New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 994 for trunk/DOC/TexFiles/Chapters/Chap_SBC.tex – NEMO

Ignore:
Timestamp:
2008-05-28T11:01:09+02:00 (16 years ago)
Author:
gm
Message:

trunk - add steven correction + several other things + rename BETA into TexFiles?

Location:
trunk/DOC/TexFiles
Files:
1 copied
1 moved

Legend:

Unmodified
Added
Removed
  • trunk/DOC/TexFiles/Chapters/Chap_SBC.tex

    r817 r994  
    66\minitoc 
    77 
    8 \begin{verbatim} 
    9 At the time of this writing, the new surface module  
    10 that is described in this chapter (SBC) is not yet part 
    11 of the current distribution. The current way to specify  
    12 the surface boundary condition is such a mess that we  
    13 did not attempt to describe it. Nevertheless, apart from  
    14 the way the surface forcing is implemented, the infor- 
    15 mation given here are relevant for a NEMO v2.3 user. 
    16 \end{verbatim} 
    17  
    18 The ocean needs 7 fields as surface boundary condition: 
    19  
    20 The two components of the surface ocean stress $\left( {\tau _u \;,\;\tau _v} \right)$ 
    21  
    22 The incoming solar and non solar heat fluxes $\left( {Q_{ns} \;,\;Q_{sr} } \right)$ 
    23  
    24 The surface freshwater budget $\left( {\text{EMP}\;,\;\text{EMP}_S } \right)$ 
    25  
    26 \colorbox {yellow}{ The river runoffs (RUNOFF)} 
    27  
    28 Four different ways are offered to provide those 7 fields to the ocean: an  
    29 analytical formulation, a flux formulation, a bulk formulae formulation  
    30 (CORE or CLIO bulk formulae) and a coupled formulation (exchanges with a  
    31 atmospheric model via OASIS coupler). In addition, the resulting fields can  
    32 be further modified on used demand via several namelist options. These options  
    33 control the addition of a surface restoring term to observed SST and/or SSS,  
    34 the modification of fluxes below ice-covered area (using observed ice-cover  
    35 or a sea-ice model), the addition of river runoffs as surface freshwater  
    36 fluxes, and the addition of a freshwater flux adjustment on order to avoid a  
    37 mean sea-level drift. 
     8\newpage 
     9$\ $\newline    % force a new ligne 
     10%---------------------------------------namsbc-------------------------------------------------- 
     11\namdisplay{namsbc} 
     12%-------------------------------------------------------------------------------------------------------------- 
     13$\ $\newline    % force a new ligne 
     14 
     15The ocean needs six fields as surface boundary condition: 
     16\begin{itemize} 
     17\item the two components of the surface ocean stress $\left( {\tau _u \;,\;\tau _v} \right)$ 
     18\item the incoming solar and non solar heat fluxes $\left( {Q_{ns} \;,\;Q_{sr} } \right)$ 
     19\item the surface freshwater budget $\left( {\text{EMP},\;\text{EMP}_S } \right)$ 
     20\end{itemize} 
     21 
     22Four different ways to provide those six fields to the ocean are available which  
     23are controlled by namelist variables: an analytical formulation (\np{ln\_ana}=true),  
     24a flux formulation (\np{ln\_flx}=true), a bulk formulae formulation (CORE  
     25(\np{ln\_core}=true) or CLIO (\np{ln\_clio}=true) bulk formulae) and a coupled  
     26formulation (exchanges with a atmospheric model via the OASIS coupler)  
     27(\np{ln\_cpl}=true). The frequency at which the six fields have to be updated is 
     28the  \np{nf\_sbc} namelist parameter.  
     29In addition, the resulting fields can be further modified using  
     30several namelist options. These options control the addition of a surface restoring  
     31term to observed SST and/or SSS (\np{ln\_ssr}=true), the modification of fluxes  
     32below ice-covered areas (using observed ice-cover or a sea-ice model)  
     33(\np{nn\_ice}=0,1, 2 or 3), the addition of river runoffs as surface freshwater  
     34fluxes (\np{ln\_rnf}=true), the addition of a freshwater flux adjustment in  
     35order to avoid a mean sea-level drift (\np{nn\_fwb}= 0, 1 or 2), and the  
     36transformation of the solar radiation (if provided as daily mean) into a diurnal  
     37cycle (\np{ln\_dm2dc}=true). 
    3838 
    3939In this chapter, we first discuss where the surface boundary condition  
    4040appears in the model equations. Then we present the four ways of providing  
    41 the surface boundary condition. Finally, the different options that modify  
    42 the fluxes inside the ocean are discussed. 
    43  
    44  
    45  
    46  
    47  
    48  
    49  
    50  
    51  
     41the surface boundary condition. Finally, the different options that further modify  
     42the fluxes applied to the ocean are discussed. 
    5243 
    5344 
     
