New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 2376 for branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_ZDF.tex – NEMO

Ignore:
Timestamp:
2010-11-11T18:01:29+01:00 (13 years ago)
Author:
gm
Message:

v3.3beta: better TKE description, CFG a new Chapter, and correction of Fig references

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/nemo_v3_3_beta/DOC/TexFiles/Chapters/Chap_ZDF.tex

    r2349 r2376  
    154154The choice of $P_{rt}$ is controlled by the \np{nn\_pdl} namelist parameter. 
    155155 
     156At the sea surface, the value of $\bar{e}$ is prescribed from the wind  
     157stress field as $\bar{e}_o = e_{bb} |\tau| / \rho_o$, with $e_{bb}$ the \np{rn\_ebb}  
     158namelist parameter. The default value of $e_{bb}$ is 3.75. \citep{Gaspar1990}),  
     159however a much larger value can be used when taking into account the  
     160surface wave breaking (see below Eq. \eqref{ZDF_Esbc}).  
     161The bottom value of TKE is assumed to be equal to the value of the level just above.  
     162The time integration of the $\bar{e}$ equation may formally lead to negative values  
     163because the numerical scheme does not ensure its positivity. To overcome this  
     164problem, a cut-off in the minimum value of $\bar{e}$ is used (\np{rn\_emin}  
     165namelist parameter). Following \citet{Gaspar1990}, the cut-off value is set  
     166to $\sqrt{2}/2~10^{-6}~m^2.s^{-2}$. This allows the subsequent formulations  
     167to match that of \citet{Gargett1984} for the diffusion in the thermocline and  
     168deep ocean :  $K_\rho = 10^{-3} / N$.  
     169In addition, a cut-off is applied on $K_m$ and $K_\rho$ to avoid numerical  
     170instabilities associated with too weak vertical diffusion. They must be  
     171specified at least larger than the molecular values, and are set through  
     172\np{rn\_avm0} and \np{rn\_avt0} (namzdf namelist, see \S\ref{ZDF_cst}). 
     173 
     174\subsubsection{Turbulent length scale} 
    156175For computational efficiency, the original formulation of the turbulent length  
    157176scales proposed by \citet{Gaspar1990} has been simplified. Four formulations  
     
    187206mixing length scales as (and note that here we use numerical indexing): 
    188207%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    189 \begin{figure}[!t] \label{Fig_mixing_length}  \begin{center} 
     208\begin{figure}[!t] \begin{center} 
    190209\includegraphics[width=1.00\textwidth]{./TexFiles/Figures/Fig_mixing_length.pdf} 
    191 \caption {Illustration of the mixing length computation. } 
     210\caption{ \label{Fig_mixing_length}  
     211Illustration of the mixing length computation. } 
    192212\end{center}   
    193213\end{figure} 
     
    204224$i.e.$ $l^{(k)} = \sqrt {2 {\bar e}^{(k)} / {N^2}^{(k)} }$. 
    205225 
    206 In the \np{nn\_mxl}=2 case, the dissipation and mixing length scales take the same  
     226In the \np{nn\_mxl}~=~2 case, the dissipation and mixing length scales take the same  
    207227value: $ l_k=  l_\epsilon = \min \left(\ l_{up} \;,\;  l_{dwn}\ \right)$, while in the  
    208 \np{nn\_mxl}=2 case, the dissipation and mixing turbulent length scales are give  
     228\np{nn\_mxl}~=~3 case, the dissipation and mixing turbulent length scales are give  
    209229as in \citet{Gaspar1990}: 
    210230\begin{equation} \label{Eq_tke_mxl_gaspar} 
     
