New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 6347 for branches/2016/dev_r6325_SIMPLIF_1/DOC/TexFiles/Biblio/Biblio.bib – NEMO

Ignore:
Timestamp:
2016-02-24T08:56:48+01:00 (8 years ago)
Author:
gm
Message:

#1683: SIMPLIF-1 : Phase with the v3.6_Stable (DOC+ZDF+traqsr+lbedo)

File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2016/dev_r6325_SIMPLIF_1/DOC/TexFiles/Biblio/Biblio.bib

    r6320 r6347  
    472472} 
    473473 
     474@article{bouffard_Boegman_DAO2013, 
     475   author = {D. Bouffard and L. Boegman}, 
     476   title = {A diapycnal diffusivity model for stratified environmental flows}, 
     477   volume = {61-62}, 
     478   issn = {03770265}, 
     479   url = {http://dx.doi.org/10.1016/j.dynatmoce.2013.02.002}, 
     480   doi = {10.1016/j.dynatmoce.2013.02.002}, 
     481   journal = DAO, 
     482   year = {2013}, 
     483   pages = {14--34}, 
     484} 
     485 
    474486@ARTICLE{Bougeault1989, 
    475487  author = {P. Bougeault and P. Lacarrere}, 
     
    787799  volume = {34}, 
    788800  pages = {8--13} 
     801} 
     802 
     803@article{de_lavergne_JPO2016_mixing, 
     804   author = {C. de Lavergne and G. Madec and J. Le Sommer and A. J. G. Nurser and A. C. Naveira Garabato }, 
     805   title = {On Antarctic Bottom Water consumption in the abyssal ocean}, 
     806   issn = {0022-3670}, 
     807   url = {http://dx.doi.org/10.1175/JPO-D-14-0201.1}, 
     808   doi = {10.1175/JPO-D-14-0201.1}, 
     809   abstract = {In studies of ocean mixing, it is generally assumed that small-scale turbulent overturns lose 15-20 \% of their energy in eroding the background stratification. Accumulating evidence that this energy fraction, or mixing efficiency Rf, significantly varies depending on flow properties challenges this assumption, however. Here, we examine the implications of a varying mixing efficiency for ocean energetics and deep water mass transformation. Combining current parameterizations of internal wave-driven mixing with a recent model expressing Rf as a function of a turbulence intensity parameter Reb = εν/νN2, we show that accounting for reduced mixing efficiencies in regions of weak stratification or energetic turbulence (high Reb) strongly limits the ability of breaking internal waves to supply oceanic potential energy and drive abyssal upwelling. Moving from a fixed Rf = 1/6 to a variable efficiency Rf(Reb) causes Antarctic Bottom Water upwelling induced by locally-dissipating internal tides and lee waves to fall from 9 to 4 Sv, and the corresponding potential energy source to plunge from 97 to 44 GW. When adding the contribution of remotely-dissipating internal tides under idealized distributions of energy dissipation, the total rate of Antarctic Bottom Water upwelling is reduced by about a factor of 2, reaching 5-15 Sv compared to 10-33 Sv for a fixed efficiency. Our results suggest that distributed mixing, overflow-related boundary processes and geothermal heating are more effective in consuming abyssal waters than topographically-enhanced mixing by breaking internal waves. Our calculations also point to the importance of accurately constraining Rf(Reb) and including the effect in ocean models.}, 
     810   journal = {Journal of Physical Oceanography}, 
     811   year = {2016}, 
     812   volume = {46},  pages = {635-–661} 
     813} 
     814 
     815@article{de_lavergne_JPO2016_efficiency, 
     816   author = {C. de Lavergne and G. Madec and J. Le Sommer and A. J. G. Nurser and A. C. Naveira Garabato }, 
     817   title = {The impact of a variable mixing efficiency on the abyssal overturning}, 
     818   issn = {0022-3670}, 
     819   url = {http://dx.doi.org//10.1175/JPO-D-14-0259.1}, 
     820   doi = {10.1175/JPO-D-14-0259.1}, 
     821   abstract = {In studies of ocean mixing, it is generally assumed that small-scale turbulent overturns lose 15-20 \% of their energy in eroding the background stratification. Accumulating evidence that this energy fraction, or mixing efficiency Rf, significantly varies depending on flow properties challenges this assumption, however. Here, we examine the implications of a varying mixing efficiency for ocean energetics and deep water mass transformation. Combining current parameterizations of internal wave-driven mixing with a recent model expressing Rf as a function of a turbulence intensity parameter Reb = εν/νN2, we show that accounting for reduced mixing efficiencies in regions of weak stratification or energetic turbulence (high Reb) strongly limits the ability of breaking internal waves to supply oceanic potential energy and drive abyssal upwelling. Moving from a fixed Rf = 1/6 to a variable efficiency Rf(Reb) causes Antarctic Bottom Water upwelling induced by locally-dissipating internal tides and lee waves to fall from 9 to 4 Sv, and the corresponding potential energy source to plunge from 97 to 44 GW. When adding the contribution of remotely-dissipating internal tides under idealized distributions of energy dissipation, the total rate of Antarctic Bottom Water upwelling is reduced by about a factor of 2, reaching 5-15 Sv compared to 10-33 Sv for a fixed efficiency. Our results suggest that distributed mixing, overflow-related boundary processes and geothermal heating are more effective in consuming abyssal waters than topographically-enhanced mixing by breaking internal waves. Our calculations also point to the importance of accurately constraining Rf(Reb) and including the effect in ocean models.}, 
     822   journal = {Journal of Physical Oceanography}, 
     823   year = {2016}, 
     824   volume = {46},  pages = {663-–681} 
    789825} 
    790826 
     