    6051 
    6152The surface ocean stress is the stress exerted by the wind and the sea-ice  
    62 on the ocean. Their two components are assumed to be interpolated on the  
    63 ocean mesh, i.e. provided at U- and V-points and projected onto the  
    64 (\textbf{i},\textbf{j}) referential. They are applied as a surface boundary  
    65 condition of the computation of the momentum vertical mixing trend  
    66 (\textbf{dynzdf} module) : 
     53on the ocean. The two components of stress are assumed to be interpolated  
     54onto the ocean mesh, $i.e.$ resolved onto the model (\textbf{i},\textbf{j}) direction  
     55at $u$- and $v$-points They are applied as a surface boundary condition of the  
     56computation of the momentum vertical mixing trend (\mdl{dynzdf} module) : 
    6757\begin{equation} \label{Eq_sbc_dynzdf} 
    6858\left.{\left( {\frac{A^{vm} }{e_3 }\ \frac{\partial \textbf{U}_h}{\partial k}} \right)} \right|_{z=1} 
     
    7262stress vector in the $(\textbf{i},\textbf{j})$ coordinate system. 
    7363 
    74 The surface heat flux is decomposed in two parts, a non solar and solar heat  
    75 fluxes. The former is the non penetrative part of the heat flux (i.e.  
    76 sensible plus latent plus long wave heat fluxes). It is applied as a surface  
    77 boundary condition trend of the first level temperature time evolution  
    78 equation (\mdl{trasbc} module).  
     64The surface heat flux is decomposed into two parts, a non solar and a solar heat  
     65flux, $Q_{ns}$ and $Q_{sr}$, respectively. The former is the non penetrative part  
     66of the heat flux ($i.e.$ the sum of sensible, latent and long wave heat fluxes).  
     67It is applied as a surface boundary condition trend of the first level temperature  
     68time evolution equation (\mdl{trasbc} module).  
    7969\begin{equation} \label{Eq_sbc_trasbc_q} 
    8070\frac{\partial T}{\partial t}\equiv \cdots \;+\;\left. {\frac{Q_{ns} }{\rho  
    8171_o \;C_p \;e_{3T} }} \right|_{k=1} \quad 
    8272\end{equation} 
    83  
    84 The latter is the penetrative part of the heat flux. It is applied as a 3D  
    85 trends of the temperature equation (\mdl{traqsr} module) when \np{ln\_traqsr}=T. 
     73$Q_{sr}$ is the penetrative part of the heat flux. It is applied as a 3D  
     74trends of the temperature equation (\mdl{traqsr} module) when \np{ln\_traqsr}=True. 
    8675 
    8776\begin{equation} \label{Eq_sbc_traqsr} 
     
    8978\,e_{3T} }\delta _k \left[ {I_w } \right] 
    9079\end{equation} 
    91  
    92 where $I_w$ is an adimensional function that describes the way the light  
     80where $I_w$ is a non-dimensional function that describes the way the light  
    9381penetrates inside the water column. It is generally a sum of decreasing  
    94 exponential (see \S\ref{TRA_qsr}). 
    95  
    96 The surface freshwater budget is provided through two non-necessary  
    97 identical fields EMP and EMP$_S $. Indeed, a surface freshwater  
    98 flux has two effects: it changes the volume of the ocean and it changes the  
    99 surface concentration of salt (an others tracers). Therefore it appears in  
    100 the sea surface height and salinity time evolution equations as a volume  
    101 flux, EMP (\textit{dynspg\_xxx} modules), and concentration/dilution effect,  
    102 EMP$_{S}$ (\mdl{trasbc} module), respectively.  
     82exponentials (see \S\ref{TRA_qsr}). 
     83 
     84The surface freshwater budget is provided by fields: EMP and EMP$_S$ which  
     85may or may not be identical. Indeed, a surface freshwater flux has two effects:  
     86it changes the volume of the ocean and it changes the surface concentration of  
     87salt (and other tracers). Therefore it appears in the sea surface height as a volume  
     88flux, EMP (\textit{dynspg\_xxx} modules), and in the salinity time evolution equations  
     89as a concentration/dilution effect,  
     90EMP$_{S}$ (\mdl{trasbc} module).  
    10391\begin{equation} \label{Eq_trasbc_emp} 
    10492\begin{aligned} 
     
