New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_s_coord.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex @ 11597

Last change on this file since 11597 was 11597, checked in by nicolasmartin, 5 years ago

Continuation of coding rules application
Recovery of some sections deleted by the previous commit

File size: 30.1 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Curvilinear $s-$Coordinate Equations}
6\label{apdx:SCOORD}
7
8\chaptertoc
9
10\vfill
11\begin{figure}[b]
12%% =================================================================================================
13\subsubsection*{Changes record}
14\begin{tabular}{l||l|m{0.65\linewidth}}
15    Release   & Author        & Modifications \\
16    {\em 4.0} & {\em Mike Bell} & {\em review}  \\
17    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\
18\end{tabular}
19\end{figure}
20
21%% =================================================================================================
22\section{Chain rule for $s-$coordinates}
23\label{sec:SCOORD_chain}
24
25In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
26(\ie\ an orthogonal curvilinear coordinate in the horizontal and
27an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
28we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
29the special case $k = z$ and thus $e_3 = 1$,
30and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
31Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
32the horizontal slope of $s-$surfaces by:
33\begin{equation}
34  \label{eq:SCOORD_s_slope}
35  \sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
36  \quad \text{and} \quad
37  \sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
38\end{equation}
39
40The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
41functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
42these fields.  Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
43\begin{equation}
44  \label{eq:SCOORD_s_infin_changes}
45  \begin{aligned}
46    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
47                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
48                + \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
49                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
50    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
51                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
52                + \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
53                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
54  \end{aligned}
55\end{equation}
56Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
57\begin{equation}
58  \label{eq:SCOORD_s_chain_rule1}
59      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t}  =
60      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
61    + \left. {\frac{\partial s       }{\partial i}} \right|_{j,z,t} \;
62      \left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
63\end{equation}
64The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
65(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
66$s$ and $j, t$ held constant
67\begin{equation}
68\label{eq:SCOORD_delta_s}
69\delta s|_{j,t} =
70         \delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
71       + \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
72\end{equation}
73Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
74(\autoref{eq:SCOORD_s_slope}) we obtain
75\begin{equation}
76\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
77         -  \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
78            \left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
79    = - \frac{e_1 }{e_3 }\sigma_1  .
80\label{eq:SCOORD_ds_di_z}
81\end{equation}
82Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
83by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
84changes in which $i , j$ and $s$ are constant. This shows that
85\begin{equation}
86\label{eq:SCOORD_w_in_s}
87w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
88- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
89  \left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
90  = - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
91\end{equation}
92
93In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
94usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
95the model equations in the curvilinear $s-$coordinate system are:
96\begin{equation}
97  \label{eq:SCOORD_s_chain_rule2}
98  \begin{aligned}
99    &\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
100    \left. {\frac{\partial \bullet }{\partial t}} \right|_s
101    + \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
102    &\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
103    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
104    +\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
105    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
106    -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
107    &\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
108    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
109    + \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
110    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
111    - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
112    &\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
113  \end{aligned}
114\end{equation}
115
116%% =================================================================================================
117\section{Continuity equation in $s-$coordinates}
118\label{sec:SCOORD_continuity}
119
120Using (\autoref{eq:SCOORD_s_chain_rule1}) and
121the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
122the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
123obtain its expression in the curvilinear $s-$coordinate system:
124
125\begin{subequations}
126  \begin{align*}
127    {
128    \begin{array}{*{20}l}
129      \nabla \cdot {\mathrm {\mathbf U}}
130      &= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
131        +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
132        + \frac{\partial w}{\partial z} \\ \\
133      &     = \frac{1}{e_1 \,e_2 }  \left[
134        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
135        - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
136        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s
137        - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right]
138        + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
139      &     = \frac{1}{e_1 \,e_2 }   \left[
140        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
141        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s         \right]
142        + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
143        -  \sigma_1 \frac{\partial u}{\partial s}
144        -  \sigma_2 \frac{\partial v}{\partial s}      \right] \\ \\
145      &     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
146        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_s
147        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s
148        + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
149        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right] \\
150      & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
151        + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
152        -  \sigma_1 \frac{\partial u}{\partial s}
153        -  \sigma_2 \frac{\partial v}{\partial s}      \right]      \\
154      %
155      \intertext{Noting that $
156      \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
157      =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
158      =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
159      =\frac{\partial \sigma_1}{\partial s}
160      $ and $
161      \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
162      =\frac{\partial \sigma_2}{\partial s}
163      $, it becomes:}
164    %
165      \nabla \cdot {\mathrm {\mathbf U}}
166      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
167        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
168        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right] \\
169      & \qquad \qquad \qquad \qquad \quad
170        +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
171      \\
172      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
173        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
174        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
175        + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right]
176    \end{array}
177        }
178  \end{align*}
179\end{subequations}
180
181Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
182Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
183and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and  $w_s$,
184one can show that the vertical velocity, $w_p$ of a point
185moving with the horizontal velocity of the fluid along an $s$ surface is given by
186\begin{equation}
187\label{eq:SCOORD_w_p}
188\begin{split}
189w_p  = & \left. \frac{ \partial z }{\partial t} \right|_s
190     + \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
191     + \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
192     = & w_s + u \sigma_1 + v \sigma_2 .
