New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
chap_time_domain.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/chap_time_domain.tex @ 11598

Last change on this file since 11598 was 11598, checked in by nicolasmartin, 5 years ago

Add template of versioning record at the beginning of chapters

File size: 19.3 KB
Line 
1\documentclass[../main/NEMO_manual]{subfiles}
2
3\begin{document}
4
5\chapter{Time Domain}
6\label{chap:TD}
7
8\thispagestyle{plain}
9
10\chaptertoc
11
12\paragraph{Changes record} ~\\
13
14{\footnotesize
15  \begin{tabularx}{\textwidth}{l||X|X}
16    Release & Author(s) & Modifications \\
17    \hline
18    {\em   4.0} & {\em ...} & {\em ...} \\
19    {\em   3.6} & {\em ...} & {\em ...} \\
20    {\em   3.4} & {\em ...} & {\em ...} \\
21    {\em <=3.4} & {\em ...} & {\em ...}
22  \end{tabularx}
23}
24
25\clearpage
26
27% Missing things:
28%  - daymod: definition of the time domain (nit000, nitend and the calendar)
29
30\gmcomment{STEVEN :maybe a picture of the directory structure in the introduction which could be referred to here,
31  would help  ==> to be added}
32%%%%
33
34Having defined the continuous equations in \autoref{chap:MB}, we need now to choose a time discretization,
35a key feature of an ocean model as it exerts a strong influence on the structure of the computer code
36(\ie\ on its flowchart).
37In the present chapter, we provide a general description of the \NEMO\  time stepping strategy and
38the consequences for the order in which the equations are solved.
39
40%% =================================================================================================
41\section{Time stepping environment}
42\label{sec:TD_environment}
43
44The time stepping used in \NEMO\ is a three level scheme that can be represented as follows:
45\begin{equation}
46  \label{eq:TD}
47  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ \text{RHS}_x^{t - \rdt, \, t, \, t + \rdt}
48\end{equation}
49where $x$ stands for $u$, $v$, $T$ or $S$;
50RHS is the Right-Hand-Side of the corresponding time evolution equation;
51$\rdt$ is the time step;
52and the superscripts indicate the time at which a quantity is evaluated.
53Each term of the RHS is evaluated at a specific time stepping depending on the physics with which it is associated.
54
55The choice of the time stepping used for this evaluation is discussed below as well as
56the implications for starting or restarting a model simulation.
57Note that the time stepping calculation is generally performed in a single operation.
58With such a complex and nonlinear system of equations it would be dangerous to let a prognostic variable evolve in
59time for each term separately.
60
61The three level scheme requires three arrays for each prognostic variable.
62For each variable $x$ there is $x_b$ (before), $x_n$ (now) and $x_a$.
63The third array, although referred to as $x_a$ (after) in the code,
64is usually not the variable at the after time step;
65but rather it is used to store the time derivative (RHS in \autoref{eq:TD}) prior to time-stepping the equation.
66The time stepping itself is performed once at each time step where implicit vertical diffusion is computed, \ie\ in the \mdl{trazdf} and \mdl{dynzdf} modules.
67
68%% =================================================================================================
69\section{Non-diffusive part --- Leapfrog scheme}
70\label{sec:TD_leap_frog}
71
72The time stepping used for processes other than diffusion is the well-known leapfrog scheme
73\citep{mesinger.arakawa_bk76}.
74This scheme is widely used for advection processes in low-viscosity fluids.
75It is a time centred scheme, \ie\ the RHS in \autoref{eq:TD} is evaluated at time step $t$, the now time step.
76It may be used for momentum and tracer advection, pressure gradient, and Coriolis terms,
77but not for diffusion terms.
78It is an efficient method that achieves second-order accuracy with
79just one right hand side evaluation per time step.
80Moreover, it does not artificially damp linear oscillatory motion nor does it produce instability by
81amplifying the oscillations.
82These advantages are somewhat diminished by the large phase-speed error of the leapfrog scheme,
83and the unsuitability of leapfrog differencing for the representation of diffusion and Rayleigh damping processes.
84However, the scheme allows the coexistence of a numerical and a physical mode due to
85its leading third order dispersive error.
86In other words a divergence of odd and even time steps may occur.
87To prevent it, the leapfrog scheme is often used in association with a Robert-Asselin time filter
88(hereafter the LF-RA scheme).