    10997\end{equation}  
    11098 
    111 In the real ocean, EMP=EMP$_S$ and the ocean salt content is conserved,  
     99In the real ocean, EMP$=$EMP$_S$ and the ocean salt content is conserved,  
    112100but it exist several numerical reasons why this equality should be broken.  
    113101For example: 
    114102 
    115103When rigid-lid assumption is made, the ocean volume becomes constant and  
    116 thus, EMP=0, not EMP$_{S }$. 
    117  
    118 When a sea-ice model is considered, the water exchanged between ice and  
    119 ocean is very lightly salty (mean sea-ice salinity is $\sim $\textit{4 psu}). In this case,  
     104thus, EMP$=$0, not EMP$_{S }$. 
     105 
     106When the ocean is coupled to a sea-ice model, the water exchanged between ice and  
     107ocean is slightly salty (mean sea-ice salinity is $\sim $\textit{4 psu}). In this case,  
    120108EMP$_{S}$ take into account both concentration/dilution effect associated with  
    121 freezing/melting together with salt flux between ice and ocean, while EMP is  
     109freezing/melting and the salt flux between ice and ocean, while EMP is  
    122110only the volume flux. In addition, in the current version of \NEMO, the  
    123111sea-ice is assumed to be above the ocean. Freezing/melting does not change  
    124 the ocean volume (not impact on EMP) while it modifies the SSS  
    125 \colorbox{yellow}{(see {\S} on LIM sea-ice model)}. 
    126  
    127 Note that SST can also be modified by a freshwater flux. Precipitations (in  
    128 particular solid one) may have a temperature significantly different from  
     112the ocean volume (not impact on EMP) but it modifies the SSS. 
     113%gm  \colorbox{yellow}{(see {\S} on LIM sea-ice model)}. 
     114 
     115Note that SST can also be modified by a freshwater flux. Precipitation (in  
     116particular solid precipitation) may have a temperature significantly different from  
    129117the SST. Due to the lack of information about the temperature of  
    130 precipitations, we assume it is equal to the SST. Therefore, no  
     118precipitation, we assume it is equal to the SST. Therefore, no  
    131119concentration/dilution term appears in the temperature equation. It has to  
    132 be emphasised that this absence does not mean that there is not heat flux  
    133 associated with precipitation! An excess of precipitation will change the  
    134 ocean heat content and is therefore associated with a heat flux (not  
     120be emphasised that this absence does not mean that there is no heat flux  
     121associated with precipitation! Precipitation can change the ocean volume and thus the 
     122ocean heat content. It is therefore associated with a heat flux (not yet  
    135123diagnosed in the model) \citep{Roullet2000}). 
    136124 
    137 \colorbox{yellow}{Miss: } 
    138  
    139 A extensive description of all namsbc namelist (parameter that have to be  
    140 created!) 
    141  
    142 Especially the \np{nf\_sbc}, the \mdl{sbc\_oce} module (fluxes + mean sst sss ssu  
    143 ssv) i.e. information required by flux computation or sea-ice 
    144  
    145 \colorbox{red}{Add nqsr = 0 / 1 replace key{\_}traqsr} 
    146  
    147 \mdl{sbc\_oce} containt the definition in memory of the 7 fields (6+runoff), add  
    148 a word on runoff: included in surface bc or add as lateral obc{\ldots}. 
    149  
    150 Sbcmod manage the ``providing'' (fourniture) to the ocean the 7 fields 
    151  
    152 Fluxes update only each nf{\_}sbc time step (namsbc) explain relation  
    153 between nf{\_}sbc and nf{\_}ice, do we define nf{\_}blk??? ? only one  
    154 nf{\_}sbc 
    155  
    156 Explain here all the namlist namsbc variable{\ldots}. 
    157  
    158 \colorbox{yellow}{End Miss } 
    159  
    160 The ocean model provides the following variables averaged over nf{\_}sbc  
    161 time-step: 
     125%\colorbox{yellow}{Miss: } 
     126% 
     127%A extensive description of all namsbc namelist (parameter that have to be  
     128%created!) 
     129% 
     130%Especially the \np{nf\_sbc}, the \mdl{sbc\_oce} module (fluxes + mean sst sss ssu  
     131%ssv) i.e. information required by flux computation or sea-ice 
     132% 
     133%\mdl{sbc\_oce} containt the definition in memory of the 7 fields (6+runoff), add  
     134%a word on runoff: included in surface bc or add as lateral obc{\ldots}. 
     135% 
     136%Sbcmod manage the ``providing'' (fourniture) to the ocean the 7 fields 
     137% 
     138%Fluxes update only each nf{\_}sbc time step (namsbc) explain relation  
     139%between nf{\_}sbc and nf{\_}ice, do we define nf{\_}blk??? ? only one  
     140%nf{\_}sbc 
     141% 
     142%Explain here all the namlist namsbc variable{\ldots}. 
     143% 
     144%\colorbox{yellow}{End Miss } 
     145 
     146The ocean model provides the surface currents, temperature and salinity  
     147averaged over \np{nf\_sbc} time-step (\ref{Tab_ssm}).The computation of the  
     148mean is done in \mdl{sbcmod} module. 
    162149 
    163150%-------------------------------------------------TABLE--------------------------------------------------- 
    164 \begin{table}[htbp]  \label{Tab_ssm} 
     151\begin{table}[tb]  \label{Tab_ssm} 
    165152\begin{center} 
    166153\begin{tabular}{|l|l|l|l|} 
    167154\hline 
    168 Variable desciption              & Computer name   & Units  & point \\  \hline 
    169 i-component of the surface current  & ssu\_u & $m.s^{-1}$   & U \\   \hline 
     155Variable description             & Model variable  & Units  & point \\  \hline 
     156i-component of the surface current  & ssu\_m & $m.s^{-1}$   & U \\   \hline 
    170157j-component of the surface current  & ssv\_m & $m.s^{-1}$   & V \\   \hline 
    171158Sea surface temperature          & sst\_m & \r{}$K$      & T \\   \hline 
    172159Sea surface salinty              & sss\_m & $psu$        & T \\   \hline 
    173160\end{tabular} 
     161\caption{Ocean variables provided by the ocean to the surface module (SBC).  
     162The variable are averaged over nf{\_}sbc time step, $i.e.$ the frequency of  
     163computation of surface fluxes.} 
    174164\end{center} 
    175165\end{table} 
    176166%-------------------------------------------------------------------------------------------------------------- 
    177167 
    178 The mean computation is done in sbcmod ( 
    179  
    180 \colorbox{yellow}{Penser a} mettre dans le restant l'info nf{\_}sbc ET nf{\_}sbc*rdt de sorte de  
    181 reinitialiser la moyenne si on change la frequence ou le pdt 
    182  
    183 NB: creer cn{\_}sbc{\_}ice (cn{\_} = character in the namelist) with 3  
    184 cases: 
    185  
    186 = `noice' no specific call 
    187  
    188 = `iceif ` ``ice-if'' sea ice, i.e. read observed ice-cover and modified sbc  
    189 bellow those area. 
    190  
    191 = `lim' LIM sea-ice model is called which update the sbc fields in ice  
    192 covered area 
    193  
    194 ? modify the nsbc{\_}ice variable depending of this parameter (from --1, 0  
    195 to 1) 
    196 \colorbox{yellow}{End Penser a} 
     168 
     169 
     170%\colorbox{yellow}{Penser a} mettre dans le restant l'info nf{\_}sbc ET nf{\_}sbc*rdt de sorte de reinitialiser la moyenne si on change la frequence ou le pdt 
     171 
    197172 
    198173% ================================================================ 
     
