New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 10354 for NEMO/trunk/doc/latex/NEMO/subfiles/annex_C.tex – NEMO

Ignore:
Timestamp:
2018-11-21T17:59:55+01:00 (5 years ago)
Author:
nicolasmartin
Message:

Vast edition of LaTeX subfiles to improve the readability by cutting sentences in a more suitable way
Every sentence begins in a new line and if necessary is splitted around 110 characters lenght for side-by-side visualisation,
this setting may not be adequate for everyone but something has to be set.
The punctuation was the primer trigger for the cutting process, otherwise subordinators and coordinators, in order to mostly keep a meaning for each line

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/annex_C.tex

    r9414 r10354  
    2222\label{sec:C.0} 
    2323 
    24 Notation used in this appendix in the demonstations : 
     24Notation used in this appendix in the demonstations: 
    2525 
    2626fluxes at the faces of a $T$-box: 
     
    3737 
    3838$dv=e_1\,e_2\,e_3 \,di\,dj\,dk$  is the volume element, with only $e_3$ that depends on time. 
    39 $D$ and $S$ are the ocean domain volume and surface, respectively.  
    40 No wetting/drying is allow ($i.e.$ $\frac{\partial S}{\partial t} = 0$)  
    41 Let $k_s$ and $k_b$ be the ocean surface and bottom, resp.  
     39$D$ and $S$ are the ocean domain volume and surface, respectively. 
     40No wetting/drying is allow ($i.e.$ $\frac{\partial S}{\partial t} = 0$). 
     41Let $k_s$ and $k_b$ be the ocean surface and bottom, resp. 
    4242($i.e.$ $s(k_s) = \eta$ and $s(k_b)=-H$, where $H$ is the bottom depth). 
    4343\begin{flalign*} 
     
    6060                                                       =  \int_D { \frac{1}{e_3} \partial_t \left( e_3 \, Q \right) dv } =0 
    6161\end{equation*} 
    62 equation of evolution of $Q$ written as the time evolution of the vertical content of $Q$ 
    63 like for tracers, or momentum in flux form, the quadratic quantity $\frac{1}{2}Q^2$ is conserved when : 
     62equation of evolution of $Q$ written as 
     63the time evolution of the vertical content of $Q$ like for tracers, or momentum in flux form, 
     64the quadratic quantity $\frac{1}{2}Q^2$ is conserved when: 
    6465\begin{flalign*} 
    6566\partial_t \left(   \int_D{ \frac{1}{2} \,Q^2\;dv }   \right) 
     
    7475  -   \frac{1}{2} \int_D {  \frac{Q^2}{e_3} \partial_t (e_3) \;dv } 
    7576\end{flalign} 
    76 equation of evolution of $Q$ written as the time evolution of $Q$ 
    77 like for momentum in vector invariant form, the quadratic quantity $\frac{1}{2}Q^2$ is conserved when : 
     77equation of evolution of $Q$ written as the time evolution of $Q$ like for momentum in vector invariant form, 
     78the quadratic quantity $\frac{1}{2}Q^2$ is conserved when: 
    7879\begin{flalign*} 
    7980\partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right) 
     
    8283+  \int_D { \frac{1}{2} Q^2 \, \partial_t e_3  \;e_1e_2\;di\,dj\,dk } \\ 
    8384\end{flalign*} 
    84 that is in a more compact form : 
     85that is in a more compact form: 
    8586\begin{flalign} \label{eq:Q2_vect} 
    8687\partial_t \left( \int_D {\frac{1}{2} Q^2\;dv} \right) 
     
