New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 2282 for branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_LBC.tex – NEMO

Ignore:
Timestamp:
2010-10-15T16:42:00+02:00 (14 years ago)
Author:
gm
Message:

ticket:#658 merge DOC of all the branches that form the v3.3 beta

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_LBC.tex

    r1224 r2282  
    1515% Boundary Condition at the Coast 
    1616% ================================================================ 
    17 \section{Boundary Condition at the Coast (\np{shlat})} 
     17\section{Boundary Condition at the Coast (\np{rn\_shlat})} 
    1818\label{LBC_coast} 
    1919%--------------------------------------------nam_lbc------------------------------------------------------- 
    20 \namdisplay{nam_lbc}  
     20\namdisplay{namlbc}  
    2121%-------------------------------------------------------------------------------------------------------------- 
    2222 
     
    6969condition influences the relative vorticity and momentum diffusive trends, and is  
    7070required in order to compute the vorticity at the coast. Four different types of  
    71 lateral boundary condition are available, controlled by the value of the \np{shlat}  
     71lateral boundary condition are available, controlled by the value of the \np{rn\_shlat}  
    7272namelist parameter. (The value of the mask$_{f}$ array along the coastline is set  
    7373equal to this parameter.) These are: 
     
    7676\begin{figure}[!p] \label{Fig_LBC_shlat}  \begin{center} 
    7777\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_LBC_shlat.pdf} 
    78 \caption {lateral boundary condition (a) free-slip ($shlat=0$) ; (b) no-slip ($shlat=2$)  
    79 ; (c) "partial" free-slip ($0<shlat<2$) and (d) "strong" no-slip ($2<shlat$).  
     78\caption {lateral boundary condition (a) free-slip ($rn\_shlat=0$) ; (b) no-slip ($rn\_shlat=2$)  
     79; (c) "partial" free-slip ($0<rn\_shlat<2$) and (d) "strong" no-slip ($2<rn\_shlat$).  
    8080Implied "ghost" velocity inside land area is display in grey. } 
    8181\end{center}   \end{figure} 
     
    8484\begin{description} 
    8585 
    86 \item[free-slip boundary condition (\np{shlat}=0): ]  the tangential velocity at the  
     86\item[free-slip boundary condition (\np{rn\_shlat}=0): ]  the tangential velocity at the  
    8787coastline is equal to the offshore velocity, $i.e.$ the normal derivative of the  
    8888tangential velocity is zero at the coast, so the vorticity: mask$_{f}$ array is set  
    8989to zero inside the land and just at the coast (Fig.~\ref{Fig_LBC_shlat}-a). 
    9090 
    91 \item[no-slip boundary condition (\np{shlat}=2): ] the tangential velocity vanishes  
     91\item[no-slip boundary condition (\np{rn\_shlat}=2): ] the tangential velocity vanishes  
    9292at the coastline. Assuming that the tangential velocity decreases linearly from  
    9393the closest ocean velocity grid point to the coastline, the normal derivative is  
     
    108108\end{equation} 
    109109 
    110 \item["partial" free-slip boundary condition (0$<$\np{shlat}$<$2): ] the tangential  
     110\item["partial" free-slip boundary condition (0$<$\np{rn\_shlat}$<$2): ] the tangential  
    111111velocity at the coastline is smaller than the offshore velocity, $i.e.$ there is a lateral  
    112112friction but not strong enough to make the tangential velocity at the coast vanish  
     
    114114strictly inbetween $0$ and $2$. 
    115115 
    116 \item["strong" no-slip boundary condition (2$<$\np{shlat}): ] the viscous boundary  
     116\item["strong" no-slip boundary condition (2$<$\np{rn\_shlat}): ] the viscous boundary  
    117117layer is assumed to be smaller than half the grid size (Fig.~\ref{Fig_LBC_shlat}-d).  
    118118The friction is thus larger than in the no-slip case. 
     