    203178\label{SBC_ana} 
    204179 
    205 %---------------------------------------namtau - namflx-------------------------------------------------- 
    206 \namdisplay{namtau} 
    207 \namdisplay{namflx} 
     180%---------------------------------------namsbc_ana-------------------------------------------------- 
     181\namdisplay{namsbc_ana} 
    208182%-------------------------------------------------------------------------------------------------------------- 
    209183 
    210184 
    211 The analytical formulation of the surface boundary condition is set by  
    212 default. In this case, all the 6 fluxes needed by the ocean are assumed to  
    213 be uniform in space. They take constant values given in the namlist  
    214 namsbc{\_}ana : \textit{utau0}, \textit{vtau0}, \textit{qns0}, \textit{qsr0}, \textit{emp0} and \textit{emps0}. while the runoff is set to zero. In addition,  
    215 the wind is allowed to reach its nominal value within a given number of time  
    216 step (\textit{ntau000}). 
    217  
    218 If a user wants to applied a different analytical forcing, \mdl{sbcana}  
    219 module is the very place to do that. As an example, one can have a look to  
    220 the \mdl{sbc\_ana\_gyre} routine which provides the analytical forcing of the  
     185The analytical formulation of the surface boundary condition is the default scheme. 
     186In this case, all the six fluxes needed by the ocean are assumed to  
     187be uniform in space. They take constant values given in the namelist  
     188namsbc{\_}ana by the variables \np{rn\_utau0}, \np{rn\_vtau0}, \np{rn\_qns0},  
     189\np{rn\_qsr0}, and \np{rn\_emp0} (EMP$=$EMP$_S$). The runoff is set to zero.  
     190In addition, the wind is allowed to reach its nominal value within a given number  
     191of time steps (\np{nn\_tau000}). 
     192 
     193If a user wants to apply a different analytical forcing, the \mdl{sbcana}  
     194module can be modified to use another scheme. As an example,  
     195the \mdl{sbc\_ana\_gyre} routine provides the analytical forcing for the  
    221196GYRE configuration (see GYRE configuration manual, in preparation). 
    222197 
     