    215235\end{equation} 
    216236 
    217 At the sea surface the value of $\bar{e}$ is prescribed from the wind  
    218 stress field: $\bar{e}=rn\_ebb\;\left| \tau \right|$ (\np{rn\_ebb}=60 by default)  
    219 with a minimal threshold of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist 
    220 parameters). Its value at the bottom of the ocean is assumed to be  
    221 equal to the value of the level just above. The time integration of the  
    222 $\bar{e}$ equation may formally lead to negative values because the  
    223 numerical scheme does not ensure its positivity. To overcome this  
    224 problem, a cut-off in the minimum value of $\bar{e}$ is used (\np{rn\_emin}  
    225 namelist parameter). Following \citet{Gaspar1990}, the cut-off value is set  
    226 to $\sqrt{2}/2~10^{-6}~m^2.s^{-2}$. This allows the subsequent formulations  
    227 to match that of \citet{Gargett1984} for the diffusion in the thermocline and  
    228 deep ocean :  $K_\rho = 10^{-3} / N$.  
    229 In addition, a cut-off is applied on $K_m$ and $K_\rho$ to avoid numerical  
    230 instabilities associated with too weak vertical diffusion. They must be  
    231 specified at least larger than the molecular values, and are set through  
    232 \np{rn\_avm0} and \np{rn\_avt0} (namzdf namelist, see \S\ref{ZDF_cst}). 
    233  
    234 % ------------------------------------------------------------------------------------------------------------- 
    235 %        TKE Turbulent Closure Scheme : new organization to energetic considerations 
     237At the ocean surface, a non zero length scale is set through the  \np{rn\_lmin0} namelist  
     238parameter. Usually the surface scale is given by $l_o = \kappa \,z_o$  
     239where $\kappa = 0.4$ is von Karman's constant and $z_o$ the roughness  
     240parameter of the surface. Assuming $z_o=0.1$~m \citep{Craig_Banner_JPO94}  
     241leads to a 0.04~m, the default value of \np{rn\_lsurf}. In the ocean interior  
     242a minimum length scale is set to recover the molecular viscosity when $\bar{e}$  
     243reach its minimum value ($1.10^{-6}= C_k\, l_{min} \,\sqrt{\bar{e}_{min}}$ ). 
     244 
     245 
     246\subsubsection{Surface wave breaking parameterization} 
     247%-----------------------------------------------------------------------% 
     248 
     249Following \citet{Mellor_Blumberg_JPO04}, the TKE turbulence closure model has been modified  
     250to include the effect of surface wave breaking energetics. This results in a reduction of summertime  
     251surface temperature when the mixed layer is relatively shallow. The \citet{Mellor_Blumberg_JPO04}  
     252modifications acts on surface length scale and TKE values and air-sea drag coefficient.  
     253The latter concerns the bulk formulea and is not discussed here.  
     254 
     255Following \citet{Craig_Banner_JPO94}, the boundary condition on surface TKE value is : 
     256\begin{equation}  \label{ZDF_Esbc} 
     257\bar{e}_o = \frac{1}{2}\,\left(  15.8\,\alpha_{CB} \right)^{2/3} \,\frac{|\tau|}{\rho_o} 
     258\end{equation} 
     259where $\alpha_{CB}$ is the \citet{Craig_Banner_JPO94} constant of proportionality  
     260which depends on the ''wave age'', ranging from 57 for mature waves to 146 for  
     261younger waves \citep{Mellor_Blumberg_JPO04}.  
     262The boundary condition on the turbulent length scale follows the Charnock's relation: 
     263\begin{equation} \label{ZDF_Lsbc} 
     264l_o = \kappa \beta \,\frac{|\tau|}{g\,\rho_o} 
     265\end{equation} 
     266where $\kappa=0.40$ is the von Karman constant, and $\beta$ is the Charnock's constant. 
     267\citet{Mellor_Blumberg_JPO04} suggest $\beta = 2.10^{5}$ the value chosen by \citet{Stacey_JPO99} 
     268citing observation evidence, and $\alpha_{CB} = 100$ the Craig and Banner's value. 
     269As the surface boundary condition on TKE is prescribed through $\bar{e}_o = e_{bb} |\tau| / \rho_o$,  
     270with $e_{bb}$ the \np{rn\_ebb} namelist parameter, setting \np{rn\_ebb}~=~67.83 corresponds  
     271to $\alpha_{CB} = 100$. further setting  \np{ln\_lsurf} to true applies \eqref{ZDF_Lsbc}  
     272as surface boundary condition on length scale, with $\beta$ hard coded to the Stacet's value. 
     273Note that a minimal threshold of \np{rn\_emin0}$=10^{-4}~m^2.s^{-2}$ (namelist parameters)  
     274is applied on surface $\bar{e}$ value. 
     275 
     276 
     277\subsubsection{Langmuir cells} 
     278%--------------------------------------% 
     279Langmuir circulations (LC) can be described as ordered large-scale vertical motions  
     280in the surface layer of the oceans. Although LC have nothing to do with convection,  
     281the circulation pattern is rather similar to so-called convective rolls in the atmospheric  
     282boundary layer. The detailed physics behind LC is described in, for example,  
     283\citet{Craik_Leibovich_JFM76}. The prevailing explanation is that LC arise from  
     284a nonlinear interaction between the Stokes drift and wind drift currents.  
     285 
     286Here we introduced in the TKE turbulent closure the simple parameterization of  
     287Langmuir circulations proposed by \citep{Axell_JGR02} for a $k-\epsilon$ turbulent closure.  
     288The parameterization, tuned against large-eddy simulation, includes the whole effect 
     289of LC in an extra source terms of TKE, $P_{LC}$. 
     290The presence of $P_{LC}$ in \eqref{Eq_zdftke_e}, the TKE equation, is controlled  
     291by setting \np{ln\_lc} to \textit{true} in the namtke namelist. 
     292  
     293By making an analogy with the characteristic convective velocity scale  
     294($e.g.$, \citet{D'Alessio_al_JPO98}), $P_{LC}$ is assumed to be :  
     295\begin{equation} 
     296P_{LC}(z) = \frac{w_{LC}^3(z)}{H_{LC}} 
     297\end{equation} 
     298where $w_{LC}(z)$ is the vertical velocity profile of LC, and $H_{LC}$ is the LC depth. 
     299With no information about the wave field, $w_{LC}$ is assumed to be proportional to  
     300the Stokes drift $u_s = 0.377\,\,|\tau|^{1/2}$, where $|\tau|$ is the surface wind stress module  
     301\footnote{Following \citet{Li_Garrett_JMR93}, the surface Stoke drift velocity 
     302may be expressed as $u_s =  0.016 \,|U_{10m}|$. Assuming an air density of  
     303$\rho_a=1.22 \,Kg/m^3$ and a drag coefficient of $1.5~10^{-3}$ give the expression  
     304used of $u_s$ as a function of the module of surface stress}.  
     305For the vertical variation, $w_{LC}$ is assumed to be zero at the surface as well as  
     306at a finite depth $H_{LC}$ (which is often close to the mixed layer depth), and simply  
     307varies as a sine function in between (a first-order profile for the Langmuir cell structures).  
     308The resulting expression for $w_{LC}$ is : 
     309\begin{equation} 
     310w_{LC}  = \begin{cases} 
     311                   c_{LC} \,u_s \,\sin(- \pi\,z / H_{LC} )    &      \text{if $-z \leq H_{LC}$}    \\ 
     312                   0                             &      \text{otherwise}  
     313                 \end{cases} 
     314\end{equation} 
     315where $c_{LC} = 0.15$ has been chosen by \citep{Axell_JGR02} as a good compromise  
     316to fit LES data. The chosen value yields maximum vertical velocities $w_{LC}$ of the order  
     317of a few centimeters per second. The value of $c_{LC}$ is set through the \np{rn\_lc}  
     318namelist parameter, having in mind that it should stay between 0.15 and 0.54 \citep{Axell_JGR02}.  
     319 
     320The $H_{LC}$ is estimated in a similar way as the turbulent length scale of TKE equations: 
     321$H_{LC}$ is depth to which a water parcel with kinetic energy due to Stoke drift 
     322can reach on its own by converting its kinetic energy to potential energy, according to  
     323\begin{equation} 
     324- \int_{-H_{LC}}^0 { N^2\;z  \;dz} = \frac{1}{2} u_s^2 
     325\end{equation} 
     326 
     327 
     328%\subsubsection{Mixing just below the mixed layer} 
     329%---------------------------------------------------------------% 
     330 
     331% add here a description of "penetration of TKE" and the associated namelist parameters 
     332 
     333% ------------------------------------------------------------------------------------------------------------- 
     334%        TKE discretization considerations 
    236335% ------------------------------------------------------------------------------------------------------------- 
    237336\subsection{TKE discretization considerations (\key{zdftke})} 
     
