New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_s_coord.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex @ 15814

Last change on this file since 15814 was 14257, checked in by nicolasmartin, 3 years ago

Overall review of LaTeX sources (not tested completely as of now):

  • Reworking global files: main document.tex, add glossary.tex, cosmetic changes...
  • Ignore missing namelists (namsbc_isf, namsbc_iscpl and namptr)
  • Removal of references for unused indices (\hfile, \ifile and \jp)
  • Update of .svnignore and svn:ignore properties accordingly
  • Split of manual abstract into a common NEMO abs for all and a specific one for each engine
  • Shrinking variables names used in the frontmatter
File size: 30.0 KB
RevLine 
[10414]1\documentclass[../main/NEMO_manual]{subfiles}
2
[6997]3\begin{document}
[707]4
[2282]5\chapter{Curvilinear $s-$Coordinate Equations}
[11543]6\label{apdx:SCOORD}
[10414]7
[11598]8%    {\em 4.0} & {\em Mike Bell} & {\em review}  \\
9%    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\
10
[11435]11\chaptertoc
[707]12
[11598]13\paragraph{Changes record} ~\\
[11337]14
[11598]15{\footnotesize
16  \begin{tabularx}{\textwidth}{l||X|X}
17    Release & Author(s) & Modifications \\
18    \hline
19    {\em   4.0} & {\em ...} & {\em ...} \\
20    {\em   3.6} & {\em ...} & {\em ...} \\
21    {\em   3.4} & {\em ...} & {\em ...} \\
22    {\em <=3.4} & {\em ...} & {\em ...}
23  \end{tabularx}
24}
25
26\clearpage
27
[9393]28\section{Chain rule for $s-$coordinates}
[11543]29\label{sec:SCOORD_chain}
[2282]30
[3294]31In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
[11435]32(\ie\ an orthogonal curvilinear coordinate in the horizontal and
[10354]33an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
[11543]34we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
[10354]35the special case $k = z$ and thus $e_3 = 1$,
36and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
37Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
38the horizontal slope of $s-$surfaces by:
[10414]39\begin{equation}
[11543]40  \label{eq:SCOORD_s_slope}
[11335]41  \sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
[10414]42  \quad \text{and} \quad
[11335]43  \sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
[707]44\end{equation}
45
[11335]46The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
[11543]47functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
48these fields.  Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
[10414]49\begin{equation}
[11543]50  \label{eq:SCOORD_s_infin_changes}
[11335]51  \begin{aligned}
[11543]52    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
53                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
54                + \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
[11335]55                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
[11543]56    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
57                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
58                + \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
[11335]59                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
60  \end{aligned}
61\end{equation}
62Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
63\begin{equation}
[11558]64  \label{eq:SCOORD_s_chain_rule1}
[11335]65      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t}  =
66      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
[11543]67    + \left. {\frac{\partial s       }{\partial i}} \right|_{j,z,t} \;
68      \left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
[11335]69\end{equation}
[11543]70The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
71(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
[11335]72$s$ and $j, t$ held constant
73\begin{equation}
[11543]74\label{eq:SCOORD_delta_s}
75\delta s|_{j,t} =
76         \delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
[11335]77       + \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
78\end{equation}
79Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
[11543]80(\autoref{eq:SCOORD_s_slope}) we obtain
[11335]81\begin{equation}
[11543]82\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
[11335]83         -  \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
84            \left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
85    = - \frac{e_1 }{e_3 }\sigma_1  .
