New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 9407 for branches/2017/dev_merge_2017/DOC/tex_sub/chap_model_basics.tex – NEMO

Ignore:
Timestamp:
2018-03-15T17:40:35+01:00 (6 years ago)
Author:
nicolasmartin
Message:

Complete refactoring of cross-referencing

  • Use of \autoref instead of simple \ref for contextual text depending on target type
  • creation of few prefixes for marker to identify the type reference: apdx|chap|eq|fig|sec|subsec|tab
File:
1 edited

Legend:

Unmodified
Added
Removed
  • branches/2017/dev_merge_2017/DOC/tex_sub/chap_model_basics.tex

    r9393 r9407  
    66 
    77\chapter{Model Basics} 
    8 \label{PE} 
     8\label{chap:PE} 
    99\minitoc 
    1010 
     
    1616% ================================================================ 
    1717\section{Primitive equations} 
    18 \label{PE_PE} 
     18\label{sec:PE_PE} 
    1919 
    2020% ------------------------------------------------------------------------------------------------------------- 
     
    2323 
    2424\subsection{Vector invariant formulation} 
    25 \label{PE_Vector} 
     25\label{subsec:PE_Vector} 
    2626 
    2727 
     
    6161hydrostatic equilibrium, the incompressibility equation, the heat and salt conservation  
    6262equations and an equation of state): 
    63 \begin{subequations} \label{Eq_PE} 
    64   \begin{equation}     \label{Eq_PE_dyn} 
     63\begin{subequations} \label{eq:PE} 
     64  \begin{equation}     \label{eq:PE_dyn} 
    6565\frac{\partial {\rm {\bf U}}_h }{\partial t}= 
    6666-\left[    {\left( {\nabla \times {\rm {\bf U}}} \right)\times {\rm {\bf U}} 
     
    6969-\frac{1}{\rho _o }\nabla _h p + {\rm {\bf D}}^{\rm {\bf U}} + {\rm {\bf F}}^{\rm {\bf U}} 
    7070  \end{equation} 
    71   \begin{equation}     \label{Eq_PE_hydrostatic} 
     71  \begin{equation}     \label{eq:PE_hydrostatic} 
    7272\frac{\partial p }{\partial z} = - \rho \ g 
    7373  \end{equation} 
    74   \begin{equation}     \label{Eq_PE_continuity} 
     74  \begin{equation}     \label{eq:PE_continuity} 
    7575\nabla \cdot {\bf U}=  0 
    7676  \end{equation} 
    77 \begin{equation} \label{Eq_PE_tra_T} 
     77\begin{equation} \label{eq:PE_tra_T} 
    7878\frac{\partial T}{\partial t} = - \nabla \cdot  \left( T \ \rm{\bf U} \right) + D^T + F^T 
    7979  \end{equation} 
    80   \begin{equation}     \label{Eq_PE_tra_S} 
     80  \begin{equation}     \label{eq:PE_tra_S} 
    8181\frac{\partial S}{\partial t} = - \nabla \cdot  \left( S \ \rm{\bf U} \right) + D^S + F^S 
    8282  \end{equation} 
    83   \begin{equation}     \label{Eq_PE_eos} 
     83  \begin{equation}     \label{eq:PE_eos} 
    8484\rho = \rho \left( T,S,p \right) 
    8585  \end{equation} 
     
    8787where $\nabla$ is the generalised derivative vector operator in $(\bf i,\bf j, \bf k)$ directions,  
    8888$t$ is the time, $z$ is the vertical coordinate, $\rho $ is the \textit{in situ} density given by  
    89 the equation of state (\ref{Eq_PE_eos}), $\rho_o$ is a reference density, $p$ the pressure,  
     89the equation of state (\autoref{eq:PE_eos}), $\rho_o$ is a reference density, $p$ the pressure,  
    9090$f=2 \bf \Omega \cdot \bf k$ is the Coriolis acceleration (where $\bf \Omega$ is the Earth's  
    9191angular velocity vector), and $g$ is the gravitational acceleration.  
     
    9393physics for momentum, temperature and salinity, and ${\rm {\bf F}}^{\rm {\bf U}}$, $F^T$  
    9494and $F^S$ surface forcing terms. Their nature and formulation are discussed in  
    95 \S\ref{PE_zdf_ldf} and page \S\ref{PE_boundary_condition}. 
     95\autoref{sec:PE_zdf_ldf} and \autoref{subsec:PE_boundary_condition}. 
    9696 
    9797. 
     