193\end{split}
194\end{equation}
195 The vertical velocity across this surface is denoted by
196\begin{equation}
197  \label{eq:SCOORD_w_s}
198  \omega  = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v )  .
199\end{equation}
200Hence
201\begin{equation}
202\frac{1}{e_3 } \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right] =
203\frac{1}{e_3 } \frac{\partial}{\partial s} \left[  \omega + w_s \right] =
204   \frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
205 + \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
206   \frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
207\end{equation}
208
209Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
210our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
211\begin{equation}
212      \nabla \cdot {\mathrm {\mathbf U}} =
213         \frac{1}{e_1 \,e_2 \,e_3 }    \left[
214        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
215        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
216        + \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
217        + \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
218\end{equation}
219
220As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
221\begin{equation}
222  \label{eq:SCOORD_sco_Continuity}
223  \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
224  + \frac{1}{e_1 \,e_2 \,e_3 }\left[
225    {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
226      +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
227  +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
228\end{equation}
229An additional term has appeared that takes into account
230the contribution of the time variation of the vertical coordinate to the volume budget.
231
232%% =================================================================================================
233\section{Momentum equation in $s-$coordinate}
234\label{sec:SCOORD_momentum}
235
236Here we only consider the first component of the momentum equation,
237the generalization to the second one being straightforward.
238
239$\bullet$ \textbf{Total derivative in vector invariant form}
240
241Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
242Its total $z-$coordinate time derivative,
243$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
244its expression in the curvilinear $s-$coordinate system:
245
246\begin{subequations}
247  \begin{align*}
248    {
249    \begin{array}{*{20}l}
250      \left. \frac{D u}{D t} \right|_z
251      &= \left. {\frac{\partial u }{\partial t}} \right|_z
252        - \left. \zeta \right|_z v
253        + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
254        + w \;\frac{\partial u}{\partial z} \\ \\
255      &= \left. {\frac{\partial u }{\partial t}} \right|_z
256        -  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
257        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
258        +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
259        +  w \;\frac{\partial u}{\partial z}      \\
260        %
261      \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
262      %
263      &= \left. {\frac{\partial u }{\partial t}} \right|_z
264        - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
265        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
266        \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
267        +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\
268      & \qquad \qquad \qquad \qquad
269        {
270        + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
271        - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
272        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
273        } \\ \\
274      &= \left. {\frac{\partial u }{\partial t}} \right|_z
275        - \left. \zeta \right|_s \;v
276        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
277      &\qquad \qquad \qquad \quad
278        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
279        + \left[   {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
280        - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v
281        - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
282      &= \left. {\frac{\partial u }{\partial t}} \right|_z
283        - \left. \zeta \right|_s \;v
284        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
285      &\qquad \qquad \qquad \quad
286        + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
287        +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
288        - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
289      &= \left. {\frac{\partial u }{\partial t}} \right|_z
290        - \left. \zeta \right|_s \;v
291        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
292        + \frac{1}{e_3} \left[  w - \sigma_2 v - \sigma_1 u  \right]
293        \; \frac{\partial u}{\partial s} .  \\
294        %
295      \intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
296      %
297      &= \left. {\frac{\partial u }{\partial t}} \right|_z
298        - \left. \zeta \right|_s \;v
299        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
300        + \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s}   \\
301    \end{array}
302    }
303  \end{align*}
304\end{subequations}
305%
306Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
307using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
308\[
309  {
310    \begin{array}{*{20}l}
311      \frac{w_s}{e_3\;\frac{\partial u}{\partial s}
312      = - \left. \frac{\partial s}{\partial t} \right|_z \;  \frac{\partial u }{\partial s}
313      = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
314    \end{array}
315  }
316\]
317This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
318\ie\ the total $s-$coordinate time derivative :
319\begin{align}
320  \label{eq:SCOORD_sco_Dt_vect}
321  \left. \frac{D u}{D t} \right|_s
322  = \left. {\frac{\partial u }{\partial t}} \right|_s
323  - \left. \zeta \right|_s \;v
324  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
325  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
326\end{align}
327Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
328$z-$ and $s-$coordinates.