[11543]86\label{eq:SCOORD_ds_di_z}
[11335]87\end{equation}
[11543]88Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
89by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
[11335]90changes in which $i , j$ and $s$ are constant. This shows that
91\begin{equation}
[11543]92\label{eq:SCOORD_w_in_s}
93w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
[11335]94- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
[11543]95  \left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
96  = - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
[11335]97\end{equation}
98
[11543]99In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
100usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
[11335]101the model equations in the curvilinear $s-$coordinate system are:
102\begin{equation}
[11558]103  \label{eq:SCOORD_s_chain_rule2}
[10414]104  \begin{aligned}
105    &\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
[11543]106    \left. {\frac{\partial \bullet }{\partial t}} \right|_s
[11335]107    + \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
[10414]108    &\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
109    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
[11335]110    +\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
[11543]111    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
[11335]112    -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
[10414]113    &\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
[11543]114    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
[11335]115    + \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
[11543]116    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
[11335]117    - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
118    &\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
[10414]119  \end{aligned}
[707]120\end{equation}
121
[11597]122%% =================================================================================================
[9393]123\section{Continuity equation in $s-$coordinates}
[11543]124\label{sec:SCOORD_continuity}
[707]125
[11558]126Using (\autoref{eq:SCOORD_s_chain_rule1}) and
[10354]127the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
128the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
129obtain its expression in the curvilinear $s-$coordinate system:
[707]130
[10414]131\begin{subequations}
132  \begin{align*}
133    {
134    \begin{array}{*{20}l}
[11151]135      \nabla \cdot {\mathrm {\mathbf U}}
[10414]136      &= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
137        +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
138        + \frac{\partial w}{\partial z} \\ \\
139      &     = \frac{1}{e_1 \,e_2 }  \left[
140        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
141        - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
142        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s
143        - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right]
144        + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
145      &     = \frac{1}{e_1 \,e_2 }   \left[
146        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
147        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s         \right]
148        + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
149        -  \sigma_1 \frac{\partial u}{\partial s}
150        -  \sigma_2 \frac{\partial v}{\partial s}      \right] \\ \\
151      &     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
152        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_s
153        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s
154        + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
155        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right] \\
156      & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
157        + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
158        -  \sigma_1 \frac{\partial u}{\partial s}
159        -  \sigma_2 \frac{\partial v}{\partial s}      \right]      \\
160      %
161      \intertext{Noting that $
162      \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
163      =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
164      =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
165      =\frac{\partial \sigma_1}{\partial s}
166      $ and $
167      \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
168      =\frac{\partial \sigma_2}{\partial s}
169      $, it becomes:}
170    %
[11151]171      \nabla \cdot {\mathrm {\mathbf U}}
[10414]172      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
173        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
174        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right] \\
175      & \qquad \qquad \qquad \qquad \quad
176        +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
177      \\
178      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
179        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
180        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
181        + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right]
182    \end{array}
183        }
184  \end{align*}
[2282]185\end{subequations}
186
[11543]187Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
188Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
189and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and  $w_s$,
[11335]190one can show that the vertical velocity, $w_p$ of a point
[11543]191moving with the horizontal velocity of the fluid along an $s$ surface is given by
[10414]192\begin{equation}
[11543]193\label{eq:SCOORD_w_p}
[11335]194\begin{split}
195w_p  = & \left. \frac{ \partial z }{\partial t} \right|_s
[11543]196     + \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
[11335]197     + \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
198     = & w_s + u \sigma_1 + v \sigma_2 .
[11543]199\end{split}
[11335]200\end{equation}
201 The vertical velocity across this surface is denoted by
202\begin{equation}
[11543]203  \label{eq:SCOORD_w_s}
204  \omega  = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v )  .
[707]205\end{equation}
[11543]206Hence
[11335]207\begin{equation}
[11543]208\frac{1}{e_3 } \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right] =
209\frac{1}{e_3 } \frac{\partial}{\partial s} \left[  \omega + w_s \right] =
210   \frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
211 + \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
212   \frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
[11335]213\end{equation}
214
[11543]215Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
[11335]216our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
217\begin{equation}
218      \nabla \cdot {\mathrm {\mathbf U}} =
219         \frac{1}{e_1 \,e_2 \,e_3 }    \left[
[10414]220        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
221        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
222        + \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
[11335]223        + \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
224\end{equation}
[707]225
[11543]226As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
[10414]227\begin{equation}
[11543]228  \label{eq:SCOORD_sco_Continuity}
[10414]229  \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
230  + \frac{1}{e_1 \,e_2 \,e_3 }\left[
231    {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
232      +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
[11335]233  +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
[707]234\end{equation}
[11335]235An additional term has appeared that takes into account
[10354]236the contribution of the time variation of the vertical coordinate to the volume budget.