    9798 
    9899 
    99 The discretization of pimitive equation in $s$-coordinate ($i.e.$ time and space varying  
    100 vertical coordinate) must be chosen so that the discrete equation of the model satisfy  
    101 integral constrains on energy and enstrophy.  
     100The discretization of pimitive equation in $s$-coordinate ($i.e.$ time and space varying vertical coordinate) 
     101must be chosen so that the discrete equation of the model satisfy integral constrains on energy and enstrophy.  
    102102 
    103103 
    104104Let us first establish those constraint in the continuous world. 
    105 The total energy ($i.e.$ kinetic plus potential energies) is conserved : 
     105The total energy ($i.e.$ kinetic plus potential energies) is conserved: 
    106106\begin{flalign} \label{eq:Tot_Energy} 
    107107  \partial_t \left( \int_D \left( \frac{1}{2} {\textbf{U}_h}^2 +  \rho \, g \, z \right) \;dv \right)  = & 0 
    108108\end{flalign} 
    109 under the following assumptions: no dissipation, no forcing  
    110 (wind, buoyancy flux, atmospheric pressure variations), mass  
    111 conservation, and closed domain.  
    112  
    113 This equation can be transformed to obtain several sub-equalities.  
    114 The transformation for the advection term depends on whether  
    115 the vector invariant form or the flux form is used for the momentum equation. 
    116 Using \autoref{eq:Q2_vect} and introducing \autoref{apdx:A_dyn_vect} in \autoref{eq:Tot_Energy}  
    117 for the former form and 
    118 Using \autoref{eq:Q2_flux} and introducing \autoref{apdx:A_dyn_flux} in \autoref{eq:Tot_Energy}  
    119 for the latter form  leads to: 
     109under the following assumptions: no dissipation, no forcing (wind, buoyancy flux, atmospheric pressure variations), 
     110mass conservation, and closed domain.  
     111 
     112This equation can be transformed to obtain several sub-equalities. 
     113The transformation for the advection term depends on whether the vector invariant form or 
     114the flux form is used for the momentum equation. 
     115Using \autoref{eq:Q2_vect} and introducing \autoref{apdx:A_dyn_vect} in 
     116\autoref{eq:Tot_Energy} for the former form and 
     117using \autoref{eq:Q2_flux} and introducing \autoref{apdx:A_dyn_flux} in 
     118\autoref{eq:Tot_Energy} for the latter form leads to: 
    120119 
    121120\begin{subequations} \label{eq:E_tot} 
     
    348347 
    349348Substituting the discrete expression of the time derivative of the velocity either in vector invariant, 
    350 leads to the discrete equivalent of the four equations \autoref{eq:E_tot_flux}.  
     349leads to the discrete equivalent of the four equations \autoref{eq:E_tot_flux}. 
    351350 
    352351% ------------------------------------------------------------------------------------------------------------- 
     
    356355\label{subsec:C_vor} 
    357356 
    358 Let $q$, located at $f$-points, be either the relative ($q=\zeta / e_{3f}$), or   
    359 the planetary ($q=f/e_{3f}$), or the total potential vorticity ($q=(\zeta +f) /e_{3f}$).  
    360 Two discretisation of the vorticity term (ENE and EEN) allows the conservation of  
    361 the kinetic energy. 
     357Let $q$, located at $f$-points, be either the relative ($q=\zeta / e_{3f}$), 
     358or the planetary ($q=f/e_{3f}$), or the total potential vorticity ($q=(\zeta +f) /e_{3f}$). 
     359Two discretisation of the vorticity term (ENE and EEN) allows the conservation of the kinetic energy. 
    362360% ------------------------------------------------------------------------------------------------------------- 
    363361%       Vorticity Term with ENE scheme 
     
    366364\label{subsec:C_vorENE}  
    367365 
    368 For the ENE scheme, the two components of the vorticity term are given by : 
     366For the ENE scheme, the two components of the vorticity term are given by: 
    369367\begin{equation*} 
    370368- e_3 \, q \;{\textbf{k}}\times {\textbf {U}}_h    \equiv  
     
    377375\end{equation*} 
    378376 
    379 This formulation does not conserve the enstrophy but it does conserve the  
    380 total kinetic energy. Indeed, the kinetic energy tendency associated to the  
    381 vorticity term and averaged over the ocean domain can be transformed as 
    382 follows: 
     377This formulation does not conserve the enstrophy but it does conserve the total kinetic energy. 
     378Indeed, the kinetic energy tendency associated to the vorticity term and 
     379averaged over the ocean domain can be transformed as follows: 
    383380\begin{flalign*} 
    384381&\int\limits_D -  \left(  e_3 \, q \;\textbf{k} \times \textbf{U}_h  \right) \cdot \textbf{U}_h  \;  dv &&  \\ 
     
    412409\end{aligned}   } \right. 
    413410\end{equation}  
    414 where the indices $i_p$ and $j_p$ take the following value:  
    415 $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$, 
     411where the indices $i_p$ and $j_p$ take the following value: $i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$, 
    416412and the vorticity triads, ${^i_j}\mathbb{Q}^{i_p}_{j_p}$, defined at $T$-point, are given by:  
    417413\begin{equation} \tag{\ref{eq:Q_triads}} 
     