329This is not the case for the flux form as shown in next paragraph.
330
331$\bullet$ \textbf{Total derivative in flux form}
332
333Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
334Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
335% \begin{subequations}
336\begin{align*}
337  {
338  \begin{array}{*{20}l}
339    \left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_s
340    & -  \zeta \;v
341      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
342      + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
343                                      &= \left. {\frac{\partial u }{\partial t}} \right|_s
344    &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
345      + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
346      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
347                                      &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
348                                         + \frac{\partial(e_1 v)}{\partial j}    \right)
349                                         + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
350                                      &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
351                                         -u  \;\frac{\partial e_1 }{\partial j}  \right) . \\
352  \end{array}
353  }
354\end{align*}
355%
356Introducing the vertical scale factor inside the horizontal derivative of the first two terms
357(\ie\ the horizontal divergence), it becomes :
358\begin{align*}
359  {
360  \begin{array}{*{20}l}
361    % \begin{align*} {\begin{array}{*{20}l}
362    %     {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
363    &= \left. {\frac{\partial u }{\partial t}} \right|_s
364    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
365      + \frac{\partial( e_1 e_3 \,u v )}{\partial j}
366      -  e_2 u u \frac{\partial e_3}{\partial i}
367      -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
368      + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
369    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
370       + \frac{\partial(e_1 e_3 \, v)}{\partial j}
371       -  e_2 u \;\frac{\partial e_3 }{\partial i}
372       -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
373       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
374    && - \frac{v}{e_1 e_2 }\left(   v  \;\frac{\partial e_2 }{\partial i}
375       -u  \;\frac{\partial e_1 }{\partial j}   \right) \\ \\
376    &= \left. {\frac{\partial u }{\partial t}} \right|_s
377    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
378      + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
379      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
380    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
381       + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
382       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]
383       - \frac{v}{e_1 e_2 }\left(   v   \;\frac{\partial e_2 }{\partial i}
384       -u   \;\frac{\partial e_1 }{\partial j}  \right)     .             \\
385     %
386    \intertext {Introducing a more compact form for the divergence of the momentum fluxes,
387    and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
388    it becomes : }
389  %
390    &= \left. {\frac{\partial u }{\partial t}} \right|_s
391    &+ \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
392      + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
393      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
394      -u  \;\frac{\partial e_1 }{\partial j}    \right)
395    \\
396  \end{array}
397  }
398\end{align*}
399which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
400\ie\ the total $s-$coordinate time derivative in flux form:
401\begin{flalign}
402  \label{eq:SCOORD_sco_Dt_flux}
403  \left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
404  + \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
405  - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
406    -u  \;\frac{\partial e_1 }{\partial j}            \right).
407\end{flalign}
408which is the total time derivative expressed in the curvilinear $s-$coordinate system.
409It has the same form as in the $z-$coordinate but for
410the vertical scale factor that has appeared inside the time derivative which
411comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
412the continuity equation.
