% ------------------------------------------------------------------------------------------------------------- 
    407407\subsection{TKE discretization considerations (\protect\key{zdftke})} 
    408 \label{ZDF_tke_ene} 
     408\label{subsec:ZDF_tke_ene} 
    409409 
    410410%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    411411\begin{figure}[!t]   \begin{center} 
    412412\includegraphics[width=1.00\textwidth]{Fig_ZDF_TKE_time_scheme} 
    413 \caption{ \protect\label{Fig_TKE_time_scheme}  
     413\caption{ \protect\label{fig:TKE_time_scheme}  
    414414Illustration of the TKE time integration and its links to the momentum and tracer time integration. } 
    415415\end{center}   
     
    418418 
    419419The production of turbulence by vertical shear (the first term of the right hand side  
    420 of \eqref{Eq_zdftke_e}) should balance the loss of kinetic energy associated with 
    421 the vertical momentum diffusion (first line in \eqref{Eq_PE_zdf}). To do so a special care  
     420of \autoref{eq:zdftke_e}) should balance the loss of kinetic energy associated with 
     421the vertical momentum diffusion (first line in \autoref{eq:PE_zdf}). To do so a special care  
    422422have to be taken for both the time and space discretization of the TKE equation  
    423423\citep{Burchard_OM02,Marsaleix_al_OM08}. 
    424424 
    425 Let us first address the time stepping issue. Fig.~\ref{Fig_TKE_time_scheme} shows  
     425Let us first address the time stepping issue. \autoref{fig:TKE_time_scheme} shows  
    426426how the two-level Leap-Frog time stepping of the momentum and tracer equations interplays  
    427427with the one-level forward time stepping of TKE equation. With this framework, the total loss  
    428428of kinetic energy (in 1D for the demonstration) due to the vertical momentum diffusion is  
    429429obtained by multiplying this quantity by $u^t$ and summing the result vertically:    
    430 \begin{equation} \label{Eq_energ1} 
     430\begin{equation} \label{eq:energ1} 
    431431\begin{split} 
    432432\int_{-H}^{\eta}  u^t \,\partial_z &\left( {K_m}^t \,(\partial_z u)^{t+\rdt}  \right) \,dz   \\ 
     
    436436\end{equation} 
    437437Here, the vertical diffusion of momentum is discretized backward in time  
    438 with a coefficient, $K_m$, known at time $t$ (Fig.~\ref{Fig_TKE_time_scheme}),  
    439 as it is required when using the TKE scheme (see \S\ref{STP_forward_imp}).  
    440 The first term of the right hand side of \eqref{Eq_energ1} represents the kinetic energy  
     438with a coefficient, $K_m$, known at time $t$ (\autoref{fig:TKE_time_scheme}),  
     439as it is required when using the TKE scheme (see \autoref{sec:STP_forward_imp}).  
     440The first term of the right hand side of \autoref{eq:energ1} represents the kinetic energy  
    441441transfer at the surface (atmospheric forcing) and at the bottom (friction effect).  
    442442The second term is always negative. It is the dissipation rate of kinetic energy,  
    443 and thus minus the shear production rate of $\bar{e}$. \eqref{Eq_energ1}  
     443and thus minus the shear production rate of $\bar{e}$. \autoref{eq:energ1}  
    444444implies that, to be energetically consistent, the production rate of $\bar{e}$  
    445445used to compute $(\bar{e})^t$ (and thus ${K_m}^t$) should be expressed as  
     
    448448 
    449449A similar consideration applies on the destruction rate of $\bar{e}$ due to stratification  
    450 (second term of the right hand side of \eqref{Eq_zdftke_e}). This term  
     450(second term of the right hand side of \autoref{eq:zdftke_e}). This term  
    451451must balance the input of potential energy resulting from vertical mixing.  
    452452The rate of change of potential energy (in 1D for the demonstration) due vertical  
    453453mixing is obtained by multiplying vertical density diffusion  
    454454tendency by $g\,z$ and and summing the result vertically: 
    455 \begin{equation} \label{Eq_energ2} 
     455\begin{equation} \label{eq:energ2} 
    456456\begin{split} 
    457457\int_{-H}^{\eta} g\,z\,\partial_z &\left( {K_\rho}^t \,(\partial_k \rho)^{t+\rdt}   \right) \,dz    \\ 
     