    420416\end{equation} 
    421417 
    422 This formulation does conserve the total kinetic energy. Indeed, 
     418This formulation does conserve the total kinetic energy. 
     419Indeed, 
    423420\begin{flalign*} 
    424421&\int\limits_D - \textbf{U}_h \cdot   \left(  \zeta \;\textbf{k} \times \textbf{U}_h  \right)  \;  dv &&  \\ 
     
    473470\label{subsec:C_zad}  
    474471 
    475 The change of Kinetic Energy (KE) due to the vertical advection is exactly  
    476 balanced by the change of KE due to the horizontal gradient of KE~: 
     472The change of Kinetic Energy (KE) due to the vertical advection is exactly balanced by the change of KE due to the horizontal gradient of KE~: 
    477473\begin{equation*} 
    478474    \int_D \textbf{U}_h \cdot \frac{1}{e_3 } \omega \partial_k \textbf{U}_h \;dv 
     
    480476   +   \frac{1}{2} \int_D {  \frac{{\textbf{U}_h}^2}{e_3} \partial_t ( e_3) \;dv }  \\ 
    481477\end{equation*} 
    482 Indeed, using successively \autoref{eq:DOM_di_adj} ($i.e.$ the skew symmetry  
    483 property of the $\delta$ operator) and the continuity equation, then  
    484 \autoref{eq:DOM_di_adj} again, then the commutativity of operators  
    485 $\overline {\,\cdot \,}$ and $\delta$, and finally \autoref{eq:DOM_mi_adj}  
    486 ($i.e.$ the symmetry property of the $\overline {\,\cdot \,}$ operator)  
     478Indeed, using successively \autoref{eq:DOM_di_adj} ($i.e.$ the skew symmetry property of the $\delta$ operator) 
     479and the continuity equation, then \autoref{eq:DOM_di_adj} again, 
     480then the commutativity of operators $\overline {\,\cdot \,}$ and $\delta$, and finally \autoref{eq:DOM_mi_adj} 
     481($i.e.$ the symmetry property of the $\overline {\,\cdot \,}$ operator) 
    487482applied in the horizontal and vertical directions, it becomes: 
    488483\begin{flalign*} 
     
    543538\end{flalign*} 
    544539 
    545 There is two main points here. First, the satisfaction of this property links the choice of  
    546 the discrete formulation of the vertical advection and of the horizontal gradient  
    547 of KE. Choosing one imposes the other. For example KE can also be discretized  
    548 as $1/2\,({\overline u^{\,i}}^2 + {\overline v^{\,j}}^2)$. This leads to the following  
    549 expression for the vertical advection: 
     540There is two main points here. 
     541First, the satisfaction of this property links the choice of the discrete formulation of the vertical advection and 
     542of the horizontal gradient of KE. 
     543Choosing one imposes the other. 
     544For example KE can also be discretized as $1/2\,({\overline u^{\,i}}^2 + {\overline v^{\,j}}^2)$. 
     545This leads to the following expression for the vertical advection: 
    550546\begin{equation*} 
    551547\frac{1} {e_3 }\; \omega\; \partial_k \textbf{U}_h 
     
    557553\end{array}} } \right) 
    558554\end{equation*} 
    559 a formulation that requires an additional horizontal mean in contrast with  
    560 the one used in NEMO. Nine velocity points have to be used instead of 3.  
     555a formulation that requires an additional horizontal mean in contrast with the one used in NEMO. 
     556Nine velocity points have to be used instead of 3. 
    561557This is the reason why it has not been chosen. 
    562558 
    563 Second, as soon as the chosen $s$-coordinate depends on time, an extra constraint 
    564 arises on the time derivative of the volume at $u$- and $v$-points: 
     559Second, as soon as the chosen $s$-coordinate depends on time, 
     560an extra constraint arises on the time derivative of the volume at $u$- and $v$-points: 
    565561\begin{flalign*} 
    566562e_{1u}\,e_{2u}\,\partial_t (e_{3u}) =\overline{ e_{1t}\,e_{2t}\;\partial_t (e_{3t}) }^{\,i+1/2}    \\ 
     