[707]237
[11597]238%% =================================================================================================
[9393]239\section{Momentum equation in $s-$coordinate}
[11543]240\label{sec:SCOORD_momentum}
[707]241
[10354]242Here we only consider the first component of the momentum equation,
[2282]243the generalization to the second one being straightforward.
244
245$\bullet$ \textbf{Total derivative in vector invariant form}
246
[11543]247Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
[10354]248Its total $z-$coordinate time derivative,
249$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
[2282]250its expression in the curvilinear $s-$coordinate system:
[707]251
[10414]252\begin{subequations}
253  \begin{align*}
254    {
255    \begin{array}{*{20}l}
256      \left. \frac{D u}{D t} \right|_z
257      &= \left. {\frac{\partial u }{\partial t}} \right|_z
258        - \left. \zeta \right|_z v
259        + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
260        + w \;\frac{\partial u}{\partial z} \\ \\
261      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]262        -  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
[10414]263        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
264        +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
265        +  w \;\frac{\partial u}{\partial z}      \\
266        %
[11558]267      \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
[10414]268      %
269      &= \left. {\frac{\partial u }{\partial t}} \right|_z
270        - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
271        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
272        \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
273        +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\
274      & \qquad \qquad \qquad \qquad
275        {
276        + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
277        - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
278        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
279        } \\ \\
280      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]281        - \left. \zeta \right|_s \;v
[10414]282        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
283      &\qquad \qquad \qquad \quad
284        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
[11335]285        + \left[   {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
[10414]286        - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v
287        - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
288      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]289        - \left. \zeta \right|_s \;v
[10414]290        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
291      &\qquad \qquad \qquad \quad
292        + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
293        +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
294        - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
295      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]296        - \left. \zeta \right|_s \;v
[10414]297        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
298        + \frac{1}{e_3} \left[  w - \sigma_2 v - \sigma_1 u  \right]
[11335]299        \; \frac{\partial u}{\partial s} .  \\
[10414]300        %
[11543]301      \intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
[10414]302      %
303      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]304        - \left. \zeta \right|_s \;v
[10414]305        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
[11335]306        + \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s}   \\
[10414]307    \end{array}
308    }
309  \end{align*}
[2282]310\end{subequations}
[11558]311Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
[11543]312using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
[10414]313\[
314  {
315    \begin{array}{*{20}l}
[11335]316      \frac{w_s}{e_3\;\frac{\partial u}{\partial s}
317      = - \left. \frac{\partial s}{\partial t} \right|_z \;  \frac{\partial u }{\partial s}
318      = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
[10414]319    \end{array}
320  }
[10406]321\]
[11335]322This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
[11435]323\ie\ the total $s-$coordinate time derivative :
[10414]324\begin{align}
[11543]325  \label{eq:SCOORD_sco_Dt_vect}
[10414]326  \left. \frac{D u}{D t} \right|_s
327  = \left. {\frac{\partial u }{\partial t}} \right|_s
[11335]328  - \left. \zeta \right|_s \;v
[10414]329  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
[11543]330  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
[2282]331\end{align}
[10354]332Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
333$z-$ and $s-$coordinates.
334This is not the case for the flux form as shown in next paragraph.