    239338 
    240339%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    241 \begin{figure}[!t] \label{Fig_TKE_time_scheme}  \begin{center} 
     340\begin{figure}[!t]   \begin{center} 
    242341\includegraphics[width=1.00\textwidth]{./TexFiles/Figures/Fig_ZDF_TKE_time_scheme.pdf} 
    243 \caption {Illustration of the TKE time integration and its links to the momentum and tracer time integration. } 
     342\caption{ \label{Fig_TKE_time_scheme}  
     343Illustration of the TKE time integration and its links to the momentum and tracer time integration. } 
    244344\end{center}   
    245345\end{figure} 
     
    389489 
    390490%--------------------------------------------------TABLE-------------------------------------------------- 
    391 \begin{table}[htbp]  \label{Tab_GLS} 
    392 \begin{center} 
     491\begin{table}[htbp]  \begin{center} 
    393492%\begin{tabular}{cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}cp{70pt}c} 
    394493\begin{tabular}{ccccc} 
     
    408507\hline 
    409508\end{tabular} 
    410 \caption {Set of predefined GLS parameters, or equivalently predefined turbulence models available with \key{zdfgls} and controlled by the \np{nn\_clos} namelist parameter.} 
    411 \end{center} 
    412 \end{table} 
     509\caption{   \label{Tab_GLS}  
     510Set of predefined GLS parameters, or equivalently predefined turbulence models available  
     511with \key{zdfgls} and controlled by the \np{nn\_clos} namelist parameter.} 
     512\end{center}   \end{table} 
    413513%-------------------------------------------------------------------------------------------------------------- 
    414514 
     
