New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 10406 for NEMO/trunk/doc/latex/NEMO/subfiles/annex_C.tex – NEMO

Ignore:
Timestamp:
2018-12-18T11:25:09+01:00 (5 years ago)
Author:
nicolasmartin
Message:

Edition of math environments

Location:
NEMO/trunk/doc/latex
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex

    • Property svn:ignore
      •  

        old new  
        33*.blg 
        44*.dvi 
        5 *.fdb_latexmk 
         5*.fdb* 
        66*.fls 
        77*.idx 
  • NEMO/trunk/doc/latex/NEMO

    • Property svn:ignore
      •  

        old new  
        33*.blg 
        44*.dvi 
        5 *.fdb_latexmk 
         5*.fdb* 
        66*.fls 
        77*.idx 
  • NEMO/trunk/doc/latex/NEMO/subfiles

    • Property svn:ignore
      •  

        old new  
        33*.blg 
        44*.dvi 
        5 *.fdb_latexmk 
         5*.fdb* 
        66*.fls 
        77*.idx 
  • NEMO/trunk/doc/latex/NEMO/subfiles/annex_C.tex

    r10354 r10406  
    2525 
    2626fluxes at the faces of a $T$-box: 
    27 \begin{equation*} 
     27\[ 
    2828U = e_{2u}\,e_{3u}\; u  \qquad  V = e_{1v}\,e_{3v}\; v  \qquad W = e_{1w}\,e_{2w}\; \omega     \\ 
    29 \end{equation*} 
     29\] 
    3030 
    3131volume of cells at $u$-, $v$-, and $T$-points: 
    32 \begin{equation*} 
     32\[ 
    3333b_u = e_{1u}\,e_{2u}\,e_{3u}  \qquad  b_v = e_{1v}\,e_{2v}\,e_{3v}  \qquad b_t = e_{1t}\,e_{2t}\,e_{3t}     \\ 
    34 \end{equation*} 
     34\] 
    3535 
    3636partial derivative notation: $\partial_\bullet = \frac{\partial}{\partial \bullet}$ 
     
    4747 
    4848Continuity equation with the above notation: 
    49 \begin{equation*} 
     49\[ 
    5050\frac{1}{e_{3t}} \partial_t (e_{3t})+ \frac{1}{b_t}  \biggl\{  \delta_i [U] + \delta_j [V] + \delta_k [W] \biggr\} = 0 
    51 \end{equation*} 
     51\] 
    5252 
    5353A quantity, $Q$ is conserved when its domain averaged time change is zero, that is when: 
    54 \begin{equation*} 
     54\[ 
    5555\partial_t \left( \int_D{ Q\;dv } \right) =0 
    56 \end{equation*} 
     56\] 
    5757Noting that the coordinate system used ....  blah blah 
    58 \begin{equation*} 
     58\[ 
    5959\partial_t \left( \int_D {Q\;dv} \right) =  \int_D { \partial_t \left( e_3 \, Q \right) e_1e_2\;di\,dj\,dk } 
    6060                                                       =  \int_D { \frac{1}{e_3} \partial_t \left( e_3 \, Q \right) dv } =0 
    61 \end{equation*} 
     61\] 
    6262equation of evolution of $Q$ written as 
    6363the time evolution of the vertical content of $Q$ like for tracers, or momentum in flux form, 
     
    162162$\ $\newline    % force a new ligne 
    163163The prognostic ocean dynamics equation can be summarized as follows: 
    164 \begin{equation*} 
     164\[ 
    165165\text{NXT} = \dbinom {\text{VOR} + \text{KEG} + \text {ZAD} } 
    166166                  {\text{COR} + \text{ADV}                       } 
    167167         + \text{HPG} + \text{SPG} + \text{LDF} + \text{ZDF} 
    168 \end{equation*} 
     168\] 
    169169$\ $\newline    % force a new ligne 
    170170 
     
    365365 
    366366For the ENE scheme, the two components of the vorticity term are given by: 
    367 \begin{equation*} 
     367\[ 
    368368- e_3 \, q \;{\textbf{k}}\times {\textbf {U}}_h    \equiv  
    369369   \left( {{  \begin{array} {*{20}c} 
     
    373373      \overline {\, q \ \overline {\left( e_{2u}\,e_{3u}\,u \right)}^{\,j+1/2}} ^{\,i}       \hfill \\ 
    374374   \end{array}} }    \right) 
    375 \end{equation*} 
     375\] 
    376376 
    377377This formulation does not conserve the enstrophy but it does conserve the total kinetic energy. 
     