    463463\end{equation} 
    464464where we use $N^2 = -g \,\partial_k \rho / (e_3 \rho)$.  
    465 The first term of the right hand side of \eqref{Eq_energ2}  is always zero  
     465The first term of the right hand side of \autoref{eq:energ2}  is always zero  
    466466because there is no diffusive flux through the ocean surface and bottom).  
    467467The second term is minus the destruction rate of  $\bar{e}$ due to stratification.  
    468 Therefore \eqref{Eq_energ1} implies that, to be energetically consistent, the product  
    469 ${K_\rho}^{t-\rdt}\,(N^2)^t$ should be used in \eqref{Eq_zdftke_e}, the TKE equation. 
     468Therefore \autoref{eq:energ1} implies that, to be energetically consistent, the product  
     469${K_\rho}^{t-\rdt}\,(N^2)^t$ should be used in \autoref{eq:zdftke_e}, the TKE equation. 
    470470 
    471471Let us now address the space discretization issue.  
    472472The vertical eddy coefficients are defined at $w$-point whereas the horizontal velocity  
    473473components are in the centre of the side faces of a $t$-box in staggered C-grid  
    474 (Fig.\ref{Fig_cell}). A space averaging is thus required to obtain the shear TKE production term. 
    475 By redoing the \eqref{Eq_energ1} in the 3D case, it can be shown that the product of  
     474(\autoref{fig:cell}). A space averaging is thus required to obtain the shear TKE production term. 
     475By redoing the \autoref{eq:energ1} in the 3D case, it can be shown that the product of  
    476476eddy coefficient by the shear at $t$ and $t-\rdt$ must be performed prior to the averaging. 
    477477Furthermore, the possible time variation of $e_3$ (\key{vvl} case) have to be taken into  
     
    480480The above energetic considerations leads to  
    481481the following final discrete form for the TKE equation: 
    482 \begin{equation} \label{Eq_zdftke_ene} 
     482\begin{equation} \label{eq:zdftke_ene} 
    483483\begin{split} 
    484484\frac { (\bar{e})^t - (\bar{e})^{t-\rdt} } {\rdt}  \equiv   
     
    497497\end{split} 
    498498\end{equation} 
    499 where the last two terms in \eqref{Eq_zdftke_ene} (vertical diffusion and Kolmogorov dissipation)  
    500 are time stepped using a backward scheme (see\S\ref{STP_forward_imp}).  
     499where the last two terms in \autoref{eq:zdftke_ene} (vertical diffusion and Kolmogorov dissipation)  
     500are time stepped using a backward scheme (see\autoref{sec:STP_forward_imp}).  
    501501Note that the Kolmogorov term has been linearized in time in order to render  
    502502the implicit computation possible. The restart of the TKE scheme  
    503503requires the storage of $\bar {e}$, $K_m$, $K_\rho$ and $l_\epsilon$ as they all appear in  
    504 the right hand side of \eqref{Eq_zdftke_ene}. For the latter, it is in fact  
     504the right hand side of \autoref{eq:zdftke_ene}. For the latter, it is in fact  
    505505the ratio $\sqrt{\bar{e}}/l_\epsilon$ which is stored.  
    506506 
     
    509509% ------------------------------------------------------------------------------------------------------------- 
    510510\subsection{GLS: Generic Length Scale (\protect\key{zdfgls})} 
    511 \label{ZDF_gls} 
     511\label{subsec:ZDF_gls} 
    512512 
    513513%--------------------------------------------namzdf_gls--------------------------------------------------------- 
     
    519519for the generic length scale, $\psi$ \citep{Umlauf_Burchard_JMS03, Umlauf_Burchard_CSR05}.  
    520520This later variable is defined as : $\psi = {C_{0\mu}}^{p} \ {\bar{e}}^{m} \ l^{n}$,  
    521 where the triplet $(p, m, n)$ value given in Tab.\ref{Tab_GLS} allows to recover  
     521where the triplet $(p, m, n)$ value given in Tab.\autoref{tab:GLS} allows to recover  
    522522a number of well-known turbulent closures ($k$-$kl$ \citep{Mellor_Yamada_1982},  
    523523$k$-$\epsilon$ \citep{Rodi_1987}, $k$-$\omega$ \citep{Wilcox_1988}  
    524524among others \citep{Umlauf_Burchard_JMS03,Kantha_Carniel_CSR05}).  
    525525The GLS scheme is given by the following set of equations: 
    526 \begin{equation} \label{Eq_zdfgls_e} 
     526\begin{equation} \label{eq:zdfgls_e} 
    527527\frac{\partial \bar{e}}{\partial t} =  
    528528\frac{K_m}{\sigma_e e_3 }\;\left[ {\left( \frac{\partial u}{\partial k} \right)^2 
     
    533533\end{equation} 
    534534 
    535 \begin{equation} \label{Eq_zdfgls_psi} 
     535\begin{equation} \label{eq:zdfgls_psi} 
    536536   \begin{split} 
    537537\frac{\partial \psi}{\partial t} =& \frac{\psi}{\bar{e}} \left\{ 
     