    134134spectacular improvements have not been found in the half-degree global ocean  
    135135(ORCA05), but significant reductions of numerically induced coastal upwellings were  
    136 found in an eddy resolving simulation of the Alboran Sea \citep{OlivierPh2001}.  
     136found in an eddy resolving simulation of the Alboran Sea \citep{Olivier_PhD01}.  
    137137Nevertheless, since a no-slip boundary condition is not recommended in an eddy  
    138 permitting or resolving simulation \citep{Penduff2007}, the use of this option is also  
     138permitting or resolving simulation \citep{Penduff_al_OS07}, the use of this option is also  
    139139not recommended. 
    140140 
     
    355355($e1t$, $e2t$, etc) and do not expect the grid size to be zero, even on land. It may be  
    356356best not to eliminate land processors when running the model especially to write the  
    357 mesh files as outputs (when \np{nmsh} namelist parameter differs from 0). 
     357mesh files as outputs (when \np{nn\_msh} namelist parameter differs from 0). 
     358%% 
    358359\gmcomment{Steven : dont understand this, no land processor means no output file  
    359360covering this part of globe; its only when files are stitched together into one that you  
    360361can leave a hole} 
     362%% 
    361363 
    362364%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    380382%-    nobc_dta    =    0     !  = 0 the obc data are equal to the initial state 
    381383%-                           !  = 1 the obc data are read in 'obc   .dta' files 
    382 %-    rdpein      =    1.    !  ??? 
    383 %-    rdpwin      =    1.    !  ??? 
    384 %-    rdpnin      =   30.    !  ??? 
    385 %-    rdpsin      =    1.    !  ??? 
    386 %-    rdpeob      = 1500.    !  time relaxation (days) for the east  open boundary 
    387 %-    rdpwob      =   15.    !    "        "           for the west  open boundary 
    388 %-    rdpnob      =  150.    !    "        "           for the north open boundary 
    389 %-    rdpsob      =   15.    !    "        "           for the south open boundary 
    390 %-    zbsic1      =  140.e+6 !  barotropic stream function on first  isolated coastline 
    391 %-    zbsic2      =    1.e+6 !    "                   "    on second isolated coastline 
    392 %-    zbsic3      =    0.    !    "                   "    on thrid  isolated coastline 
     384%-    rn_dpein      =    1.    !  ??? 
     385%-    rn_dpwin      =    1.    !  ??? 
     386%-    rn_dpnin      =   30.    !  ??? 
     387%-    rn_dpsin      =    1.    !  ??? 
     388%-    rn_dpeob      = 1500.    !  time relaxation (days) for the east  open boundary 
     389%-    rn_dpwob      =   15.    !    "        "           for the west  open boundary 
     390%-    rn_dpnob      =  150.    !    "        "           for the north open boundary 
     391%-    rn_dpsob      =   15.    !    "        "           for the south open boundary 
    393392%-    ln_obc_clim = .true.   !  climatological obc data files (default T) 
    394393%-    ln_vol_cst  = .true.   !  total volume conserved 
     
    428427of the domain, for example at Gibraltar Straits if one wants to avoid including  
    429428the Mediterranean in an Atlantic domain. This flexibility has been found necessary  
    430 for the CLIPPER project \citep{Treguier2001}. Because of the complexity of the  
     429for the CLIPPER project \citep{Treguier_al_JGR01}. Because of the complexity of the  
    431430geometry of ocean basins, it may even be necessary to have more than one  
    432431''west'' open boundary, more than one ''north'', etc. This is not possible with  
     
    520519It is necessary to provide information at the boundaries. The simplest case is  
    521520when this information does not change in time and is equal to the initial conditions  
    522 (namelist variable \np{nobc\_dta}=0). This is the case for the standard configuration  
    523 EEL5 with open boundaries. When (\np{nobc\_dta}=1), open boundary information  
     521(namelist variable \np{nn\_obcdta}=0). This is the case for the standard configuration  
     522EEL5 with open boundaries. When (\np{nn\_obcdta}=1), open boundary information  
    524523is read from netcdf files. For convenience the input files are supposed to be similar  
    525524to the ''history'' NEMO output files, for dimension names and variable names.  
     