    583579 
    584580\gmcomment{ 
    585 A pressure gradient has no contribution to the evolution of the vorticity as the  
    586 curl of a gradient is zero. In the $z$-coordinate, this property is satisfied locally  
    587 on a C-grid with 2nd order finite differences (property \autoref{eq:DOM_curl_grad}).  
     581  A pressure gradient has no contribution to the evolution of the vorticity as the curl of a gradient is zero. 
     582  In the $z$-coordinate, this property is satisfied locally on a C-grid with 2nd order finite differences 
     583  (property \autoref{eq:DOM_curl_grad}).  
    588584} 
    589585 
    590 When the equation of state is linear ($i.e.$ when an advection-diffusion equation  
    591 for density can be derived from those of temperature and salinity) the change of  
    592 KE due to the work of pressure forces is balanced by the change of potential  
    593 energy due to buoyancy forces:  
     586When the equation of state is linear 
     587($i.e.$ when an advection-diffusion equation for density can be derived from those of temperature and salinity) 
     588the change of KE due to the work of pressure forces is balanced by 
     589the change of potential energy due to buoyancy forces:  
    594590\begin{equation*} 
    595591- \int_D  \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv  
     
    598594\end{equation*} 
    599595 
    600 This property can be satisfied in a discrete sense for both $z$- and $s$-coordinates.  
    601 Indeed, defining the depth of a $T$-point, $z_t$, as the sum of the vertical scale  
    602 factors at $w$-points starting from the surface, the work of pressure forces can be  
    603 written as: 
     596This property can be satisfied in a discrete sense for both $z$- and $s$-coordinates. 
     597Indeed, defining the depth of a $T$-point, $z_t$, 
     598as the sum of the vertical scale factors at $w$-points starting from the surface, 
     599the work of pressure forces can be written as: 
    604600\begin{flalign*} 
    605601&- \int_D  \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv    
     
    658654\end{flalign*} 
    659655The first term is exactly the first term of the right-hand-side of \autoref{eq:KE+PE_vect_discrete}. 
    660 It remains to demonstrate that the last term, which is obviously a discrete analogue of  
    661 $\int_D \frac{p}{e_3} \partial_t (e_3)\;dv$ is equal to the last term of \autoref{eq:KE+PE_vect_discrete}. 
     656It remains to demonstrate that the last term, 
     657which is obviously a discrete analogue of $\int_D \frac{p}{e_3} \partial_t (e_3)\;dv$ is equal to 
     658the last term of \autoref{eq:KE+PE_vect_discrete}. 
    662659In other words, the following property must be satisfied: 
    663660\begin{flalign*} 
     
    666663\end{flalign*} 
    667664 
    668 Let introduce $p_w$ the pressure at $w$-point such that $\delta_k [p_w] = - \rho \,g\,e_{3t}$.  
     665Let introduce $p_w$ the pressure at $w$-point such that $\delta_k [p_w] = - \rho \,g\,e_{3t}$. 
    669666The right-hand-side of the above equation can be transformed as follows: 
    670667 
     
    718715 
    719716 
    720 Note that this property strongly constrains the discrete expression of both  
    721 the depth of $T-$points and of the term added to the pressure gradient in the 
    722 $s$-coordinate. Nevertheless, it is almost never satisfied since a linear equation  
    723 of state is rarely used. 
     717Note that this property strongly constrains the discrete expression of both the depth of $T-$points and 
     718of the term added to the pressure gradient in the $s$-coordinate. 
     719Nevertheless, it is almost never satisfied since a linear equation of state is rarely used. 
    724720 
    725721 
     
    755751\end{flalign*} 
    756752 
    757 Substituting the discrete expression of the time derivative of the velocity either in vector invariant or in flux form, 
    758 leads to the discrete equivalent of the  
     753Substituting the discrete expression of the time derivative of the velocity either in 
     754vector invariant or in flux form, leads to the discrete equivalent of the ???? 
    759755 
    760756 
     
    771767\label{subsec:C.3.3}  
    772768 
    773 In flux from the vorticity term reduces to a Coriolis term in which the Coriolis  
    774 parameter has been modified to account for the ``metric'' term. This altered  
    775 Coriolis parameter is discretised at an f-point. It is given by:  
     769In flux from the vorticity term reduces to a Coriolis term in which 
     770the Coriolis parameter has been modified to account for the ``metric'' term. 
     771This altered Coriolis parameter is discretised at an f-point. 
     772It is given by: 
    776773\begin{equation*} 
    777774f+\frac{1} {e_1 e_2 } \left( v \frac{\partial e_2 } {\partial i} - u \frac{\partial e_1 } {\partial j}\right)\; 
     