413
414$\bullet$ \textbf{horizontal pressure gradient}
415
416The horizontal pressure gradient term can be transformed as follows:
417\[
418  \begin{split}
419    -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
420    & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
421    & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
422    &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
423  \end{split}
424\]
425Applying similar manipulation to the second component and
426replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
427\begin{equation}
428  \label{eq:SCOORD_grad_p_1}
429  \begin{split}
430    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
431    &=-\frac{1}{\rho_o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
432      + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
433             %
434    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
435    &=-\frac{1}{\rho_o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
436      + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) . \\
437  \end{split}
438\end{equation}
439
440An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
441the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
442
443As in $z$-coordinate,
444the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
445Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
446and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
447The pressure is then given by:
448\[
449  \begin{split}
450    p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk   \\
451    &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
452  \end{split}
453\]
454Therefore, $p$ and $p_h'$ are linked through:
455\begin{equation}
456  \label{eq:SCOORD_pressure}
457  p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
458\end{equation}
459and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
460\[
461  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
462\]
463
464Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
465using the definition of the density anomaly it becomes an expression in two parts:
466\begin{equation}
467  \label{eq:SCOORD_grad_p_2}
468  \begin{split}
469    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
470    &=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
471      + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} ,  \\
472             %
473    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
474    &=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
475      + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
476  \end{split}
477\end{equation}
478This formulation of the pressure gradient is characterised by the appearance of
479a term depending on the sea surface height only
480(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
481This term will be loosely termed \textit{surface pressure gradient} whereas
482the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
483the $z$-coordinate formulation.
484In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
485and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.
486
487$\bullet$ \textbf{The other terms of the momentum equation}
488
489The coriolis and forcing terms as well as the the vertical physics remain unchanged as
490they involve neither time nor space derivatives.
491The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.
492
493$\bullet$ \textbf{Full momentum equation}
494
495To sum up, in a curvilinear $s$-coordinate system,
496the vector invariant momentum equation solved by the model has the same mathematical expression as
497the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
498\begin{subequations}
499  \label{eq:SCOORD_dyn_vect}
500  \begin{multline}
501    \label{eq:SCOORD_PE_dyn_vect_u}
502    \frac{\partial u}{\partial t}=
503    +   \left( {\zeta +f} \right)\,v
504    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
505    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
506    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
507    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
508    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
509  \end{multline}
510  \begin{multline}
511    \label{eq:SCOORD_dyn_vect_v}
512    \frac{\partial v}{\partial t}=
513    -   \left( {\zeta +f} \right)\,u
514    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)
515    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
516    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
517    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
518    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
519  \end{multline}
520\end{subequations}
521whereas the flux form momentum equation differs from it by
522the formulation of both the time derivative and the pressure gradient term:
523\begin{subequations}
524  \label{eq:SCOORD_dyn_flux}
525  \begin{multline}
526    \label{eq:SCOORD_PE_dyn_flux_u}
527    \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
528    - \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)
529    +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
530          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\
531    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
532    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
533    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
534  \end{multline}
535  \begin{multline}
536    \label{eq:SCOORD_dyn_flux_v}
537    \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
538    -  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,v}   \right)
539    -   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
540          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\
541    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
542    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
543    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
544  \end{multline}
545\end{subequations}
546Both formulation share the same hydrostatic pressure balance expressed in terms of
547hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
548\begin{equation}
549  \label{eq:SCOORD_dyn_zph}
550  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
551\end{equation}
552
553It is important to realize that the change in coordinate system has only concerned the position on the vertical.
554It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
555($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
556in particular the pressure gradient.
557By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
558\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.
559
560%% =================================================================================================
561\section{Tracer equation}
562\label{sec:SCOORD_tracer}
563
564The tracer equation is obtained using the same calculation as for the continuity equation and then
565regrouping the time derivative terms in the left hand side :
566
567\begin{multline}
568  \label{eq:SCOORD_tracer}
569  \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t}
570  = -\frac{1}{e_1 \,e_2 \,e_3}
571  \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
572    +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
573  -  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right)
574  +  D^{T} +F^{T}
575\end{multline}
576
577The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
578the expression of the 3D divergence in the $s-$coordinates established above.
579
580\onlyinsubfile{\input{../../global/epilogue}}
581
582\end{document}
Note: See TracBrowser for help on using the repository browser.