89This filter, first designed by \citet{robert_JMSJ66} and more comprehensively studied by \citet{asselin_MWR72},
90is a kind of laplacian diffusion in time that mixes odd and even time steps:
91\begin{equation}
92  \label{eq:TD_asselin}
93  x_F^t = x^t + \gamma \, \lt[ x_F^{t - \rdt} - 2 x^t + x^{t + \rdt} \rt]
94\end{equation}
95where the subscript $F$ denotes filtered values and $\gamma$ is the Asselin coefficient.
96$\gamma$ is initialized as \np{rn_atfp}{rn\_atfp} (namelist parameter).
97Its default value is \np[=10.e-3]{rn_atfp}{rn\_atfp} (see \autoref{sec:TD_mLF}),
98causing only a weak dissipation of high frequency motions (\citep{farge-coulombier_phd87}).
99The addition of a time filter degrades the accuracy of the calculation from second to first order.
100However, the second order truncation error is proportional to $\gamma$, which is small compared to 1.
101Therefore, the LF-RA is a quasi second order accurate scheme.
102The LF-RA scheme is preferred to other time differencing schemes such as predictor corrector or trapezoidal schemes,
103because the user has an explicit and simple control of the magnitude of the time diffusion of the scheme.
104When used with the 2nd order space centred discretisation of the advection terms in
105the momentum and tracer equations, LF-RA avoids implicit numerical diffusion:
106diffusion is set explicitly by the user through the Robert-Asselin
107filter parameter and the viscosity and diffusion coefficients.
108
109%% =================================================================================================
110\section{Diffusive part --- Forward or backward scheme}
111\label{sec:TD_forward_imp}
112
113The leapfrog differencing scheme is unsuitable for the representation of diffusion and damping processes.
114For a tendency $D_x$, representing a diffusion term or a restoring term to a tracer climatology
115(when present, see \autoref{sec:TRA_dmp}), a forward time differencing scheme is used :
116\[
117  %\label{eq:TD_euler}
118  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ D_x^{t - \rdt}
119\]
120
121This is diffusive in time and conditionally stable.
122The conditions for stability of second and fourth order horizontal diffusion schemes are \citep{griffies_bk04}:
123\begin{equation}
124  \label{eq:TD_euler_stability}
125  A^h <
126  \begin{cases}
127    \frac{e^2}{ 8 \, \rdt} & \text{laplacian diffusion} \\
128    \frac{e^4}{64 \, \rdt} & \text{bilaplacian diffusion}
129  \end{cases}
130\end{equation}
131where $e$ is the smallest grid size in the two horizontal directions and $A^h$ is the mixing coefficient.
132The linear constraint \autoref{eq:TD_euler_stability} is a necessary condition, but not sufficient.
133If it is not satisfied, even mildly, then the model soon becomes wildly unstable.
134The instability can be removed by either reducing the length of the time steps or reducing the mixing coefficient.
135
136For the vertical diffusion terms, a forward time differencing scheme can be used,
137but usually the numerical stability condition imposes a strong constraint on the time step. To overcome the stability constraint, a
138backward (or implicit) time differencing scheme is used. This scheme is unconditionally stable but diffusive and can be written as follows:
139\begin{equation}
140  \label{eq:TD_imp}
141  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ \text{RHS}_x^{t + \rdt}
142\end{equation}
143
144%%gm
145%%gm   UPDATE the next paragraphs with time varying thickness ...
146%%gm
147
148This scheme is rather time consuming since it requires a matrix inversion. For example, the finite difference approximation of the temperature equation is:
149\[
150  % \label{eq:TD_imp_zdf}
151  \frac{T(k)^{t + 1} - T(k)^{t - 1}}{2 \; \rdt}
152  \equiv
153  \text{RHS} + \frac{1}{e_{3t}} \delta_k \lt[ \frac{A_w^{vT}}{e_{3w} } \delta_{k + 1/2} \lt[ T^{t + 1} \rt] \rt]
154\]
155where RHS is the right hand side of the equation except for the vertical diffusion term.
156We rewrite \autoref{eq:TD_imp} as:
157\begin{equation}
158  \label{eq:TD_imp_mat}
159  -c(k + 1) \; T^{t + 1}(k + 1) + d(k) \; T^{t + 1}(k) - \; c(k) \; T^{t + 1}(k - 1) \equiv b(k)
160\end{equation}
161where
162\begin{align*}
163  c(k) &= A_w^{vT} (k) \, / \, e_{3w} (k)     \\
164  d(k) &= e_{3t}   (k)       \, / \, (2 \rdt) + c_k + c_{k + 1}    \\
165  b(k) &= e_{3t}   (k) \; \lt( T^{t - 1}(k) \, / \, (2 \rdt) + \text{RHS} \rt)
166\end{align*}
167
168\autoref{eq:TD_imp_mat} is a linear system of equations with an associated matrix which is tridiagonal.