    781778\end{equation*} 
    782779 
    783 Either the ENE or EEN scheme is then applied to obtain the vorticity term in flux form.  
    784 It therefore conserves the total KE. The derivation is the same as for the  
    785 vorticity term in the vector invariant form (\autoref{subsec:C_vor}). 
     780Either the ENE or EEN scheme is then applied to obtain the vorticity term in flux form. 
     781It therefore conserves the total KE. 
     782The derivation is the same as for the vorticity term in the vector invariant form (\autoref{subsec:C_vor}). 
    786783 
    787784% ------------------------------------------------------------------------------------------------------------- 
     
    791788\label{subsec:C.3.4}  
    792789 
    793 The flux form operator of the momentum advection is evaluated using a  
    794 centered second order finite difference scheme. Because of the flux form,  
    795 the discrete operator does not contribute to the global budget of linear  
    796 momentum. Because of the centered second order scheme, it conserves  
    797 the horizontal kinetic energy, that is : 
     790The flux form operator of the momentum advection is evaluated using 
     791a centered second order finite difference scheme. 
     792Because of the flux form, the discrete operator does not contribute to the global budget of linear momentum. 
     793Because of the centered second order scheme, it conserves the horizontal kinetic energy, that is: 
    798794 
    799795\begin{equation} \label{eq:C_ADV_KE_flux} 
     
    804800\end{equation} 
    805801 
    806 Let us first consider the first term of the scalar product ($i.e.$ just the the terms  
    807 associated with the i-component of the advection) : 
     802Let us first consider the first term of the scalar product 
     803($i.e.$ just the the terms associated with the i-component of the advection): 
    808804\begin{flalign*} 
    809805&  - \int_D u \cdot \nabla \cdot \left(   \textbf{U}\,u   \right) \; dv   \\ 
     
    845841   \biggl\{     \left(   \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t}   \right) \; b_t     \biggr\}    &&& \\ 
    846842\end{flalign*} 
    847 Applying similar manipulation applied to the second term of the scalar product  
    848 leads to : 
     843Applying similar manipulation applied to the second term of the scalar product leads to: 
    849844\begin{equation*} 
    850845 -  \int_D \textbf{U}_h \cdot     \left(                 {{\begin{array} {*{20}c} 
     
    854849   \biggl\{     \left(   \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t}   \right) \; b_t     \biggr\}     
    855850\end{equation*} 
    856 which is the discrete form of  
    857 $ \frac{1}{2} \int_D u \cdot \nabla \cdot \left(   \textbf{U}\,u   \right) \; dv $.  
     851which is the discrete form of $ \frac{1}{2} \int_D u \cdot \nabla \cdot \left(   \textbf{U}\,u   \right) \; dv $. 
    858852\autoref{eq:C_ADV_KE_flux} is thus satisfied. 
    859853 
    860854 
    861 When the UBS scheme is used to evaluate the flux form momentum advection,  
    862 the discrete operator does not contribute to the global budget of linear momentum  
    863 (flux form). The horizontal kinetic energy is not conserved, but forced to decay  
    864 ($i.e.$ the scheme is diffusive).  
     855When the UBS scheme is used to evaluate the flux form momentum advection, 
     856the discrete operator does not contribute to the global budget of linear momentum (flux form). 
     857The horizontal kinetic energy is not conserved, but forced to decay ($i.e.$ the scheme is diffusive).  
    865858 
    866859 
     
    894887\end{equation}  
    895888 
    896 The scheme does not allow but the conservation of the total kinetic energy but the conservation  
    897 of $q^2$, the potential enstrophy for a horizontally non-divergent flow ($i.e.$ when $\chi$=$0$).  
    898 Indeed, using the symmetry or skew symmetry properties of the operators ( \autoref{eq:DOM_mi_adj}  
    899 and \autoref{eq:DOM_di_adj}), it can be shown that: 
     889The scheme does not allow but the conservation of the total kinetic energy but the conservation of $q^2$, 
     890the potential enstrophy for a horizontally non-divergent flow ($i.e.$ when $\chi$=$0$). 
     891Indeed, using the symmetry or skew symmetry properties of the operators 
     892( \autoref{eq:DOM_mi_adj} and \autoref{eq:DOM_di_adj}), 
     893it can be shown that: 
    900894\begin{equation} \label{eq:C_1.1} 
    901895\int_D {q\,\;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {e_3 \, q \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} \equiv 0 
    902896\end{equation} 
    903 where $dv=e_1\,e_2\,e_3 \; di\,dj\,dk$ is the volume element. Indeed, using  
    904 \autoref{eq:dynvor_ens}, the discrete form of the right hand side of \autoref{eq:C_1.1}  
    905 can be transformed as follow: 
     897where $dv=e_1\,e_2\,e_3 \; di\,dj\,dk$ is the volume element. 
     898Indeed, using \autoref{eq:dynvor_ens}, 
     899the discrete form of the right hand side of \autoref{eq:C_1.1} can be transformed as follow: 
    906900\begin{flalign*}  
    907901&\int_D q \,\; \textbf{k} \cdot \frac{1} {e_3 } \nabla \times  
     