    544544\end{equation} 
    545545 
    546 \begin{equation} \label{Eq_zdfgls_kz} 
     546\begin{equation} \label{eq:zdfgls_kz} 
    547547   \begin{split} 
    548548         K_m    &= C_{\mu} \ \sqrt {\bar{e}} \ l         \\ 
     
    551551\end{equation} 
    552552 
    553 \begin{equation} \label{Eq_zdfgls_eps} 
     553\begin{equation} \label{eq:zdfgls_eps} 
    554554{\epsilon} = C_{0\mu} \,\frac{\bar {e}^{3/2}}{l} \; 
    555555\end{equation} 
    556 where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \S\ref{TRA_bn2})  
     556where $N$ is the local Brunt-Vais\"{a}l\"{a} frequency (see \autoref{subsec:TRA_bn2})  
    557557and $\epsilon$ the dissipation rate.  
    558558The constants $C_1$, $C_2$, $C_3$, ${\sigma_e}$, ${\sigma_{\psi}}$ and the wall function ($Fw$)  
    559559depends of the choice of the turbulence model. Four different turbulent models are pre-defined  
    560 (Tab.\ref{Tab_GLS}). They are made available through the \np{nn\_clo} namelist parameter.  
     560(Tab.\autoref{tab:GLS}). They are made available through the \np{nn\_clo} namelist parameter.  
    561561 
    562562%--------------------------------------------------TABLE-------------------------------------------------- 
     
    579579\hline 
    580580\end{tabular} 
    581 \caption{   \protect\label{Tab_GLS}  
     581\caption{   \protect\label{tab:GLS}  
    582582Set of predefined GLS parameters, or equivalently predefined turbulence models available  
    583583with \protect\key{zdfgls} and controlled by the \protect\np{nn\_clos} namelist variable in \protect\ngn{namzdf\_gls} .} 
     
    596596As for TKE closure , the wave effect on the mixing is considered when \np{ln\_crban}\forcode{ = .true.} 
    597597\citep{Craig_Banner_JPO94, Mellor_Blumberg_JPO04}. The \np{rn\_crban} namelist parameter  
    598 is $\alpha_{CB}$ in \eqref{ZDF_Esbc} and \np{rn\_charn} provides the value of $\beta$ in \eqref{ZDF_Lsbc}.  
     598is $\alpha_{CB}$ in \autoref{eq:ZDF_Esbc} and \np{rn\_charn} provides the value of $\beta$ in \autoref{eq:ZDF_Lsbc}.  
    599599 
    600600The $\psi$ equation is known to fail in stably stratified flows, and for this reason  
     
    609609 
    610610The time and space discretization of the GLS equations follows the same energetic  
    611 consideration as for the TKE case described in \S\ref{ZDF_tke_ene}  \citep{Burchard_OM02}.  
     611consideration as for the TKE case described in \autoref{subsec:ZDF_tke_ene}  \citep{Burchard_OM02}.  
    612612Examples of performance of the 4 turbulent closure scheme can be found in \citet{Warner_al_OM05}. 
    613613 
     
    616616% ------------------------------------------------------------------------------------------------------------- 
    617617\subsection{OSM: OSMOSIS boundary layer scheme (\protect\key{zdfosm})} 
    618 \label{ZDF_osm} 
     618\label{subsec:ZDF_osm} 
    619619 
    620620%--------------------------------------------namzdf_osm--------------------------------------------------------- 
     
    628628% ================================================================ 
    629629\section{Convection} 
    630 \label{ZDF_conv} 
     630\label{sec:ZDF_conv} 
    631631 
    632632%--------------------------------------------namzdf-------------------------------------------------------- 
     
    648648\subsection[Non-penetrative convective adjmt (\protect\np{ln\_tranpc}\forcode{ = .true.})] 
    649649            {Non-penetrative convective adjustment (\protect\np{ln\_tranpc}\forcode{ = .true.})} 
    650 \label{ZDF_npc} 
     650\label{subsec:ZDF_npc} 
    651651 
    652652%--------------------------------------------namzdf-------------------------------------------------------- 
     
    657657\begin{figure}[!htb]    \begin{center} 
    658658\includegraphics[width=0.90\textwidth]{Fig_npc} 
    659 \caption{  \protect\label{Fig_npc}  
     659\caption{  \protect\label{fig:npc}  
    660660Example of an unstable density profile treated by the non penetrative  
    661661convective adjustment algorithm. $1^{st}$ step: the initial profile is checked from  
     