    228203      {Flux formulation (\mdl{sbcflx} module) } 
    229204\label{SBC_flx} 
    230  
    231 In the flux formulation (\key{sbcflx} defined), the surface boundary  
     205%------------------------------------------namsbc_flx---------------------------------------------------- 
     206\namdisplay{namsbc_flx}  
     207%------------------------------------------------------------------------------------------------------------- 
     208 
     209In the flux formulation (\np{ln\_flx}=true), the surface boundary  
    232210condition fields are directly read from input files. The user has to define  
    233211in the namelist namsbc{\_}flx the name of the file, the name of the variable  
    234 read in the file, the time frequency at which it is given, and a logical  
    235 setting whether a time interpolation to the model time step is asked are not  
     212read in the file, the time frequency at which it is given (in hours), and a logical  
     213setting whether a time interpolation to the model time step is required  
    236214for this field). (fld\_i namelist structure). 
    237215 
    238 \colorbox{yellow}{ Describe the information given?  } 
    239  
    240 \colorbox{yellow}{  Add an info about on-line interpolation or not ? at with which scale{\ldots} } 
    241  
    242  
    243216\textbf{Caution}: when the frequency is set to --12, the data are monthly  
    244 values. There are assumed to be climatological values, so time interpolation  
     217values. These are assumed to be climatological values, so time interpolation  
    245218between December the 15$^{th}$ and January the 15$^{th}$ is done using  
    246 record 12 and 1 
     219records 12 and 1 
    247220 
    248221When higher frequency is set and time interpolation is demanded, the model  
    249222will try to read the last (first) record of previous (next) year in a file  
    250 having the same name but a suffix {\_}prev{\_}year (next{\_}year) being  
    251 added. These file must only content a single record. If they don't exist,  
    252 the will assume that the previous year last record is equal to the first  
    253 record of the previous year, and similarly, that the first record of the  
     223having the same name but a suffix {\_}prev{\_}year ({\_}next{\_}year) being  
     224added (e.g. "{\_}1989"). These files must only contain a single record. If they don't exist,  
     225the model assumes that the last record of the previous year is equal to the first  
     226record of the current year, and similarly, that the first record of the  
    254227next year is equal to the last record of the current year. This will cause  
    255 the forcing to remain constant over the first and last half fld\_frequ  
    256 hours. 
     228the forcing to remain constant over the first and last half fld\_frequ hours. 
    257229 
    258230Note that in general, a flux formulation is used in associated with a  
    259 damping term to observed SST and/or SSS. See \S\ref{SBC_ssr} for its  
     231restoring term to observed SST and/or SSS. See \S\ref{SBC_ssr} for its  
    260232specification. 
    261233 
     
    271243using bulk formulae and atmospheric fields and ocean (and ice) variables.  
    272244 
    273 The atmospheric fields used depends on the bulk formulae used. Two of them  
    274 are available : the CORE and CLIO bulk formulea. The choice is made by  
    275 activating the CPP key \key{sbcblk\_core} or  
    276 \key{sbcblk\_clio}, respectively. 
    277  
    278 \colorbox{yellow}{Note : if a sea-ice model is used then blah blah blah{\ldots}} 
    279  
    280 CORE bulk formulea 
    281  
    282 The CORE bulk formulae have been developed by \citet{LargeYeager2004}. They  
    283 have been design to handle the CORE forcing, a mixture of NCEP reanalysis  
    284 and satellite data. They use an inertial dissipative method to compute the  
    285 turbulent transfer coefficients (momentum, sensible heat and evaporation)  
    286 from the 10 meter wind speed, air temperature and specific humidity). 
     245The atmospheric fields used depend on the bulk formulae used. Two bulk formulations  
     246are available : the CORE and CLIO bulk formulea. The choice is made by setting to true 
     247one of the following namelist variable : \np{ln\_core} and \np{ln\_clio}. 
     248 
     249Note : in forced mode, when a sea-ice model is used, a bulk formulation have to be used.  
     250Therefore the two bulk formulea provided include the computation of the fluxes over both  
     251an ocean and an ice surface.  
     252 
     253% ------------------------------------------------------------------------------------------------------------- 
     254%        CORE Bulk formulea 
     255% ------------------------------------------------------------------------------------------------------------- 
     256\subsection    [CORE Bulk formulea (\np{ln\_core}=true)] 
     257            {CORE Bulk formulea (\np{ln\_core}=true, \mdl{sbcblk\_core})} 
     258\label{SBC_blk_core} 
     259%------------------------------------------namsbc_core---------------------------------------------------- 
     260\namdisplay{namsbc_core}  
     261%------------------------------------------------------------------------------------------------------------- 
     262 
     263The CORE bulk formulae have been developed by \citet{LargeYeager2004}.  
     264They have been designed to handle the CORE forcing, a mixture of NCEP  
     265reanalysis and satellite data. They use an inertial dissipative method to compute  
     266the turbulent transfer coefficients (momentum, sensible heat and evaporation)  
     267from the 10 metre wind speed, air temperature and specific humidity. 
     268 
     269Note that substituting ERA40 to NCEP reanalysis fields  
     270does not require changes in the bulk formulea themself.  
    287271 
    288272The required 8 input fields are: 
     