    471471 
    472472The change of Kinetic Energy (KE) due to the vertical advection is exactly balanced by the change of KE due to the horizontal gradient of KE~: 
    473 \begin{equation*} 
     473\[ 
    474474    \int_D \textbf{U}_h \cdot \frac{1}{e_3 } \omega \partial_k \textbf{U}_h \;dv 
    475475=  -   \int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv 
    476476   +   \frac{1}{2} \int_D {  \frac{{\textbf{U}_h}^2}{e_3} \partial_t ( e_3) \;dv }  \\ 
    477 \end{equation*} 
     477\] 
    478478Indeed, using successively \autoref{eq:DOM_di_adj} ($i.e.$ the skew symmetry property of the $\delta$ operator) 
    479479and the continuity equation, then \autoref{eq:DOM_di_adj} again, 
     
    544544For example KE can also be discretized as $1/2\,({\overline u^{\,i}}^2 + {\overline v^{\,j}}^2)$. 
    545545This leads to the following expression for the vertical advection: 
    546 \begin{equation*} 
     546\[ 
    547547\frac{1} {e_3 }\; \omega\; \partial_k \textbf{U}_h 
    548548\equiv \left( {{\begin{array} {*{20}c} 
     
    552552\left[ \overline v^{\,j+1/2} \right]}}^{\,j+1/2,k} \hfill \\ 
    553553\end{array}} } \right) 
    554 \end{equation*} 
     554\] 
    555555a formulation that requires an additional horizontal mean in contrast with the one used in NEMO. 
    556556Nine velocity points have to be used instead of 3. 
     
    588588the change of KE due to the work of pressure forces is balanced by 
    589589the change of potential energy due to buoyancy forces:  
    590 \begin{equation*} 
     590\[ 
    591591- \int_D  \left. \nabla p \right|_z \cdot \textbf{U}_h \;dv  
    592592= - \int_D \nabla \cdot \left( \rho \,\textbf {U} \right) \,g\,z \;dv 
    593593  + \int_D g\, \rho \; \partial_t (z)  \;dv 
    594 \end{equation*} 
     594\] 
    595595 
    596596This property can be satisfied in a discrete sense for both $z$- and $s$-coordinates. 
     
    771771This altered Coriolis parameter is discretised at an f-point. 
    772772It is given by: 
    773 \begin{equation*} 
     773\[ 
    774774f+\frac{1} {e_1 e_2 } \left( v \frac{\partial e_2 } {\partial i} - u \frac{\partial e_1 } {\partial j}\right)\; 
    775775\equiv \; 
    776776f+\frac{1} {e_{1f}\,e_{2f}} \left( \overline v^{\,i+1/2} \delta_{i+1/2} \left[ e_{2u} \right]  
    777777                                               -\overline u^{\,j+1/2} \delta_{j+1/2} \left[ e_{1u}  \right] \right) 
    778 \end{equation*} 
     778\] 
    779779 
    780780Either the ENE or EEN scheme is then applied to obtain the vorticity term in flux form. 
     
    842842\end{flalign*} 
    843843Applying similar manipulation applied to the second term of the scalar product leads to: 
    844 \begin{equation*} 
     844\[ 
    845845 -  \int_D \textbf{U}_h \cdot     \left(                 {{\begin{array} {*{20}c} 
    846846\nabla \cdot \left( \textbf{U}\,u \right) \hfill \\ 
     
    848848\equiv + \sum\limits_{i,j,k}  \frac{1}{2}  \left( \overline {u^2}^{\,i} + \overline {v^2}^{\,j} \right) 
    849849   \biggl\{     \left(   \frac{1}{e_{3t}} \frac{\partial e_{3t}}{\partial t}   \right) \; b_t     \biggr\}     
    850 \end{equation*} 
     850\] 
    851851which is the discrete form of $ \frac{1}{2} \int_D u \cdot \nabla \cdot \left(   \textbf{U}\,u   \right) \; dv $. 
    852852\autoref{eq:C_ADV_KE_flux} is thus satisfied. 
     
    10321032 
    10331033conservation of a tracer, $T$: 
    1034 \begin{equation*} 
     1034\[ 
    10351035\frac{\partial }{\partial t} \left(   \int_D {T\;dv}   \right)  
    10361036=  \int_D { \frac{1}{e_3}\frac{\partial \left( e_3 \, T \right)}{\partial t} \;dv }=0 
    1037 \end{equation*} 
     1037\] 
    10381038 
    10391039conservation of its variance: 
     
    11561156The lateral momentum diffusion term dissipates the horizontal kinetic energy: 
    11571157%\begin{flalign*} 
    1158 \begin{equation*} 
     1158\[ 
    11591159\begin{split} 
    11601160\int_D \textbf{U}_h \cdot  
     
    11981198\quad \leq 0       \\ 
    11991199\end{split} 
    1200 \end{equation*} 
     1200\] 
    12011201 
    12021202% ------------------------------------------------------------------------------------------------------------- 
Note: See TracChangeset for help on using the changeset viewer.