[2282]335
336$\bullet$ \textbf{Total derivative in flux form}
337
[10354]338Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
[11543]339Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
[10414]340% \begin{subequations}
341\begin{align*}
342  {
343  \begin{array}{*{20}l}
344    \left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_s
345    & -  \zeta \;v
346      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
347      + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
348                                      &= \left. {\frac{\partial u }{\partial t}} \right|_s
349    &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
350      + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
351      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
352                                      &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
353                                         + \frac{\partial(e_1 v)}{\partial j}    \right)
354                                         + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
355                                      &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
[11335]356                                         -u  \;\frac{\partial e_1 }{\partial j}  \right) . \\
[10414]357  \end{array}
358  }
[817]359\end{align*}
[11543]360Introducing the vertical scale factor inside the horizontal derivative of the first two terms
[11435]361(\ie\ the horizontal divergence), it becomes :
[10414]362\begin{align*}
363  {
364  \begin{array}{*{20}l}
365    % \begin{align*} {\begin{array}{*{20}l}
[11543]366    %     {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
[10414]367    &= \left. {\frac{\partial u }{\partial t}} \right|_s
368    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
369      + \frac{\partial( e_1 e_3 \,u v )}{\partial j}
370      -  e_2 u u \frac{\partial e_3}{\partial i}
371      -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
372      + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
373    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
374       + \frac{\partial(e_1 e_3 \, v)}{\partial j}
375       -  e_2 u \;\frac{\partial e_3 }{\partial i}
376       -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
[11335]377       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
[10414]378    && - \frac{v}{e_1 e_2 }\left(   v  \;\frac{\partial e_2 }{\partial i}
379       -u  \;\frac{\partial e_1 }{\partial j}   \right) \\ \\
380    &= \left. {\frac{\partial u }{\partial t}} \right|_s
381    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
382      + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
383      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
384    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
385       + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
[11335]386       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]
[10414]387       - \frac{v}{e_1 e_2 }\left(   v   \;\frac{\partial e_2 }{\partial i}
[11335]388       -u   \;\frac{\partial e_1 }{\partial j}  \right)     .             \\
[10414]389     %
390    \intertext {Introducing a more compact form for the divergence of the momentum fluxes,
[11543]391    and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
[10414]392    it becomes : }
393  %
394    &= \left. {\frac{\partial u }{\partial t}} \right|_s
[11151]395    &+ \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
[10414]396      + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
[2282]397      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[10414]398      -u  \;\frac{\partial e_1 }{\partial j}    \right)
399    \\
400  \end{array}
401  }
[2282]402\end{align*}
[11543]403which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
[11435]404\ie\ the total $s-$coordinate time derivative in flux form:
[10414]405\begin{flalign}
[11543]406  \label{eq:SCOORD_sco_Dt_flux}
[10414]407  \left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
[11151]408  + \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
[10414]409  - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[11335]410    -u  \;\frac{\partial e_1 }{\partial j}            \right).
[2282]411\end{flalign}
412which is the total time derivative expressed in the curvilinear $s-$coordinate system.
[10354]413It has the same form as in the $z-$coordinate but for
414the vertical scale factor that has appeared inside the time derivative which
[11543]415comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
[10354]416the continuity equation.
[707]417
[2282]418$\bullet$ \textbf{horizontal pressure gradient}
419
420The horizontal pressure gradient term can be transformed as follows:
[10406]421\[
[10414]422  \begin{split}
423    -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
424    & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
425    & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
[11335]426    &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
[10414]427  \end{split}
[10406]428\]
[10354]429Applying similar manipulation to the second component and
[11543]430replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
[10414]431\begin{equation}
[11543]432  \label{eq:SCOORD_grad_p_1}
[10414]433  \begin{split}
434    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
435    &=-\frac{1}{\rho_o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
436      + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
437             %
438    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
439    &=-\frac{1}{\rho_o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
[11335]440      + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) . \\
[10414]441  \end{split}
[707]442\end{equation}
443
[11543]444An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
[10354]445the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
[707]446
[10354]447As in $z$-coordinate,
[11123]448the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
[10354]449Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
450and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
[2282]451The pressure is then given by:
[10414]452\[
453  \begin{split}
[11335]454    p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk   \\
455    &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
[10414]456  \end{split}
[10406]457\]
[2282]458Therefore, $p$ and $p_h'$ are linked through:
[10414]459\begin{equation}
[11543]460  \label{eq:SCOORD_pressure}
[11335]461  p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
[2282]462\end{equation}
463and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
[10414]464\[
[11335]465  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
[10406]466\]
[2282]467
[11543]468Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
[11335]469using the definition of the density anomaly it becomes an expression in two parts:
[10414]470\begin{equation}
[11543]471  \label{eq:SCOORD_grad_p_2}
[10414]472  \begin{split}
473    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
474    &=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
[11335]475      + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} ,  \\
[10414]476             %
477    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
478    &=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
[11335]479      + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
[10414]480  \end{split}
[2282]481\end{equation}
[10354]482This formulation of the pressure gradient is characterised by the appearance of
483a term depending on the sea surface height only
[11543]484(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
[10354]485This term will be loosely termed \textit{surface pressure gradient} whereas
486the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
487the $z$-coordinate formulation.