    955949\end{aligned}   } \right. 
    956950\end{equation}  
    957 where the indices $i_p$ and $k_p$ take the following value:  
     951where the indices $i_p$ and $k_p$ take the following values:  
    958952$i_p = -1/2$ or $1/2$ and $j_p = -1/2$ or $1/2$, 
    959953and the vorticity triads, ${^i_j}\mathbb{Q}^{i_p}_{j_p}$, defined at $T$-point, are given by:  
     
    966960This formulation does conserve the potential enstrophy for a horizontally non-divergent flow ($i.e.$ $\chi=0$).  
    967961 
    968 Let consider one of the vorticity triad, for example ${^{i}_j}\mathbb{Q}^{+1/2}_{+1/2} $,  
    969 similar manipulation can be done for the 3 others. The discrete form of the right hand  
    970 side of \autoref{eq:C_1.1} applied to this triad only can be transformed as follow: 
     962Let consider one of the vorticity triad, for example ${^{i}_j}\mathbb{Q}^{+1/2}_{+1/2} $, 
     963similar manipulation can be done for the 3 others. 
     964The discrete form of the right hand side of \autoref{eq:C_1.1} applied to 
     965this triad only can be transformed as follow: 
    971966 
    972967\begin{flalign*}  
     
    10201015 
    10211016 
    1022 All the numerical schemes used in NEMO are written such that the tracer content  
    1023 is conserved by the internal dynamics and physics (equations in flux form).  
    1024 For advection, only the CEN2 scheme ($i.e.$ $2^{nd}$ order finite different scheme)  
    1025 conserves the global variance of tracer. Nevertheless the other schemes ensure  
    1026 that the global variance decreases ($i.e.$ they are at least slightly diffusive).  
    1027 For diffusion, all the schemes ensure the decrease of the total tracer variance,  
    1028 except the iso-neutral operator. There is generally no strict conservation of mass,  
    1029 as the equation of state is non linear with respect to $T$ and $S$. In practice,  
    1030 the mass is conserved to a very high accuracy.  
     1017All the numerical schemes used in NEMO are written such that the tracer content is conserved by 
     1018the internal dynamics and physics (equations in flux form). 
     1019For advection, 
     1020only the CEN2 scheme ($i.e.$ $2^{nd}$ order finite different scheme) conserves the global variance of tracer. 
     1021Nevertheless the other schemes ensure that the global variance decreases 
     1022($i.e.$ they are at least slightly diffusive). 
     1023For diffusion, all the schemes ensure the decrease of the total tracer variance, except the iso-neutral operator. 
     1024There is generally no strict conservation of mass, 
     1025as the equation of state is non linear with respect to $T$ and $S$. 
     1026In practice, the mass is conserved to a very high accuracy.  
    10311027% ------------------------------------------------------------------------------------------------------------- 
    10321028%       Advection Term 
     
    10491045 
    10501046 
    1051 Whatever the advection scheme considered it conserves of the tracer content as all  
    1052 the scheme are written in flux form. Indeed,  let $T$ be the tracer and $\tau_u$, $\tau_v$,  
    1053 and $\tau_w$ its interpolated values at velocity point (whatever the interpolation is),  
     1047Whatever the advection scheme considered it conserves of the tracer content as 
     1048all the scheme are written in flux form. 
     1049Indeed, let $T$ be the tracer and its $\tau_u$, $\tau_v$, and $\tau_w$ interpolated values at velocity point 
     1050(whatever the interpolation is), 
    10541051the conservation of the tracer content due to the advection tendency is obtained as follows:  
    10551052\begin{flalign*} 
     