    293277\begin{tabular}{|l|l|l|l|} 
    294278\hline 
    295 Variable desciption              & Computer name   & Units        & point \\     \hline 
    296 i-component of the 10m air velocity & utau      & $m.s^{-1}$         & T or U \\    \hline 
    297 j-component of the 10m air velocity & vtau      & $m.s^{-1}$         & T or V \\ \hline 
     279Variable desciption              & Model variable  & Units   & point \\    \hline 
     280i-component of the 10m air velocity & utau      & $m.s^{-1}$         & T \\  \hline 
     281j-component of the 10m air velocity & vtau      & $m.s^{-1}$         & T \\  \hline 
    29828210m air temperature              & tair      & \r{}$K$            & T   \\ \hline 
    299283Specific humidity             & humi      & \%              & T \\      \hline 
     
    307291%-------------------------------------------------------------------------------------------------------------- 
    308292 
    309 Note that the air velocity can be provided at either tracer ocean point or  
    310 velocity ocean point.  
    311  
    312 \colorbox{yellow}{Explain low resolution, better to provide it at U-V, high resolution better} 
    313  
    314 \colorbox{yellow}{at T-point{\ldots} Explain why, scheme?} 
    315  
    316 \colorbox{yellow}{Add a namelist parameter to provide a switch from U/V or T (or I??) point} 
    317  
    318 \colorbox{yellow}{ for utau/vtau} 
    319  
    320 CLIO bulk formulea 
    321  
    322 The CLIO bulk formulae have been developed several years ago for the  
    323 Louvain-la-neuve coupled ice-ocean model (CLIO, Goosse et al. 1997). It is a  
    324 simpler bulk formulae that assumed the stress to be known and computes the  
    325 radiative fluxes from a climatological cloud cover.  
     293Note that the air velocity is provided at a tracer ocean point, not at a velocity ocean point ($u$- and $v$-points). It is simpler and faster (less fields to be read), but it is not the recommended method when the ocean grid 
     294size is the same or larger than the one of the input atmospheric fields. 
     295 
     296% ------------------------------------------------------------------------------------------------------------- 
     297%        CLIO Bulk formulea 
     298% ------------------------------------------------------------------------------------------------------------- 
     299\subsection    [CLIO Bulk formulea (\np{ln\_clio}=true)] 
     300            {CLIO Bulk formulea (\np{ln\_clio}=true, \mdl{sbcblk\_clio})} 
     301\label{SBC_blk_clio} 
     302%------------------------------------------namsbc_clio---------------------------------------------------- 
     303\namdisplay{namsbc_clio}  
     304%------------------------------------------------------------------------------------------------------------- 
     305 
     306The CLIO bulk formulae were developed several years ago for the  
     307Louvain-la-neuve coupled ice-ocean model (CLIO, \cite{Goosse_al_JGR99}).  
     308They are simpler bulk formulae. They assume the stress to be known and  
     309compute the radiative fluxes from a climatological cloud cover.  
    326310 
    327311The required 7 input fields are: 
     
    332316\begin{tabular}{|l|l|l|l|} 
    333317\hline 
    334 Variable desciption           & Computer name   & Units              & point \\  \hline 
     318Variable desciption           & Model variable  & Units           & point \\  \hline 
    335319i-component of the ocean stress     & utau         & $N.m^{-2}$         & U \\   \hline 
    336320j-component of the ocean stress     & vtau         & $N.m^{-2}$         & V \\   \hline 
    337321Wind speed module             & vatm         & $m.s^{-1}$         & T \\   \hline 
    33832210m air temperature              & tair         & \r{}$K$            & T \\   \hline 
    339 Secific humidity                 & humi         & \%              & T \\   \hline 
     323Specific humidity                & humi         & \%              & T \\   \hline 
    340324Cloud cover                   &           & \%              & T \\   \hline 
    341325Total precipitation (liquid + solid)   & precip    & $Kg.m^{-2}.s^{-1}$ & T \\   \hline 
     