169Moreover,
170$c(k)$ and $d(k)$ are positive and the diagonal term is greater than the sum of the two extra-diagonal terms,
171therefore a special adaptation of the Gauss elimination procedure is used to find the solution
172(see for example \citet{richtmyer.morton_bk67}).
173
174%% =================================================================================================
175\section{Surface pressure gradient}
176\label{sec:TD_spg_ts}
177
178The leapfrog environment supports a centred in time computation of the surface pressure, \ie\ evaluated
179at \textit{now} time step. This refers to as the explicit free surface case in the code (\np[=.true.]{ln_dynspg_exp}{ln\_dynspg\_exp}).
180This choice however imposes a strong constraint on the time step which should be small enough to resolve the propagation
181of external gravity waves. As a matter of fact, one rather use in a realistic setup, a split-explicit free surface
182(\np[=.true.]{ln_dynspg_ts}{ln\_dynspg\_ts}) in which barotropic and baroclinic dynamical equations are solved separately with ad-hoc
183time steps. The use of the time-splitting (in combination with non-linear free surface) imposes some constraints on the design of
184the overall flowchart, in particular to ensure exact tracer conservation (see \autoref{fig:TD_TimeStep_flowchart}).
185
186Compared to the former use of the filtered free surface in \NEMO\ v3.6 (\citet{roullet.madec_JGR00}), the use of a split-explicit free surface is advantageous
187on massively parallel computers. Indeed, no global computations are anymore required by the elliptic solver which saves a substantial amount of communication
188time. Fast barotropic motions (such as tides) are also simulated with a better accuracy.
189
190%\gmcomment{
191\begin{figure}[!t]
192  \centering
193  \includegraphics[width=0.66\textwidth]{Fig_TimeStepping_flowchart_v4}
194  \caption[Leapfrog time stepping sequence with split-explicit free surface]{
195    Sketch of the leapfrog time stepping sequence in \NEMO\ with split-explicit free surface.
196    The latter combined with non-linear free surface requires the dynamical tendency being
197    updated prior tracers tendency to ensure conservation.
198    Note the use of time integrated fluxes issued from the barotropic loop in
199    subsequent calculations of tracer advection and in the continuity equation.
200    Details about the time-splitting scheme can be found in \autoref{subsec:DYN_spg_ts}.}
201  \label{fig:TD_TimeStep_flowchart}
202\end{figure}
203%}
204
205%% =================================================================================================
206\section{Modified Leapfrog -- Asselin filter scheme}
207\label{sec:TD_mLF}
208
209Significant changes have been introduced by \cite{leclair.madec_OM09} in the LF-RA scheme in order to
210ensure tracer conservation and to allow the use of a much smaller value of the Asselin filter parameter.
211The modifications affect both the forcing and filtering treatments in the LF-RA scheme.
212
213In a classical LF-RA environment, the forcing term is centred in time,
214\ie\ it is time-stepped over a $2 \rdt$ period:
215$x^t = x^t + 2 \rdt Q^t$ where $Q$ is the forcing applied to $x$,
216and the time filter is given by \autoref{eq:TD_asselin} so that $Q$ is redistributed over several time step.
217In the modified LF-RA environment, these two formulations have been replaced by:
218\begin{gather}
219  \label{eq:TD_forcing}
220  x^{t + \rdt} = x^{t - \rdt} + \rdt \lt( Q^{t - \rdt / 2} + Q^{t + \rdt / 2} \rt\\
221  \label{eq:TD_RA}
222  x_F^t       = x^t + \gamma \, \lt( x_F^{t - \rdt} - 2 x^t + x^{t + \rdt} \rt)
223                    - \gamma \, \rdt \, \lt( Q^{t + \rdt / 2} - Q^{t - \rdt / 2} \rt)
224\end{gather}
225The change in the forcing formulation given by \autoref{eq:TD_forcing} (see \autoref{fig:TD_MLF_forcing})
226has a significant effect:
227the forcing term no longer excites the divergence of odd and even time steps \citep{leclair.madec_OM09}.
228% forcing seen by the model....
229This property improves the LF-RA scheme in two aspects.