    11601196} 
    11611197 
     1198@article{goff_JGR2010, 
     1199   author = {J. A. Goff}, 
     1200   title = {Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability}, 
     1201   issn = {2156-2202}, 
     1202   url = {http://dx.doi.org/10.1029/2010JB007867}, 
     1203   doi = {10.1029/2010JB007867}, 
     1204   abstract = {Abyssal hills, which are pervasive landforms on the seafloor of the Earth's oceans, represent a potential tectonic record of the history of mid-ocean ridge spreading. However, the most detailed global maps of the seafloor, derived from the satellite altimetry-based gravity field, cannot be used to deterministically characterize such small-scale ({\textless}10 km) morphology. Nevertheless, the small-scale variability of the gravity field can be related to the statistical properties of abyssal hill morphology using the upward continuation formulation. In this paper, I construct a global prediction of abyssal hill root-mean-square (rms) heights from the small-scale variability of the altimetric gravity field. The abyssal hill-related component of the gravity field is derived by first masking distinct features, such as seamounts, mid-ocean ridges, and continental margins, and then applying a newly designed adaptive directional filter algorithm to remove fracture zone/discontinuity fabric. A noise field is derived empirically by correlating the rms variability of the small-scale gravity field to the altimetric noise field in regions of very low relief, and the noise variance is subtracted from the small-scale gravity variance. Suites of synthetically derived, abyssal hill formed gravity fields are generated as a function of water depth, basement rms heights, and sediment thickness and used to predict abyssal hill seafloor rms heights from corrected small-scale gravity rms height. The resulting global prediction of abyssal hill rms heights is validated qualitatively by comparing against expected variations in abyssal hill morphology and quantitatively by comparing against actual measurements of rms heights. Although there is scatter, the prediction appears unbiased.}, 
     1205   volume = {115}, 
     1206   number = {B12}, 
     1207   journal = {Journal of Geophysical Research: Solid Earth}, 
     1208   year = {2010}, 
     1209   pages = {B12104}, 
     1210} 
     1211 
    11621212@ARTICLE{Goosse_al_JGR99, 
    11631213  author = {H. Goosse and E. Deleersnijder and T. Fichefet and M. England}, 
     
    12641314 
    12651315@ARTICLE{Griffies_Hallberg_MWR00, 
    1266   author = {S.M. Griffies and R.H. Hallberg}, 
    1267   title = {Biharmonic friction with a smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models}, 
     1316  author = {S.M. Griffies and R.W. Hallberg}, 
     1317  title = {Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models}, 
    12681318  journal = MWR, 
    12691319  year = {2000}, 
     
    15861636  volume = {12}, 
    15871637  pages = {381--389} 
     1638} 
     1639 
     1640@article{Jackson_Rehmann_JPO2014, 
     1641   author = {P. R. Jackson and C. R. Rehmann}, 
     1642   title = {Experiments on differential scalar mixing in turbulence in a sheared, stratified flow}, 
     1643   journal = JPO, 
     1644   volume = {44}, 
     1645   issn = {0022-3670}, 
     1646   url = {http://dx.doi.org/10.1175/JPO-D-14-0027.1}, 
     1647   doi = {10.1175/JPO-D-14-0027.1}, 
     1648   number = {10}, 
     1649   year = {2014}, 
     1650   pages = {2661--2680}, 
    15881651} 
    15891652 
     
    24302493} 
    24312494 
     2495@ARTICLE{Morel_Berthon_LO89, 
     2496  author = {A. Morel and J.-F. Berthon}, 
     2497  title = {Surface pigments, algal biomass profiles, and potential production of the euphotic layer:  
     2498           Relationships reinvestigated in view of remote-sensing applications}, 
     2499  journal = {Limnol. Oceanogr.}, 
     2500  year = {1989}, 
     2501  volume = {34(8)}, 
     2502  pages = {1545--1562} 
     2503} 
     2504 
    24322505@ARTICLE{Morel_Maritorena_JGR01, 
    24332506  author = {A. Morel and S. Maritorena}, 
     
    24782551  title = {Estimates of the local rate of vertical diffusion from dissipation measurements}, 
    24792552  journal = JPO, 
     2553  year = {1980}, 
    24802554  volume = {10}, 
    24812555  pages = {83--89} 
     
    27142788} 
    27152789 
     2790@ARTICLE{Rousset_GMD2015, 
     2791  author = {C. Rousset and M. Vancoppenolle and G. Madec and T. Fichefet and S. Flavoni  
     2792            and A. Barth\'{e}lemy and R. Benshila and J. Chanut and C. L\'{e}vy and S. Masson and F. Vivier }, 
     2793  title  = {The Louvain-La-Neuve sea-ice model LIM3.6: Global and regional capabilities}, 
     2794  journal= {Geoscientific Model Development}, 
     2795  year = {2015}, 
     2796  volume = {8}, pages={2991--3005}, 
     2797  doi = {10.5194/gmd-8-2991-2015}, 
     2798  url = {http://dx.doi.org/10.5194/gmd-8-2991-2015} 
     2799} 
     2800 
    27162801@ARTICLE{Sadourny1975, 
    27172802  author = {R. Sadourny}, 
     
    27942879  year = {2004}, 
    27952880  pages = {245--263}, 
     2881} 
     2882 
     2883@INBOOK{Smagorinsky_93, 
     2884  author = {Smagorinsky, J.}, 
     2885  chapter = {Some historical remarks on the use of non-linear viscosities}, 
     2886  title = {Large Eddy Simulation of Complex Engineering and Geophysical Flows}, 
     2887  pages = {3--36}, 
     2888  year = {1993}, 
     2889  publisher = {Cambridge University Press, B. Galperin and S. A. Orszag (eds.)}, 
    27962890} 
    27972891 
Note: See TracChangeset for help on using the changeset viewer.