    529528 
    530529When ocean observations are used to generate the boundary data (a hydrographic  
    531 section for example, as in \citet{Treguier2001}) it happens often that only the velocity  
     530section for example, as in \citet{Treguier_al_JGR01}) it happens often that only the velocity  
    532531normal to the boundary is known, which is the reason why the initial OBC code  
    533532assumes that only $T$, $S$, and the normal velocity ($u$ or $v$) needs to be  
     
    548547remain in NEMO v2.3. Users should read the code carefully before using it. Finally,  
    549548in the case of the rigid lid approximation the barotropic streamfunction must be  
    550 provided, as documented in \citet{Treguier2001}). This option is no longer  
     549provided, as documented in \citet{Treguier_al_JGR01}). This option is no longer  
    551550recommended but remains in NEMO V2.3. 
    552551 
     
    596595data is held fixed in time. If the files contain 12 values, it is assumed that the input  
    597596is a climatology for a repeated annual cycle (corresponding to the case \np{ln\_obc\_clim}  
    598 = .True.). The case of an arbitrary number of time frames is not yet implemented  
     597=true). The case of an arbitrary number of time frames is not yet implemented  
    599598correctly; the user is required to write his own code in the module \mdl{obc\_dta}  
    600599to deal with this situation.  
     
    608607of energy. The constraints are specified separately at each boundary as time  
    609608scales for ''inflow'' and ''outflow'' as defined below. The time scales are set (in days)  
    610 by namelist parameters such as \np{rdpein}, \np{rdpeob} for the eastern open  
     609by namelist parameters such as \np{rn\_dpein}, \np{rn\_dpeob} for the eastern open  
    611610boundary for example. When both time scales are zero for a given boundary  
    612 ($e.g.$ for the western boundary, \jp{lp\_obc\_west}=.True., \np{rdpwob}=0 and  
    613 \np{rdpwin}=0) this means that the boundary in question is a ''fixed '' boundary  
     611($e.g.$ for the western boundary, \jp{lp\_obc\_west}=true, \np{rn\_dpwob}=0 and  
     612\np{rn\_dpwin}=0) this means that the boundary in question is a ''fixed '' boundary  
    614613where the solution is set exactly by the boundary data. This is not recommended,  
    615614except in combination with increased viscosity in a ''sponge'' layer next to the  
     
    623622$s$-coordinate model on an Arakawa C-grid. Although the algorithm has  
    624623been numerically successful in the CLIPPER Atlantic models, the physics  
    625 do not work as expected \citep{Treguier2001}. Users are invited to consider  
     624do not work as expected \citep{Treguier_al_JGR01}. Users are invited to consider  
    626625open boundary conditions (OBC hereafter) with some scepticism  
    627626\citep{Durran2001, Blayo2005}. 
     
    637636C_{\phi y} = \frac{ -\phi_{t} }{ ( \phi_{x}^{2} + \phi_{y}^{2}) } \phi_{y}.  
    638637\end{equation} 
    639 Following \citet{Treguier2001} and \citet{Marchesiello2001} we retain only  
     638Following \citet{Treguier_al_JGR01} and \citet{Marchesiello2001} we retain only  
    640639the normal component of the velocity, $C_{\phi x}$, setting $C_{\phi y} =0$  
    641640(but unlike the original Orlanski radiation algorithm we retain $\phi_{y}$ in  
     
    665664propagation), the radiation condition (\ref{Eq_obc_rado}) is used.  
    666665When  $C_{\phi x}$ is westward (inward propagation), (\ref{Eq_obc_radi}) is  
    667 used with a strong relaxation to climatology (usually $\tau_{i}=\np{rdpein}=$1~day). 
     666used with a strong relaxation to climatology (usually $\tau_{i}=\np{rn\_dpein}=$1~day). 
    668667Equation (\ref{Eq_obc_radi}) is solved with a Euler time-stepping scheme. As a  
    669668consequence, setting $\tau_{i}$ smaller than, or equal to the time step is equivalent  
     
    672671numerical stability.  
    673672 
    674 In  the case of a western boundary located in the Eastern Atlantic, \citet{Penduff2000}  
     673In  the case of a western boundary located in the Eastern Atlantic, \citet{Penduff_al_JGR00}  
    675674have been able to implement the radiation algorithm without any boundary data,  
    676675using persistence from the previous time step instead. This solution has not worked  
    677 in other cases \citep{Treguier2001}, so that the use of boundary data is recommended.  
     676in other cases \citep{Treguier_al_JGR01}, so that the use of boundary data is recommended.  
    678677Even in the outflow condition (\ref{Eq_obc_rado}), we have found it desirable to  
    679678maintain a weak relaxation to climatology. The time step is usually chosen so as to  
     