    677677column has \textit{exactly} the density of the water just below) \citep{Madec_al_JPO91}.  
    678678The associated algorithm is an iterative process used in the following way  
    679 (Fig. \ref{Fig_npc}): starting from the top of the ocean, the first instability is  
     679(\autoref{fig:npc}): starting from the top of the ocean, the first instability is  
    680680found. Assume in the following that the instability is located between levels  
    681681$k$ and $k+1$. The temperature and salinity in the two levels are  
     
    714714% ------------------------------------------------------------------------------------------------------------- 
    715715\subsection{Enhanced vertical diffusion (\protect\np{ln\_zdfevd}\forcode{ = .true.})} 
    716 \label{ZDF_evd} 
     716\label{subsec:ZDF_evd} 
    717717 
    718718%--------------------------------------------namzdf-------------------------------------------------------- 
     
    739739Note that the stability test is performed on both \textit{before} and \textit{now}  
    740740values of $N^2$. This removes a potential source of divergence of odd and 
    741 even time step in a leapfrog environment \citep{Leclair_PhD2010} (see \S\ref{STP_mLF}). 
     741even time step in a leapfrog environment \citep{Leclair_PhD2010} (see \autoref{sec:STP_mLF}). 
    742742 
    743743% ------------------------------------------------------------------------------------------------------------- 
     
    745745% ------------------------------------------------------------------------------------------------------------- 
    746746\subsection[Turbulent closure scheme (\protect\key{zdf}\{tke,gls,osm\})]{Turbulent Closure Scheme (\protect\key{zdftke}, \protect\key{zdfgls} or \protect\key{zdfosm})} 
    747 \label{ZDF_tcs} 
    748  
    749 The turbulent closure scheme presented in \S\ref{ZDF_tke} and \S\ref{ZDF_gls}  
     747\label{subsec:ZDF_tcs} 
     748 
     749The turbulent closure scheme presented in \autoref{subsec:ZDF_tke} and \autoref{subsec:ZDF_gls}  
    750750(\key{zdftke} or \key{zdftke} is defined) in theory solves the problem of statically  
    751751unstable density profiles. In such a case, the term corresponding to the  
    752 destruction of turbulent kinetic energy through stratification in \eqref{Eq_zdftke_e}  
    753 or \eqref{Eq_zdfgls_e} becomes a source term, since $N^2$ is negative.  
     752destruction of turbulent kinetic energy through stratification in \autoref{eq:zdftke_e}  
     753or \autoref{eq:zdfgls_e} becomes a source term, since $N^2$ is negative.  
    754754It results in large values of $A_T^{vT}$ and  $A_T^{vT}$, and also the four neighbouring  
    755755$A_u^{vm} {and}\;A_v^{vm}$ (up to $1\;m^2s^{-1})$. These large values  
    756756restore the static stability of the water column in a way similar to that of the  
    757 enhanced vertical diffusion parameterisation (\S\ref{ZDF_evd}). However,  
     757enhanced vertical diffusion parameterisation (\autoref{subsec:ZDF_evd}). However,  
    758758in the vicinity of the sea surface (first ocean layer), the eddy coefficients  
    759759computed by the turbulent closure scheme do not usually exceed $10^{-2}m.s^{-1}$,  
     
    772772% ================================================================ 
    773773\section{Double diffusion mixing (\protect\key{zdfddm})} 
    774 \label{ZDF_ddm} 
     774\label{sec:ZDF_ddm} 
    775775 
    776776%-------------------------------------------namzdf_ddm------------------------------------------------- 
     
    789789 
    790790Diapycnal mixing of S and T are described by diapycnal diffusion coefficients  
    791 \begin{align*} % \label{Eq_zdfddm_Kz} 
     791\begin{align*} % \label{eq:zdfddm_Kz} 
    792792    &A^{vT} = A_o^{vT}+A_f^{vT}+A_d^{vT}  \\ 
    793793    &A^{vS} = A_o^{vS}+A_f^{vS}+A_d^{vS} 
     
    797797mixing depend on the buoyancy ratio $R_\rho = \alpha \partial_z T / \beta \partial_z S$,  
    798798where $\alpha$ and $\beta$ are coefficients of thermal expansion and saline  
    799 contraction (see \S\ref{TRA_eos}). To represent mixing of $S$ and $T$ by salt  
     799contraction (see \autoref{subsec:TRA_eos}). To represent mixing of $S$ and $T$ by salt  
    800800fingering, we adopt the diapycnal diffusivities suggested by Schmitt (1981): 
    801 \begin{align} \label{Eq_zdfddm_f} 
     801\begin{align} \label{eq:zdfddm_f} 
    802802A_f^{vS} &=    \begin{cases} 
    803803   \frac{A^{\ast v}}{1+(R_\rho / R_c)^n   } &\text{if  $R_\rho > 1$ and $N^2>0$ } \\ 
    804804   0                              &\text{otherwise}  
    805805            \end{cases}    
    806 \\           \label{Eq_zdfddm_f_T} 
     806\\           \label{eq:zdfddm_f_T} 
    807807A_f^{vT} &= 0.7 \ A_f^{vS} / R_\rho  
    808808\end{align} 
     