    417517value near physical boundaries (logarithmic boundary layer law). $C_{\mu}$ and $C_{\mu'}$  
    418518are calculated from stability function proposed by \citet{Galperin_al_JAS88}, or by \citet{Kantha_Clayson_1994}  
    419 or one of the two functions suggested by \citet{Canuto_2001}  (\np{nn\_stab\_func} = 0, 1, 2 or 3, resp.}). The value of $C_{0\mu}$ depends of the choice of the stability function. 
     519or one of the two functions suggested by \citet{Canuto_2001}  (\np{nn\_stab\_func} = 0, 1, 2 or 3, resp.}).  
     520The value of $C_{0\mu}$ depends of the choice of the stability function. 
    420521 
    421522The surface and bottom boundary condition on both $\bar{e}$ and $\psi$ can be calculated  
    422523thanks to Dirichlet or Neumann condition through \np{nn\_tkebc\_surf} and \np{nn\_tkebc\_bot}, resp.  
    423 The wave effect on the mixing could be also being considered \citep{Craig_Banner_1994}. 
     524As for TKE closure , the wave effect on the mixing is considered when \np{ln\_crban}~=~true 
     525\citep{Craig_Banner_JPO94, Mellor_Blumberg_JPO04}. The \np{rn\_crban} namelist parameter  
     526is $\alpha_{CB}$ in \eqref{ZDF_Esbc} and \np{rn\_charn} provides the value of $\beta$ in \eqref{ZDF_Lsbc}.  
    424527 
    425528The $\psi$ equation is known to fail in stably stratified flows, and for this reason  
     
    433536if \np{ln\_length\_lim}=true, and the $c_{lim}$ is set to the \np{rn\_clim\_galp} value. 
    434537 
     538The time and space discretization of the GLS equations follows the same energetic  
     539consideration as for the TKE case described in \S\ref{ZDF_tke_ene}  \citep{Burchard_OM02}.  
     540Examples of performance of the 4 turbulent closure scheme can be found in \citet{Warner_al_OM05}. 
     541 
    435542% ------------------------------------------------------------------------------------------------------------- 
    436543%        K Profile Parametrisation (KPP)  
     
    479586 
    480587%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    481 \begin{figure}[!htb] \label{Fig_npc}   \begin{center} 
     588\begin{figure}[!htb]    \begin{center} 
    482589\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_npc.pdf} 
    483 \caption {Example of an unstable density profile treated by the non penetrative  
     590\caption{  \label{Fig_npc}  
     591Example of an unstable density profile treated by the non penetrative  
    484592convective adjustment algorithm. $1^{st}$ step: the initial profile is checked from  
    485593the surface to the bottom. It is found to be unstable between levels 3 and 4.  
     
    641749 
    642750%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    643 \begin{figure}[!t] \label{Fig_zdfddm}  \begin{center} 
     751\begin{figure}[!t]   \begin{center} 
    644752\includegraphics[width=0.99\textwidth]{./TexFiles/Figures/Fig_zdfddm.pdf} 
    645 \caption {From \citet{Merryfield1999} : (a) Diapycnal diffusivities $A_f^{vT}$  
     753\caption{  \label{Fig_zdfddm} 
     754From \citet{Merryfield1999} : (a) Diapycnal diffusivities $A_f^{vT}$  
    646755and $A_f^{vS}$ for temperature and salt in regions of salt fingering. Heavy  
    647756curves denote $A^{\ast v} = 10^{-3}~m^2.s^{-1}$ and thin curves  
     
    9861095 
    9871096%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    988 \begin{figure}[!t] \label{Fig_ZDF_M2_K1_tmx}  \begin{center} 
     1097\begin{figure}[!t]   \begin{center} 
    9891098\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_ZDF_M2_K1_tmx.pdf} 
    990 \caption {(a) M2 and (b) K2 internal wave drag energy from \citet{Carrere_Lyard_GRL03} ($W/m^2$). } 
    991 \end{center}   
    992 \end{figure} 
     1099\caption{  \label{Fig_ZDF_M2_K1_tmx}  
     1100(a) M2 and (b) K2 internal wave drag energy from \citet{Carrere_Lyard_GRL03} ($W/m^2$). } 
     1101\end{center}   \end{figure} 
    9931102%>>>>>>>>>>>>>>>>>>>>>>>>>>>>  
    9941103  
Note: See TracChangeset for help on using the changeset viewer.