    733732\colorbox{yellow}{OBC rigid lid? {\ldots}} 
    734733 
    735  
    736  
    737  
    738734% ==================================================================== 
    739 % Flow Relaxation Scheme  
     735% Unstructured open boundaries BDY  
    740736% ==================================================================== 
    741 \section{Flow Relaxation Scheme (???)} 
     737\section{Unstructured Open Boundary Conditions (\key{bdy})} 
    742738\label{LBC_bdy} 
    743739 
    744 %gm% to be updated by Met Office 
     740%-----------------------------------------nambdy-------------------------------------------- 
     741%-    filbdy_mask    =  ''                  !  name of mask file (if ln_bdy_mask=.TRUE.) 
     742%-    filbdy_data_T  = 'bdydata_grid_T.nc'  !  name of data file for FRS condition (T-points) 
     743%-    filbdy_data_U  = 'bdydata_grid_U.nc'  !  name of data file for FRS condition (U-points) 
     744%-    filbdy_data_V  = 'bdydata_grid_V.nc'  !  name of data file for FRS condition (V-points) 
     745%-    filbdy_data_bt_T  = 'bdydata_bt_grid_T.nc'  !  name of data file for Flather condition (T-points) 
     746%-    filbdy_data_bt_U  = 'bdydata_bt_grid_U.nc'  !  name of data file for Flather condition (U-points) 
     747%-    filbdy_data_bt_V  = 'bdydata_bt_grid_V.nc'  !  name of data file for Flather condition (V-points) 
     748%-    ln_bdy_clim    = .false.              !  contain 1 (T) or 12 (F) time dumps and be cyclic 
     749%-    ln_bdy_vol     = .true.               !  total volume correction (see volbdy parameter) 
     750%-    ln_bdy_mask    = .false.              !  boundary mask from filbdy_mask (T) or boundaries are on edges of domain (F) 
     751%-    ln_bdy_tides   = .true.               !  Apply tidal harmonic forcing with Flather condition 
     752%-    ln_bdy_dyn_fla = .true.               !  Apply Flather condition to velocities 
     753%-    ln_bdy_tra_frs = .false.              !  Apply FRS condition to temperature and salinity  
     754%-    ln_bdy_dyn_frs = .false.              !  Apply FRS condition to velocities 
     755%-    nbdy_dta       =  1                   !  = 0, bdy data are equal to the initial state 
     756%-                                          !  = 1, bdy data are read in 'bdydata   .nc' files 
     757%-    nb_rimwidth    = 9                    !  width of the relaxation zone 
     758%-    volbdy         = 0                    !  = 0, the total water flux across open boundaries is zero 
     759\namdisplay{nambdy}  
     760%----------------------------------------------------------------------------------------------- 
     761 
     762The BDY module is an alternative implementation of open boundary 
     763conditions for regional configurations. It implements the Flow 
     764Relaxation Scheme algorithm for temperature, salinity, velocities and 
     765ice fields, and the Flather radiation condition for the depth-mean 
     766transports. The specification of the location of the open boundary is 
     767completely flexible and allows for example the open boundary to follow 
     768an isobath or other irregular contour.  
     769 
     770The BDY module was modelled on the OBC module and shares many features 
     771and a similar coding structure \citep{Chanut2005}. 
     772 
     773%---------------------------------------------- 
     774\subsection{The Flow Relaxation Scheme} 
     775\label{BDY_FRS_scheme} 
     776 
     777The Flow Relaxation Scheme (FRS) \citep{Davies_QJRMS76,Engerdahl_Tel95}, 
     778applies a simple relaxation of the model fields to 
     779externally-specified values over a zone next to the edge of the model 
     780domain. Given a model prognostic variable $\Phi$  
     781\begin{equation}  \label{Eq_bdy_frs1} 
     782\Phi(d) = \alpha(d)\Phi_{e}(d) + (1-\alpha(d))\Phi_{m}(d)\;\;\;\;\; d=1,N 
     783\end{equation} 
     784where $\Phi_{m}$ is the model solution and $\Phi_{e}$ is the specified 
     785external field, $d$ gives the discrete distance from the model 
     786boundary  and $\alpha$ is a parameter that varies from $1$ at $d=1$ to 
     787a small value at $d=N$. It can be shown that this scheme is equivalent 
     788to adding a relaxation term to the prognostic equation for $\Phi$ of 
     789the form: 
     790\begin{equation}  \label{Eq_bdy_frs2} 
     791-\frac{1}{\tau}\left(\Phi - \Phi_{e}\right) 
     792\end{equation} 
     793where the relaxation time scale $\tau$ is given by a function of 
     794$\alpha$ and the model time step $\Delta t$: 