    811811\begin{figure}[!t]   \begin{center} 
    812812\includegraphics[width=0.99\textwidth]{Fig_zdfddm} 
    813 \caption{  \protect\label{Fig_zdfddm} 
     813\caption{  \protect\label{fig:zdfddm} 
    814814From \citet{Merryfield1999} : (a) Diapycnal diffusivities $A_f^{vT}$  
    815815and $A_f^{vS}$ for temperature and salt in regions of salt fingering. Heavy  
     
    822822%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    823823 
    824 The factor 0.7 in \eqref{Eq_zdfddm_f_T} reflects the measured ratio  
     824The factor 0.7 in \autoref{eq:zdfddm_f_T} reflects the measured ratio  
    825825$\alpha F_T /\beta F_S \approx  0.7$ of buoyancy flux of heat to buoyancy  
    826826flux of salt ($e.g.$, \citet{McDougall_Taylor_JMR84}). Following  \citet{Merryfield1999},  
     
    828828 
    829829To represent mixing of S and T by diffusive layering,  the diapycnal diffusivities suggested by Federov (1988) is used:  
    830 \begin{align}  \label{Eq_zdfddm_d} 
     830\begin{align}  \label{eq:zdfddm_d} 
    831831A_d^{vT} &=    \begin{cases} 
    832832   1.3635 \, \exp{\left( 4.6\, \exp{ \left[  -0.54\,( R_{\rho}^{-1} - 1 )  \right] }    \right)} 
     
    834834   0                       &\text{otherwise}  
    835835            \end{cases}    
    836 \\          \label{Eq_zdfddm_d_S} 
     836\\          \label{eq:zdfddm_d_S} 
    837837A_d^{vS} &=    \begin{cases} 
    838838   A_d^{vT}\ \left( 1.85\,R_{\rho} - 0.85 \right) 
     
    844844\end{align} 
    845845 
    846 The dependencies of \eqref{Eq_zdfddm_f} to \eqref{Eq_zdfddm_d_S} on $R_\rho$  
    847 are illustrated in Fig.~\ref{Fig_zdfddm}. Implementing this requires computing  
     846The dependencies of \autoref{eq:zdfddm_f} to \autoref{eq:zdfddm_d_S} on $R_\rho$  
     847are illustrated in \autoref{fig:zdfddm}. Implementing this requires computing  
    848848$R_\rho$ at each grid point on every time step. This is done in \mdl{eosbn2} at the  
    849849same time as $N^2$ is computed. This avoids duplication in the computation of  
     
    854854% ================================================================ 
    855855\section{Bottom and top friction (\protect\mdl{zdfbfr})} 
    856 \label{ZDF_bfr} 
     856\label{sec:ZDF_bfr} 
    857857 
    858858%--------------------------------------------nambfr-------------------------------------------------------- 
     
    870870flux (bottom friction) enter the equations as a condition on the vertical  
    871871diffusive flux. For the bottom boundary layer, one has: 
    872 \begin{equation} \label{Eq_zdfbfr_flux} 
     872\begin{equation} \label{eq:zdfbfr_flux} 
    873873A^{vm} \left( \partial {\textbf U}_h / \partial z \right) = {{\cal F}}_h^{\textbf U} 
    874874\end{equation} 
     
    886886as a body force over the depth of the top or bottom model layer. To illustrate  
    887887this, consider the equation for $u$ at $k$, the last ocean level: 
    888 \begin{equation} \label{Eq_zdfbfr_flux2} 
     888\begin{equation} \label{eq:zdfbfr_flux2} 
    889889\frac{\partial u_k}{\partial t} = \frac{1}{e_{3u}} \left[ \frac{A_{uw}^{vm}}{e_{3uw}} \delta_{k+1/2}\;[u] - {\cal F}^u_h \right] \approx - \frac{{\cal F}^u_{h}}{e_{3u}} 
    890890\end{equation} 
     
    907907These coefficients are computed in \mdl{zdfbfr} and generally take the form  
    908908$c_b^{\textbf U}$ where: 
    909 \begin{equation} \label{Eq_zdfbfr_bdef} 
     909\begin{equation} \label{eq:zdfbfr_bdef} 
    910910\frac{\partial {\textbf U_h}}{\partial t} =  
    911911  - \frac{{\cal F}^{\textbf U}_{h}}{e_{3u}} = \frac{c_b^{\textbf U}}{e_{3u}} \;{\textbf U}_h^b 
     