    346330%-------------------------------------------------------------------------------------------------------------- 
    347331 
    348 As for the flux formulation, the input data information required by the  
     332As for the flux formulation, information about the input data required by the  
    349333model is provided in the namsbc\_blk\_core or namsbc\_blk\_clio  
    350 namelist (via the structure fld\_i). The same assumption is made about the  
    351 value of the first and last record in each file. 
    352  
     334namelist (via the structure fld\_i). The first and last record assumption is also made  
     335(see \S\ref{SBC_flx}) 
    353336 
    354337% ================================================================ 
     
    358341      {Coupled formulation (\mdl{sbccpl} module)} 
    359342\label{SBC_cpl} 
     343%------------------------------------------namsbc_cpl---------------------------------------------------- 
     344\namdisplay{namsbc_cpl}  
     345%------------------------------------------------------------------------------------------------------------- 
    360346 
    361347In the coupled formulation of the surface boundary condition, the fluxes are  
     
    364350the atmospheric component. 
    365351 
     352The generalised coupled interface is under development. It should be available 
     353in summer 2008. It will include the ocean interface for most of the European  
     354atmospheric GCM (ARPEGE, ECHAM, ECMWF, HadAM, LMDz). 
     355 
    366356 
    367357% ================================================================ 
    368358% Miscellanea options 
    369359% ================================================================ 
    370 \section{Miscellanea options} 
     360\section{Miscellaneous options} 
    371361\label{SBC_misc} 
    372362 
     
    377367         {Surface restoring to observed SST and/or SSS (\mdl{sbcssr})} 
    378368\label{SBC_ssr} 
    379  
    380 In forced mode using flux formulation (default option or \key{flx} defined), a  
    381 feedback term \emph{must} be added to the specified surface heat flux $Q_{ns}^o$: 
     369%------------------------------------------namsbc_ssr---------------------------------------------------- 
     370\namdisplay{namsbc_ssr}  
     371%------------------------------------------------------------------------------------------------------------- 
     372 
     373In forced mode using a flux formulation (default option or \key{flx} defined), a  
     374feedback term \emph{must} be added to the surface heat flux $Q_{ns}^o$: 
    382375\begin{equation} \label{Eq_sbc_dmp_q} 
    383376Q_{ns} = Q_{ns}^o + \frac{dQ}{dT} \left( \left. T \right|_{k=1} - SST_{Obs} \right) 
     
    385378where SST is a sea surface temperature field (observed or climatological), $T$ is  
    386379the model surface layer temperature and $\frac{dQ}{dT}$ is a negative feedback  
    387 coefficient usually taken equal to $-40~W.m^{-2}.$\r{}K$^{-1}$. For a $50~m$ mixed-layer depth,  
    388 this value corresponds to a relaxation time scale of two months. This term  
    389 ensures that if $T$ perfectly fits SST then $Q$ is equal to $Q_o$.  
    390  
    391 In the fresh water budget, a feedback term can also be added: 
     380coefficient usually taken equal to $-40~W/m^2/K$. For a $50~m$  
     381mixed-layer depth, this value corresponds to a relaxation time scale of two months.  
     382This term ensures that if $T$ perfectly matches the supplied SST, then $Q$ is  
     383equal to $Q_o$.  
     384 
     385In the fresh water budget, a feedback term can also be added. Converted into an  
     386equivalent freshwater flux, it takes the following expression : 
    392387 
    393388\begin{equation} \label{Eq_sbc_dmp_emp} 
    394 EMP = EMP_o +\gamma_s^{-1} \left(S-SSS_{Obs}\right)\left|S\right. 
     389EMP = EMP_o + \gamma_s^{-1} e_{3t}  \frac{  \left(\left.S\right|_{k=1}-SSS_{Obs}\right)} 
     390                                             {\left.S\right|_{k=1}} 
    395391\end{equation} 
    396392 
    397 where EMP$_{o }$ is a net surface fresh water flux (observed, climatological or  
    398 atmospheric model product), \textit{SSS}$_{Obs}$is a sea surface salinity (usually a time  
    399 interpolation of the monthly mean PHC climatology \citep{Steele2001}, $S$ is the model  
    400 surface layer salinity and $\gamma_s$ is a negative feedback coefficient  
    401 which is provided as a namelist parameter. Unlike heat flux, there is no  
    402 physical justification for the feedback term in (III.4.4) as the atmosphere  
    403 does not care about ocean surface salinity \citep{Madec1997}. The  
    404 SSS restoring term can only be view as a flux correction on freshwater  
    405 fluxes to reduce the uncertainties we have on the observed freshwater  
    406 budget. 
     393where EMP$_{o }$ is a net surface fresh water flux (observed, climatological or an 
     394atmospheric model product), \textit{SSS}$_{Obs}$ is a sea surface salinity (usually a time  
     395interpolation of the monthly mean Polar Hydrographic Climatology \citep{Steele2001}),  
     396$\left.S\right|_{k=1}$ is the model surface layer salinity and $\gamma_s$ is a negative  
     397feedback coefficient which is provided as a namelist parameter. Unlike heat flux, there is no  
     398physical justification for the feedback term in \ref{Eq_sbc_dmp_emp} as the atmosphere  
     399does not care about ocean surface salinity \citep{Madec1997}. The SSS restoring  
     400term should be viewed as a flux correction on freshwater fluxes to reduce the  
     401uncertainties we have on the observed freshwater budget. 
    407402 
    408403% ------------------------------------------------------------------------------------------------------------- 
     