     795\begin{equation}  \label{Eq_bdy_frs3} 
     796\tau = \frac{1-\alpha}{\alpha}  \,\rdt 
     797\end{equation} 
     798Thus the model solution is completely prescribed by the external 
     799conditions at the edge of the model domain and is relaxed towards the 
     800external conditions over the rest of the FRS zone. The application of 
     801a relaxation zone helps to prevent spurious reflection of outgoing 
     802signals from the model boundary.  
     803 
     804The function $\alpha$ is specified as a $tanh$ function: 
     805\begin{equation}  \label{Eq_bdy_frs4} 
     806\alpha(d) = 1 - \tanh\left(\frac{d-1}{2}\right),       \quad d=1,N 
     807\end{equation} 
     808The width of the FRS zone is specified in the namelist as  
     809\np{nb\_rimwidth}. This is typically set to a value between 8 and 10.  
     810 
     811%---------------------------------------------- 
     812\subsection{The Flather radiation scheme} 
     813\label{BDY_flather_scheme} 
     814 
     815The \citet{Flather_JPO94} scheme is a radiation condition on the normal, depth-mean 
     816transport across the open boundary. It takes the form 
     817\begin{equation}  \label{Eq_bdy_fla1} 
     818U = U_{e} + \frac{c}{h}\left(\eta - \eta_{e}\right), 
     819\end{equation} 
     820where $U$ is the depth-mean velocity normal to the boundary and $\eta$ 
     821is the sea surface height, both from the model. The subscript $e$ 
     822indicates the same fields from external sources. The speed of external 
     823gravity waves is given by $c = \sqrt{gh}$, and $h$ is the depth of the 
     824water column. The depth-mean normal velocity along the edge of the 
     825model domain is set equal to the 
     826external depth-mean normal velocity, plus a correction term that 
     827allows gravity waves generated internally to exit the model boundary. 
     828Note that the sea-surface height gradient in \eqref{Eq_bdy_fla1} 
     829is a spatial gradient across the model boundary, so that $\eta_{e}$ is 
     830defined on the $T$ points with $nbrdta=1$ and $\eta$ is defined on the 
     831$T$ points with $nbrdta=2$. $U$ and $U_{e}$ are defined on the $U$ or 
     832$V$ points with $nbrdta=1$, $i.e.$ between the two $T$ grid points. 
     833 
     834%---------------------------------------------- 
     835\subsection{Choice of schemes} 
     836\label{BDY_choice_of_schemes} 
     837 
     838The Flow Relaxation Scheme may be applied separately to the 
     839temperature and salinity (\np{ln\_bdy\_tra\_frs} = true) and 
     840the velocity fields (\np{ln\_bdy\_dyn\_frs} = true). Flather 
     841radiation conditions may be applied using externally defined 
     842barotropic velocities and sea-surface height (\np{ln\_bdy\_dyn\_fla} = true)  
     843or using tidal harmonics fields (\np{ln\_bdy\_tides} = true)  
     844or both. FRS and Flather conditions may be applied simultaneously.  
     845A typical configuration where all possible conditions might be used is a tidal,  
     846shelf-seas model, where the barotropic boundary conditions are fixed  
     847with the Flather scheme using tidal harmonics and possibly output  
     848from a large-scale model, and FRS conditions are applied to the tracers  
     849and baroclinic velocity fields, using fields from a large-scale model. 
     850 
     851Note that FRS conditions will work with the filtered 
     852(\key{dynspg\_flt}) or time-split (\key{dynspg\_ts}) solutions for the 
     853surface pressure gradient. The Flather condition will only work for 
     854the time-split solution (\key{dynspg\_ts}). FRS conditions are applied 
     855at the end of the main model time step. Flather conditions are applied 
     856during the barotropic subcycle in the time-split solution.  
     857 
     858%---------------------------------------------- 
     859\subsection{Boundary geometry} 
     860\label{BDY_geometry} 
     861 
     862The definition of the open boundary is completely flexible. An example 
     863is shown in Fig.~\ref{Fig_LBC_bdy_geom}. The boundary zone is 
     864defined by a series of index arrays read in from the input boundary 
     865data files: $nbidta$, $nbjdta$, and $nbrdta$. The first two of these 
     866define the global $(i,j)$ indices of each point in the boundary zone 
     867and the $nbrdta$ array defines the discrete distance from the boundary 
     868with $nbrdta=1$ meaning that the point is next to the edge of the 
     869model domain and $nbrdta>1$ showing that the point is increasingly 