    917917% ------------------------------------------------------------------------------------------------------------- 
    918918\subsection{Linear bottom friction (\protect\np{nn\_botfr}\forcode{ = 0..1})} 
    919 \label{ZDF_bfr_linear} 
     919\label{subsec:ZDF_bfr_linear} 
    920920 
    921921The linear bottom friction parameterisation (including the special case  
     
    923923is proportional to the interior velocity (i.e. the velocity of the last  
    924924model level): 
    925 \begin{equation} \label{Eq_zdfbfr_linear} 
     925\begin{equation} \label{eq:zdfbfr_linear} 
    926926{\cal F}_h^\textbf{U} = \frac{A^{vm}}{e_3} \; \frac{\partial \textbf{U}_h}{\partial k} = r \; \textbf{U}_h^b 
    927927\end{equation} 
     
    941941 
    942942For the linear friction case the coefficients defined in the general  
    943 expression \eqref{Eq_zdfbfr_bdef} are:  
    944 \begin{equation} \label{Eq_zdfbfr_linbfr_b} 
     943expression \autoref{eq:zdfbfr_bdef} are:  
     944\begin{equation} \label{eq:zdfbfr_linbfr_b} 
    945945\begin{split} 
    946946 c_b^u &= - r\\ 
     
    961961% ------------------------------------------------------------------------------------------------------------- 
    962962\subsection{Non-linear bottom friction (\protect\np{nn\_botfr}\forcode{ = 2})} 
    963 \label{ZDF_bfr_nonlinear} 
     963\label{subsec:ZDF_bfr_nonlinear} 
    964964 
    965965The non-linear bottom friction parameterisation assumes that the bottom  
    966966friction is quadratic:  
    967 \begin{equation} \label{Eq_zdfbfr_nonlinear} 
     967\begin{equation} \label{eq:zdfbfr_nonlinear} 
    968968{\cal F}_h^\textbf{U} = \frac{A^{vm}}{e_3 }\frac{\partial \textbf {U}_h  
    969969}{\partial k}=C_D \;\sqrt {u_b ^2+v_b ^2+e_b } \;\; \textbf {U}_h^b  
     
    983983For the non-linear friction case the terms 
    984984computed in \mdl{zdfbfr}  are:  
    985 \begin{equation} \label{Eq_zdfbfr_nonlinbfr} 
     985\begin{equation} \label{eq:zdfbfr_nonlinbfr} 
    986986\begin{split} 
    987987 c_b^u &= - \; C_D\;\left[ u^2 + \left(\bar{\bar{v}}^{i+1,j}\right)^2 + e_b \right]^{1/2}\\ 
     
    10031003\subsection[Log-layer btm frict enhncmnt (\protect\np{nn\_botfr}\forcode{ = 2}, \protect\np{ln\_loglayer}\forcode{ = .true.})] 
    10041004            {Log-layer bottom friction enhancement (\protect\np{nn\_botfr}\forcode{ = 2}, \protect\np{ln\_loglayer}\forcode{ = .true.})} 
    1005 \label{ZDF_bfr_loglayer} 
     1005\label{subsec:ZDF_bfr_loglayer} 
    10061006 
    10071007In the non-linear bottom friction case, the drag coefficient, $C_D$, can be optionally 
     
    10331033% ------------------------------------------------------------------------------------------------------------- 
    10341034\subsection{Bottom friction stability considerations} 
    1035 \label{ZDF_bfr_stability} 
     1035\label{subsec:ZDF_bfr_stability} 
    10361036 
    10371037Some care needs to exercised over the choice of parameters to ensure that the 
    10381038implementation of bottom friction does not induce numerical instability. For  
    1039 the purposes of stability analysis, an approximation to \eqref{Eq_zdfbfr_flux2} 
     1039the purposes of stability analysis, an approximation to \autoref{eq:zdfbfr_flux2} 
    10401040is: 
    1041 \begin{equation} \label{Eqn_bfrstab} 
     1041\begin{equation} \label{eq:Eqn_bfrstab} 
    10421042\begin{split} 
    10431043 \Delta u &= -\frac{{{\cal F}_h}^u}{e_{3u}}\;2 \rdt    \\ 
     
    10501050 |\Delta u| < \;|u|  
    10511051\end{equation} 
    1052 \noindent which, using \eqref{Eqn_bfrstab}, gives: 
     1052\noindent which, using \autoref{eq:Eqn_bfrstab}, gives: 
    10531053\begin{equation} 
    10541054r\frac{2\rdt}{e_{3u}} < 1 \qquad  \Rightarrow \qquad r < \frac{e_{3u}}{2\rdt}\\ 
     