    411406\subsection{Handling of ice-covered area} 
    412407\label{SBC_ice-cover} 
    413 The presence of sea-ice at the top of the ocean  
    414 strongly modify the surface fluxes 
    415  
    416 The presence at the sea surface of an ice cover area modified all the fluxes  
    417 transmitted to the ocean. There is two cases whereas a sea-ice model is used  
    418 or not.  
    419  
    420 Without sea ice model, the information of ice-cover / open ocean is read in  
    421 a file (either the directly the ice-cover or the observed SST from which  
    422 ice-cover is deduced using a criteria on freezing point temperature).  
     408 
     409The presence at the sea surface of an ice covered area modifies all the fluxes  
     410transmitted to the ocean. There are several way to handle sea-ice in the system depending on the value of the \np{nn{\_}ice} namelist parameter.   
     411\begin{description} 
     412\item[nn{\_}ice = 0]  there will never be sea-ice in the computational domain. This is a typical namelist value used for tropical ocean domain. The surface fluxes are simply specified for an ice-free ocean. No specific things are done for sea-ice. 
     413\item[nn{\_}ice = 1]  sea-ice can exist in the computational domain, but no sea-ice model is used. An observed ice covered area is read in a file. Below this area, the SST is restored to the freezing point and the heat fluxes are set to $-4~W/m^2$ ($-2~W/m^2$) in the northern (southern) hemisphere. The associated modification of the freshwater fluxes are done in such a way that the change in buoyancy fluxes remains zero. This prevents deep convection to occur when trying to reach the freezing point (and so ice covered area condition) while the SSS is too large. This manner of managing sea-ice area, just by using si IF case, is usually referred as the \textit{ice-if} model. It can be found in the \mdl{sbcice{\_}if} module. 
     414\item[nn{\_}ice = 2 or more]  A full sea ice model is used. This model computes the ice-ocean fluxes, that are combined with the air-sea fluxes using the ice fraction of each model cell to provide the surface ocean fluxes. Note that the activation of a sea-ice model is is done by defining a CPP key (\key{lim2} or \key{lim3}). The activation automatically ovewrite the read value of nn{\_}ice to its appropriate value ($i.e.$ $2$ for LIM-2 and $3$ for LIM-3). 
     415\end{description} 
     416 
     417% {Description of Ice-ocean interface to be added here or in LIM 2 and 3 doc ?} 
    423418 
    424419% ------------------------------------------------------------------------------------------------------------- 
     
    428423         {Addition of river runoffs (\mdl{sbcrnf})} 
    429424\label{SBC_rnf} 
     425%------------------------------------------namsbc_rnf---------------------------------------------------- 
     426\namdisplay{namsbc_rnf}  
     427%------------------------------------------------------------------------------------------------------------- 
    430428 
    431429It is convenient to introduce the river runoff in the model as a surface  
    432 fresh water fluxes. \colorbox{yellow}{{\ldots} blah blah{\ldots}.} 
     430fresh water flux.  
    433431 
    434432\colorbox{yellow}{Nevertheless, Pb of vertical resolution and increase of Kz in vicinity of } 
     
    444442         {Freshwater budget control (\mdl{sbcfwb})} 
    445443\label{SBC_fwb} 
    446 %--------------------------------------------namfwb-------------------------------------------------------- 
    447 \namdisplay{namfwb} 
    448 %-------------------------------------------------------------------------------------------------------------- 
    449  
    450 To be written latter... 
     444 
     445To be written later... 
    451446 
    452447\gmcomment{The descrition of the technique used to control the freshwater budget has to be added here} 
Note: See TracChangeset for help on using the changeset viewer.