230First, the LF-RA can now ensure the local and global conservation of tracers.
231Indeed, time filtering is no longer required on the forcing part.
232The influence of the Asselin filter on the forcing is explicitly removed by adding a new term in the filter
233(last term in \autoref{eq:TD_RA} compared to \autoref{eq:TD_asselin}).
234Since the filtering of the forcing was the source of non-conservation in the classical LF-RA scheme,
235the modified formulation becomes conservative \citep{leclair.madec_OM09}.
236Second, the LF-RA becomes a truly quasi -second order scheme.
237Indeed, \autoref{eq:TD_forcing} used in combination with a careful treatment of static instability
238(\autoref{subsec:ZDF_evd}) and of the TKE physics (\autoref{subsec:ZDF_tke_ene})
239(the two other main sources of time step divergence),
240allows a reduction by two orders of magnitude of the Asselin filter parameter.
241
242Note that the forcing is now provided at the middle of a time step:
243$Q^{t + \rdt / 2}$ is the forcing applied over the $[t,t + \rdt]$ time interval.
244This and the change in the time filter, \autoref{eq:TD_RA},
245allows for an exact evaluation of the contribution due to the forcing term between any two time steps,
246even if separated by only $\rdt$ since the time filter is no longer applied to the forcing term.
247
248\begin{figure}[!t]
249  \centering
250  \includegraphics[width=0.66\textwidth]{Fig_MLF_forcing}
251  \caption[Forcing integration methods for modified leapfrog (top and bottom)]{
252    Illustration of forcing integration methods.
253    (top) ''Traditional'' formulation:
254    the forcing is defined at the same time as the variable to which it is applied
255    (integer value of the time step index) and it is applied over a $2 \rdt$ period.
256    (bottom)  modified formulation:
257    the forcing is defined in the middle of the time
258    (integer and a half value of the time step index) and
259    the mean of two successive forcing values ($n - 1 / 2$, $n + 1 / 2$) is applied over
260    a $2 \rdt$ period.}
261  \label{fig:TD_MLF_forcing}
262\end{figure}
263
264%% =================================================================================================
265\section{Start/Restart strategy}
266\label{sec:TD_rst}
267
268\begin{listing}
269  \nlst{namrun}
270  \caption{\forcode{&namrun}}
271  \label{lst:namrun}
272\end{listing}
273
274The first time step of this three level scheme when starting from initial conditions is a forward step
275(Euler time integration):
276\[
277  % \label{eq:TD_DOM_euler}
278  x^1 = x^0 + \rdt \ \text{RHS}^0
279\]
280This is done simply by keeping the leapfrog environment (\ie\ the \autoref{eq:TD} three level time stepping) but
281setting all $x^0$ (\textit{before}) and $x^1$ (\textit{now}) fields equal at the first time step and
282using half the value of a leapfrog time step ($2 \rdt$).
283
284It is also possible to restart from a previous computation, by using a restart file.
285The restart strategy is designed to ensure perfect restartability of the code:
286the user should obtain the same results to machine precision either by
287running the model for $2N$ time steps in one go,
288or by performing two consecutive experiments of $N$ steps with a restart.
289This requires saving two time levels and many auxiliary data in the restart files in machine precision.
290
291Note that the time step $\rdt$, is also saved in the restart file.
292When restarting, if the time step has been changed, or one of the prognostic variables at \textit{before} time step
293is missing, an Euler time stepping scheme is imposed. A forward initial step can still be enforced by the user by setting
294the namelist variable \np[=0]{nn_euler}{nn\_euler}. Other options to control the time integration of the model
295are defined through the  \nam{run}{run} namelist variables.
296%%%
297\gmcomment{
298add here how to force the restart to contain only one time step for operational purposes
299
300add also the idea of writing several restart for seasonal forecast : how is it done ?
301
302verify that all namelist pararmeters are truly described
303
304a word on the check of restart  .....
305}
306%%%
307
308\gmcomment{       % add a subsection here
309
310%% =================================================================================================
311\subsection{Time domain}
312\label{subsec:TD_time}
313
314Options are defined through the  \nam{dom}{dom} namelist variables.
315 \colorbox{yellow}{add here a few word on nit000 and nitend}
316
317 \colorbox{yellow}{Write documentation on the calendar and the key variable adatrj}
318
319add a description of daymod, and the model calandar (leap-year and co)
320
321}        %% end add
322
323%%
324\gmcomment{       % add implicit in vvl case  and Crant-Nicholson scheme
325
326Implicit time stepping in case of variable volume thickness.