    10751075 
    10761076Limits on the bottom friction coefficient are not imposed if the user has elected to 
    1077 handle the bottom friction implicitly (see \S\ref{ZDF_bfr_imp}). The number of potential 
     1077handle the bottom friction implicitly (see \autoref{subsec:ZDF_bfr_imp}). The number of potential 
    10781078breaches of the explicit stability criterion are still reported for information purposes. 
    10791079 
     
    10821082% ------------------------------------------------------------------------------------------------------------- 
    10831083\subsection{Implicit bottom friction (\protect\np{ln\_bfrimp}\forcode{ = .true.})} 
    1084 \label{ZDF_bfr_imp} 
     1084\label{subsec:ZDF_bfr_imp} 
    10851085 
    10861086An optional implicit form of bottom friction has been implemented to improve 
     
    10931093bottom boundary condition is implemented implicitly. 
    10941094 
    1095 \begin{equation} \label{Eq_dynzdf_bfr} 
     1095\begin{equation} \label{eq:dynzdf_bfr} 
    10961096\left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{mbk} 
    10971097    = \binom{c_{b}^{u}u^{n+1}_{mbk}}{c_{b}^{v}v^{n+1}_{mbk}} 
     
    11121112following: 
    11131113 
    1114 \begin{equation} \label{Eq_dynspg_ts_bfr1} 
     1114\begin{equation} \label{eq:dynspg_ts_bfr1} 
    11151115\frac{\textbf{U}_{med}-\textbf{U}^{m-1}}{2\Delta t}=-g\nabla\eta-f\textbf{k}\times\textbf{U}^{m}+c_{b} 
    11161116\left(\textbf{U}_{med}-\textbf{U}^{m-1}\right) 
    11171117\end{equation} 
    1118 \begin{equation} \label{Eq_dynspg_ts_bfr2} 
     1118\begin{equation} \label{eq:dynspg_ts_bfr2} 
    11191119\frac{\textbf{U}^{m+1}-\textbf{U}_{med}}{2\Delta t}=\textbf{T}+ 
    11201120\left(g\nabla\eta^{'}+f\textbf{k}\times\textbf{U}^{'}\right)- 
     
    11361136\subsection[Bottom friction w/ split-explicit time splitting (\protect\np{ln\_bfrimp})] 
    11371137            {Bottom friction with split-explicit time splitting (\protect\np{ln\_bfrimp})} 
    1138 \label{ZDF_bfr_ts} 
     1138\label{subsec:ZDF_bfr_ts} 
    11391139 
    11401140When calculating the momentum trend due to bottom friction in \mdl{dynbfr}, the 
     
    11751175the barotropic component which uses the unrestricted value of the coefficient. However, if the 
    11761176limiting is thought to be having a major effect (a more likely prospect in coastal and shelf seas 
    1177 applications) then the fully implicit form of the bottom friction should be used (see \S\ref{ZDF_bfr_imp} )  
     1177applications) then the fully implicit form of the bottom friction should be used (see \autoref{subsec:ZDF_bfr_imp} )  
    11781178which can be selected by setting \np{ln\_bfrimp} $=$ \forcode{.true.}. 
    11791179 
    11801180Otherwise, the implicit formulation takes the form: 
    1181 \begin{equation} \label{Eq_zdfbfr_implicitts} 
     1181\begin{equation} \label{eq:zdfbfr_implicitts} 
    11821182 \bar{U}^{t+ \rdt} = \; \left [ \bar{U}^{t-\rdt}\; + 2 \rdt\;RHS \right ] / \left [ 1 - 2 \rdt \;c_b^{u} / H_e \right ]   
    11831183\end{equation} 
     
    11931193% ================================================================ 
    11941194\section{Tidal mixing (\protect\key{zdftmx})} 
    1195 \label{ZDF_tmx} 
     1195\label{sec:ZDF_tmx} 
    11961196 
    11971197%--------------------------------------------namzdf_tmx-------------------------------------------------- 
     
    12041204% ------------------------------------------------------------------------------------------------------------- 
    12051205\subsection{Bottom intensified tidal mixing} 
    1206 \label{ZDF_tmx_bottom} 
     1206\label{subsec:ZDF_tmx_bottom} 
    12071207 
    12081208Options are defined through the  \ngn{namzdf\_tmx} namelist variables. 
     