     870further away from the edge of the model domain. These arrays are 
     871defined separately for each of the $T$, $U$ and $V$ grids, but the 
     872relationship between the points is assumed to be as in Fig. 
     873\ref{Fig_LBC_bdy_geom} with the $T$ points forming the outermost row 
     874of the boundary and the first row of velocities normal to the boundary 
     875being inside the first row of $T$ points. The order in which the 
     876points are defined is unimportant.  
     877 
     878%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     879\begin{figure}[!t] \label{Fig_LBC_bdy_geom}  \begin{center} 
     880\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_LBC_bdy_geom.pdf} 
     881\caption {Example of geometry of unstructured open boundary} 
     882\end{center}   \end{figure} 
     883%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     884 
     885%---------------------------------------------- 
     886\subsection{Input boundary data files} 
     887\label{BDY_data} 
     888 
     889The input data files for the FRS conditions are defined in the 
     890namelist as \np{filbdy\_data\_T}, \np{filbdy\_data\_U}, 
     891\np{filbdy\_data\_V}. The input data files for the Flather conditions 
     892are defined in the namelist as \np{filbdy\_data\_bt\_T}, 
     893\np{filbdy\_data\_bt\_U}, \np{filbdy\_data\_bt\_V}. 
     894 
     895The netcdf header of a typical input data file is shown in Figure 
     896\ref{Fig_LBC_nc_header}. The file contains the index arrays which 
     897define the boundary geometry as noted above and the data arrays for 
     898each field.  The data arrays are dimensioned on: a time 
     899dimension; $xb$ which is the index of the boundary data point in the 
     900horizontal; and $yb$ which is a degenerate dimension of 1 to enable 
     901the file to be read by the standard NEMO I/O routines. The 3D fields 
     902also have a depth dimension. 
     903 
     904If \np{ln\_bdy\_clim} is set to $false$, the model expects the 
     905units of the time axis to have the form shown in 
     906\ref{Fig_bdy_input_file}, $i.e.$ {\it ``seconds since yyyy-mm-dd 
     907hh:mm:ss''} The fields are then linearly interpolated to the model 
     908time at each timestep. Note that for this option, the time axis of the 
     909input files must completely span the time period of the model 
     910integration. If \np{ln\_bdy\_clim} is set to $.true.$ (climatological 
     911boundary forcing), the model will expect either a single set of annual 
     912mean fields (constant boundary forcing) or 12 sets of monthly mean 
     913fields in the input files. 
     914 
     915As in the OBC module there is an option to use initial conditions as 
     916boundary conditions. This is chosen by setting 
     917$\np{nb\_dta}=0$. However, since the model defines the boundary 
     918geometry by reading the boundary index arrays from the input files, 
     919it is still necessary to provide a set of input files in this 
     920case. They need only contain the boundary index arrays, $nbidta$, 
     921$nbjdta$, $nbrdta$. 
     922 
     923%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     924\begin{figure}[!t] \label{Fig_LBC_nc_header}  \begin{center} 
     925\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_LBC_nc_header.pdf} 
     926\caption {Example of header of netcdf input data file for BDY} 
     927\end{center}   \end{figure} 
     928%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     929 
     930%---------------------------------------------- 
     931\subsection{Volume correction} 
     932\label{BDY_vol_corr} 
     933 
     934There is an option to force the total volume in the regional model to be constant, similar to the option in the OBC module. This is controlled  by the \np{volbdy} parameter in the namelist. A value of $\np{volbdy} = 0$ indicates that this option is not used. If  $\np{volbdy} = 1$ then a correction is applied to the normal velocities around the boundary at each timestep to ensure that the integrated volume flow through the boundary is zero. If $\np{volbdy} = 2$ then the calculation of the volume change on the timestep includes the change due to the freshwater flux across the surface and the correction velocity corrects for this as well. 
     935 
     936 
     937%---------------------------------------------- 
     938\subsection{Tidal harmonic forcing} 
     939\label{BDY_tides} 
     940 
     941To be written.... 
     942 
     943 
     944 
     945 
Note: See TracChangeset for help on using the changeset viewer.