    10671064\end{flalign*} 
    10681065 
    1069 The conservation of the variance of tracer due to the advection tendency  
    1070 can be achieved only with the CEN2 scheme, $i.e.$ when  
    1071 $\tau_u= \overline T^{\,i+1/2}$, $\tau_v= \overline T^{\,j+1/2}$, and $\tau_w= \overline T^{\,k+1/2}$.  
     1066The conservation of the variance of tracer due to the advection tendency can be achieved only with the CEN2 scheme, 
     1067$i.e.$ when $\tau_u= \overline T^{\,i+1/2}$, $\tau_v= \overline T^{\,j+1/2}$, and $\tau_w= \overline T^{\,k+1/2}$.  
    10721068It can be demonstarted as follows: 
    10731069\begin{flalign*} 
     
    11031099 
    11041100 
    1105 The discrete formulation of the horizontal diffusion of momentum ensures the  
    1106 conservation of potential vorticity and the horizontal divergence, and the  
    1107 dissipation of the square of these quantities ($i.e.$ enstrophy and the  
    1108 variance of the horizontal divergence) as well as the dissipation of the  
    1109 horizontal kinetic energy. In particular, when the eddy coefficients are  
    1110 horizontally uniform, it ensures a complete separation of vorticity and  
    1111 horizontal divergence fields, so that diffusion (dissipation) of vorticity  
    1112 (enstrophy) does not generate horizontal divergence (variance of the  
    1113 horizontal divergence) and \textit{vice versa}.  
    1114  
    1115 These properties of the horizontal diffusion operator are a direct consequence  
    1116 of properties \autoref{eq:DOM_curl_grad} and \autoref{eq:DOM_div_curl}.  
    1117 When the vertical curl of the horizontal diffusion of momentum (discrete sense)  
    1118 is taken, the term associated with the horizontal gradient of the divergence is  
    1119 locally zero.  
     1101The discrete formulation of the horizontal diffusion of momentum ensures 
     1102the conservation of potential vorticity and the horizontal divergence, 
     1103and the dissipation of the square of these quantities 
     1104($i.e.$ enstrophy and the variance of the horizontal divergence) as well as 
     1105the dissipation of the horizontal kinetic energy. 
     1106In particular, when the eddy coefficients are horizontally uniform, 
     1107it ensures a complete separation of vorticity and horizontal divergence fields, 
     1108so that diffusion (dissipation) of vorticity (enstrophy) does not generate horizontal divergence 
     1109(variance of the horizontal divergence) and \textit{vice versa}.  
     1110 
     1111These properties of the horizontal diffusion operator are a direct consequence of 
     1112properties \autoref{eq:DOM_curl_grad} and \autoref{eq:DOM_div_curl}. 
     1113When the vertical curl of the horizontal diffusion of momentum (discrete sense) is taken, 
     1114the term associated with the horizontal gradient of the divergence is locally zero.  
    11201115 
    11211116% ------------------------------------------------------------------------------------------------------------- 
     
    11251120\label{subsec:C.6.1} 
    11261121 
    1127 The lateral momentum diffusion term conserves the potential vorticity : 
     1122The lateral momentum diffusion term conserves the potential vorticity: 
    11281123\begin{flalign*} 
    11291124&\int \limits_D \frac{1} {e_3 } \textbf{k} \cdot \nabla \times  
     
    12111206\label{subsec:C.6.3} 
    12121207 
    1213 The lateral momentum diffusion term dissipates the enstrophy when the eddy  
    1214 coefficients are horizontally uniform: 
     1208The lateral momentum diffusion term dissipates the enstrophy when the eddy coefficients are horizontally uniform: 
    12151209\begin{flalign*} 
    12161210&\int\limits_D  \zeta \; \textbf{k} \cdot \nabla \times  
     
    12361230\label{subsec:C.6.4} 
    12371231 
    1238 When the horizontal divergence of the horizontal diffusion of momentum  
    1239 (discrete sense) is taken, the term associated with the vertical curl of the  
    1240 vorticity is zero locally, due to \autoref{eq:DOM_div_curl}.  
    1241 The resulting term conserves the $\chi$ and dissipates $\chi^2$  
    1242 when the eddy coefficients are horizontally uniform. 
     1232When the horizontal divergence of the horizontal diffusion of momentum (discrete sense) is taken, 
     1233the term associated with the vertical curl of the vorticity is zero locally, due to \autoref{eq:DOM_div_curl}.  
     1234The resulting term conserves the $\chi$ and dissipates $\chi^2$ when the eddy coefficients are horizontally uniform. 
    12431235\begin{flalign*} 
    12441236& \int\limits_D  \nabla_h \cdot  
     