488In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
489and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.
[2282]490
491$\bullet$ \textbf{The other terms of the momentum equation}
492
[10354]493The coriolis and forcing terms as well as the the vertical physics remain unchanged as
494they involve neither time nor space derivatives.
[11543]495The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.
[2282]496
497$\bullet$ \textbf{Full momentum equation}
498
[10354]499To sum up, in a curvilinear $s$-coordinate system,
500the vector invariant momentum equation solved by the model has the same mathematical expression as
501the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
[10414]502\begin{subequations}
[11543]503  \label{eq:SCOORD_dyn_vect}
[10414]504  \begin{multline}
[11543]505    \label{eq:SCOORD_PE_dyn_vect_u}
[10414]506    \frac{\partial u}{\partial t}=
507    +   \left( {\zeta +f} \right)\,v
508    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
509    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
510    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
511    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
[11335]512    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
[10414]513  \end{multline}
514  \begin{multline}
[11543]515    \label{eq:SCOORD_dyn_vect_v}
[10414]516    \frac{\partial v}{\partial t}=
517    -   \left( {\zeta +f} \right)\,u
518    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)
519    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
520    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
521    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
[11335]522    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
[10414]523  \end{multline}
[817]524\end{subequations}
[10354]525whereas the flux form momentum equation differs from it by
526the formulation of both the time derivative and the pressure gradient term:
[10414]527\begin{subequations}
[11543]528  \label{eq:SCOORD_dyn_flux}
[10414]529  \begin{multline}
[11543]530    \label{eq:SCOORD_PE_dyn_flux_u}
[10414]531    \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
[11335]532    - \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)
[10414]533    +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
534          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\
535    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
536    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
[11335]537    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
[10414]538  \end{multline}
539  \begin{multline}
[11543]540    \label{eq:SCOORD_dyn_flux_v}
[10414]541    \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
[11151]542    -  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,v}   \right)
[11335]543    -   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[10414]544          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\
545    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
546    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
[11543]547    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
[10414]548  \end{multline}
[2282]549\end{subequations}
550Both formulation share the same hydrostatic pressure balance expressed in terms of
[3294]551hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
[10414]552\begin{equation}
[11543]553  \label{eq:SCOORD_dyn_zph}
[11335]554  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
[2282]555\end{equation}
[707]556
[10354]557It is important to realize that the change in coordinate system has only concerned the position on the vertical.
558It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
559($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
560in particular the pressure gradient.
561By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
[11543]562\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.
[817]563
[11597]564%% =================================================================================================
[9393]565\section{Tracer equation}
[11543]566\label{sec:SCOORD_tracer}
[817]567
[10354]568The tracer equation is obtained using the same calculation as for the continuity equation and then
569regrouping the time derivative terms in the left hand side :
[707]570
[10414]571\begin{multline}
[11543]572  \label{eq:SCOORD_tracer}
[10414]573  \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t}
574  = -\frac{1}{e_1 \,e_2 \,e_3}
575  \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
576    +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
[11335]577  -  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right)
[10414]578  +  D^{T} +F^{T}
[707]579\end{multline}
580
[11543]581The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
582the expression of the 3D divergence in the $s-$coordinates established above.
[707]583
[11693]584\subinc{\input{../../global/epilogue}}
[10414]585
[6997]586\end{document}
Note: See TracBrowser for help on using the repository browser.