    12131213$A^{vT}_{tides}$ is expressed as a function of $E(x,y)$, the energy transfer from barotropic  
    12141214tides to baroclinic tides :  
    1215 \begin{equation} \label{Eq_Ktides} 
     1215\begin{equation} \label{eq:Ktides} 
    12161216A^{vT}_{tides} =  q \,\Gamma \,\frac{ E(x,y) \, F(z) }{ \rho \, N^2 } 
    12171217\end{equation} 
    12181218where $\Gamma$ is the mixing efficiency, $N$ the Brunt-Vais\"{a}l\"{a} frequency  
    1219 (see \S\ref{TRA_bn2}), $\rho$ the density, $q$ the tidal dissipation efficiency,  
     1219(see \autoref{subsec:TRA_bn2}), $\rho$ the density, $q$ the tidal dissipation efficiency,  
    12201220and $F(z)$ the vertical structure function.  
    12211221 
     
    12301230It is implemented as a simple exponential decaying upward away from the bottom,  
    12311231with a vertical scale of $h_o$ (\np{rn\_htmx} namelist parameter, with a typical value of $500\,m$) \citep{St_Laurent_Nash_DSR04},  
    1232 \begin{equation} \label{Eq_Fz} 
     1232\begin{equation} \label{eq:Fz} 
    12331233F(i,j,k) = \frac{ e^{ -\frac{H+z}{h_o} } }{ h_o \left( 1- e^{ -\frac{H}{h_o} } \right) } 
    12341234\end{equation} 
     
    12411241usually set to $10^{-8} s^{-2}$. These bounds are usually rarely encountered. 
    12421242 
    1243 The internal wave energy map, $E(x, y)$ in \eqref{Eq_Ktides}, is derived  
     1243The internal wave energy map, $E(x, y)$ in \autoref{eq:Ktides}, is derived  
    12441244from a barotropic model of the tides utilizing a parameterization of the  
    12451245conversion of barotropic tidal energy into internal waves.  
     
    12501250the barotropic global ocean tide model MOG2D-G \citep{Carrere_Lyard_GRL03}. 
    12511251This model provides the dissipation associated with internal wave energy for the M2 and K1  
    1252 tides component (Fig.~\ref{Fig_ZDF_M2_K1_tmx}). The S2 dissipation is simply approximated 
     1252tides component (\autoref{fig:ZDF_M2_K1_tmx}). The S2 dissipation is simply approximated 
    12531253as being $1/4$ of the M2 one. The internal wave energy is thus : $E(x, y) = 1.25 E_{M2} + E_{K1}$.  
    12541254Its global mean value is $1.1$ TW, in agreement with independent estimates  
     
    12581258\begin{figure}[!t]   \begin{center} 
    12591259\includegraphics[width=0.90\textwidth]{Fig_ZDF_M2_K1_tmx} 
    1260 \caption{  \protect\label{Fig_ZDF_M2_K1_tmx}  
     1260\caption{  \protect\label{fig:ZDF_M2_K1_tmx}  
    12611261(a) M2 and (b) K1 internal wave drag energy from \citet{Carrere_Lyard_GRL03} ($W/m^2$). } 
    12621262\end{center}   \end{figure} 
     
    12671267% ------------------------------------------------------------------------------------------------------------- 
    12681268\subsection{Indonesian area specific treatment (\protect\np{ln\_zdftmx\_itf})} 
    1269 \label{ZDF_tmx_itf} 
     1269\label{subsec:ZDF_tmx_itf} 
    12701270 
    12711271When the Indonesian Through Flow (ITF) area is included in the model domain, 
     
    12941294proportional to $N^2$ below the core of the thermocline and to $N$ above.  
    12951295The resulting $F(z)$ is: 
    1296 \begin{equation} \label{Eq_Fz_itf} 
     1296\begin{equation} \label{eq:Fz_itf} 
    12971297F(i,j,k) \sim     \left\{ \begin{aligned} 
    12981298\frac{q\,\Gamma E(i,j) } {\rho N \, \int N     dz}    \qquad \text{when $\partial_z N < 0$} \\ 
     
    13151315% ================================================================ 
    13161316\section{Internal wave-driven mixing (\protect\key{zdftmx\_new})} 
    1317 \label{ZDF_tmx_new} 
     1317\label{sec:ZDF_tmx_new} 
    13181318 
    13191319%--------------------------------------------namzdf_tmx_new------------------------------------------ 
     
    13251325A three-dimensional field of internal wave energy dissipation $\epsilon(x,y,z)$ is first constructed,  
    13261326and the resulting diffusivity is obtained as  
    1327 \begin{equation} \label{Eq_Kwave} 
     1327\begin{equation} \label{eq:Kwave} 
    13281328A^{vT}_{wave} =  R_f \,\frac{ \epsilon }{ \rho \, N^2 } 
    13291329\end{equation} 
Note: See TracChangeset for help on using the changeset viewer.