    12911283\label{sec:C.7} 
    12921284 
    1293 As for the lateral momentum physics, the continuous form of the vertical diffusion  
    1294 of momentum satisfies several integral constraints. The first two are associated  
    1295 with the conservation of momentum and the dissipation of horizontal kinetic energy: 
     1285As for the lateral momentum physics, 
     1286the continuous form of the vertical diffusion of momentum satisfies several integral constraints. 
     1287The first two are associated with the conservation of momentum and the dissipation of horizontal kinetic energy: 
    12961288\begin{align*} 
    12971289 \int\limits_D   \frac{1} {e_3 }\; \frac{\partial } {\partial k}  
     
    13061298\end{align*} 
    13071299 
    1308 The first property is obvious. The second results from: 
     1300The first property is obvious. 
     1301The second results from: 
    13091302\begin{flalign*} 
    13101303\int\limits_D  
     
    13261319\end{flalign*} 
    13271320 
    1328 The vorticity is also conserved. Indeed: 
     1321The vorticity is also conserved. 
     1322Indeed: 
    13291323\begin{flalign*} 
    13301324\int \limits_D  
     
    13461340\end{flalign*} 
    13471341 
    1348 If the vertical diffusion coefficient is uniform over the whole domain, the  
    1349 enstrophy is dissipated, $i.e.$ 
     1342If the vertical diffusion coefficient is uniform over the whole domain, the enstrophy is dissipated, $i.e.$ 
    13501343\begin{flalign*} 
    13511344\int\limits_D \zeta \, \textbf{k} \cdot \nabla \times  
     
    13781371      &\left[  \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} \left[ \delta_{j+1/2} \left[ e_{1u}\,u \right] \right]  \right]  \biggr\}  &&\\  
    13791372\end{flalign*} 
    1380 Using the fact that the vertical diffusion coefficients are uniform, and that in  
    1381 $z$-coordinate, the vertical scale factors do not depend on $i$ and $j$ so  
    1382 that: $e_{3f} =e_{3u} =e_{3v} =e_{3t} $ and $e_{3w} =e_{3uw} =e_{3vw} $,  
    1383 it follows: 
     1373Using the fact that the vertical diffusion coefficients are uniform, 
     1374and that in $z$-coordinate, the vertical scale factors do not depend on $i$ and $j$ so that: 
     1375$e_{3f} =e_{3u} =e_{3v} =e_{3t} $ and $e_{3w} =e_{3uw} =e_{3vw} $, it follows: 
    13841376\begin{flalign*} 
    13851377\equiv A^{\,vm} \sum\limits_{i,j,k} \zeta \;\delta_k  
     
    13981390      \left( \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} \right) \right)\; dv = 0    &&&\\ 
    13991391\end{flalign*} 
    1400 and the square of the horizontal divergence decreases ($i.e.$ the horizontal  
    1401 divergence is dissipated) if the vertical diffusion coefficient is uniform over the  
    1402 whole domain: 
     1392and the square of the horizontal divergence decreases ($i.e.$ the horizontal divergence is dissipated) if 
     1393the vertical diffusion coefficient is uniform over the whole domain: 
    14031394 
    14041395\begin{flalign*} 
     
    14631454\label{sec:C.8} 
    14641455 
    1465 The numerical schemes used for tracer subgridscale physics are written such  
    1466 that the heat and salt contents are conserved (equations in flux form).  
    1467 Since a flux form is used to compute the temperature and salinity,  
    1468 the quadratic form of these quantities ($i.e.$ their variance) globally tends to diminish.  
     1456The numerical schemes used for tracer subgridscale physics are written such that 
     1457the heat and salt contents are conserved (equations in flux form). 
     1458Since a flux form is used to compute the temperature and salinity, 
     1459the quadratic form of these quantities ($i.e.$ their variance) globally tends to diminish. 
    14691460As for the advection term, there is conservation of mass only if the Equation Of Seawater is linear.  
    14701461 
Note: See TracChangeset for help on using the changeset viewer.