327
328Tracer case (NB for momentum in vector invariant form take care!)
329
330\begin{flalign*}
331  &\frac{\lt( e_{3t}\,T \rt)_k^{t+1}-\lt( e_{3t}\,T \rt)_k^{t-1}}{2\rdt}
332  \equiv \text{RHS}+ \delta_k \lt[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k + 1/2} \lt[ {T^{t+1}} \rt]}
333  \rt]      \\
334  &\lt( e_{3t}\,T \rt)_k^{t+1}-\lt( e_{3t}\,T \rt)_k^{t-1}
335  \equiv {2\rdt} \ \text{RHS}+ {2\rdt} \ \delta_k \lt[ {\frac{A_w^{vt} }{e_{3w}^{t+1} }\delta_{k + 1/2} \lt[ {T^{t+1}} \rt]}
336  \rt]      \\
337  &\lt( e_{3t}\,T \rt)_k^{t+1}-\lt( e_{3t}\,T \rt)_k^{t-1}
338  \equiv 2\rdt \ \text{RHS}
339  + 2\rdt \ \lt\{ \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2} [ T_{k +1}^{t+1} - T_k      ^{t+1} ]
340    - \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2} [ T_k       ^{t+1} - T_{k -1}^{t+1} ]  \rt\}     \\
341  &\\
342  &\lt( e_{3t}\,T \rt)_k^{t+1}
343  -  {2\rdt} \           \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}                  T_{k +1}^{t+1}
344  + {2\rdt} \ \lt\{  \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}
345    +  \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2}     \rt\}   T_{k    }^{t+1}
346  -  {2\rdt} \           \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2}                  T_{k -1}^{t+1}      \\
347  &\equiv \lt( e_{3t}\,T \rt)_k^{t-1} + {2\rdt} \ \text{RHS}    \\
348  %
349\end{flalign*}
350\begin{flalign*}
351  \allowdisplaybreaks
352  \intertext{ Tracer case }
353  %
354  &  \qquad \qquad  \quad   -  {2\rdt}                  \ \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}
355  \qquad \qquad \qquad  \qquad  T_{k +1}^{t+1}   \\
356  &+ {2\rdt} \ \biggl\{  (e_{3t})_{k   }^{t+1}  \bigg. +    \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k + 1/2}
357  +   \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2} \bigg. \biggr\}  \ \ \ T_{k   }^{t+1}  &&\\
358  & \qquad \qquad  \qquad \qquad \qquad \quad \ \ {2\rdt} \                          \lt[ \frac{A_w^{vt}}{e_{3w}^{t+1}} \rt]_{k - 1/2}                          \quad \ \ T_{k -1}^{t+1}
359  \ \equiv \ \lt( e_{3t}\,T \rt)_k^{t-1} + {2\rdt} \ \text{RHS}  \\
360  %
361\end{flalign*}
362\begin{flalign*}
363  \allowdisplaybreaks
364  \intertext{ Tracer content case }
365  %
366  & -  {2\rdt} \              & \frac{(A_w^{vt})_{k + 1/2}} {(e_{3w})_{k + 1/2}^{t+1}\;(e_{3t})_{k +1}^{t+1}}  && \  \lt( e_{3t}\,T \rt)_{k +1}^{t+1}   &\\
367  & + {2\rdt} \ \lt[ 1  \rt.+ & \frac{(A_w^{vt})_{k + 1/2}} {(e_{3w})_{k + 1/2}^{t+1}\;(e_{3t})_k^{t+1}}
368  + & \frac{(A_w^{vt})_{k - 1/2}} {(e_{3w})_{k - 1/2}^{t+1}\;(e_{3t})_k^{t+1}}  \lt\rt& \lt( e_{3t}\,T \rt)_{k   }^{t+1}  &\\
369  & -  {2\rdt} \               & \frac{(A_w^{vt})_{k - 1/2}} {(e_{3w})_{k - 1/2}^{t+1}\;(e_{3t})_{k -1}^{t+1}}     &\  \lt( e_{3t}\,T \rt)_{k -1}^{t+1}
370  \equiv \lt( e_{3t}\,T \rt)_k^{t-1} + {2\rdt} \ \text{RHS}  &
371\end{flalign*}
372
373%%
374}
375
376\onlyinsubfile{\input{../../global/epilogue}}
377
378\end{document}
Note: See TracBrowser for help on using the repository browser.