    101101% ------------------------------------------------------------------------------------------------------------- 
    102102\subsection{Boundary conditions} 
    103 \label{PE_boundary_condition} 
     103\label{subsec:PE_boundary_condition} 
    104104 
    105105An ocean is bounded by complex coastlines, bottom topography at its base and an air-sea  
     
    107107and $z=\eta(i,j,k,t)$, where $H$ is the depth of the ocean bottom and $\eta$ is the height  
    108108of the sea surface. Both $H$ and $\eta$ are usually referenced to a given surface, $z=0$,  
    109 chosen as a mean sea surface (Fig.~\ref{Fig_ocean_bc}). Through these two boundaries,  
     109chosen as a mean sea surface (\autoref{fig:ocean_bc}). Through these two boundaries,  
    110110the ocean can exchange fluxes of heat, fresh water, salt, and momentum with the solid earth,  
    111111the continental margins, the sea ice and the atmosphere. However, some of these fluxes are  
     
    117117\begin{figure}[!ht]   \begin{center} 
    118118\includegraphics[width=0.90\textwidth]{Fig_I_ocean_bc} 
    119 \caption{    \protect\label{Fig_ocean_bc}  
     119\caption{    \protect\label{fig:ocean_bc}  
    120120The ocean is bounded by two surfaces, $z=-H(i,j)$ and $z=\eta(i,j,t)$, where $H$  
    121121is the depth of the sea floor and $\eta$ the height of the sea surface.  
     
    137137\footnote{In fact, it has been shown that the heat flux associated with the solid Earth cooling  
    138138($i.e.$the geothermal heating) is not negligible for the thermohaline circulation of the world  
    139 ocean (see \ref{TRA_bbc}).}.  
     139ocean (see \autoref{subsec:TRA_bbc}).}.  
    140140The boundary condition is thus set to no flux of heat and salt across solid boundaries.  
    141141For momentum, the situation is different. There is no flow across solid boundaries,  
     
    143143the bottom velocity is parallel to solid boundaries). This kinematic boundary condition  
    144144can be expressed as: 
    145 \begin{equation} \label{Eq_PE_w_bbc} 
     145\begin{equation} \label{eq:PE_w_bbc} 
    146146w = -{\rm {\bf U}}_h \cdot  \nabla _h \left( H \right) 
    147147\end{equation} 
     
    150150in terms of turbulent fluxes using bottom and/or lateral boundary conditions. Its specification  
    151151depends on the nature of the physical parameterisation used for ${\rm {\bf D}}^{\rm {\bf U}}$  
    152 in \eqref{Eq_PE_dyn}. It is discussed in \S\ref{PE_zdf}, page~\pageref{PE_zdf}.% and Chap. III.6 to 9. 
     152in \autoref{eq:PE_dyn}. It is discussed in \autoref{eq:PE_zdf}.% and Chap. III.6 to 9. 
    153153\item[Atmosphere - ocean interface:] the kinematic surface condition plus the mass flux  
    154154of fresh water PE  (the precipitation minus evaporation budget) leads to:  
    155 \begin{equation} \label{Eq_PE_w_sbc} 
     155\begin{equation} \label{eq:PE_w_sbc} 
    156156w = \frac{\partial \eta }{\partial t}  
    157157    + \left. {{\rm {\bf U}}_h } \right|_{z=\eta } \cdot  \nabla _h \left( \eta \right)  
     
    176176% ================================================================ 
    177177\section{Horizontal pressure gradient } 
    178 \label{PE_hor_pg} 
     178\label{sec:PE_hor_pg} 
    179179 
    180180% ------------------------------------------------------------------------------------------------------------- 
     
    182182% ------------------------------------------------------------------------------------------------------------- 
    183183\subsection{Pressure formulation} 
    184 \label{PE_p_formulation} 
     184\label{subsec:PE_p_formulation} 
    185185 
    186186The total pressure at a given depth $z$ is composed of a surface pressure $p_s$ at a  
    187187reference geopotential surface ($z=0$) and a hydrostatic pressure $p_h$ such that:  
    188 $p(i,j,k,t)=p_s(i,j,t)+p_h(i,j,k,t)$. The latter is computed by integrating (\ref{Eq_PE_hydrostatic}),  
    189 assuming that pressure in decibars can be approximated by depth in meters in (\ref{Eq_PE_eos}).  
     188$p(i,j,k,t)=p_s(i,j,t)+p_h(i,j,k,t)$. The latter is computed by integrating (\autoref{eq:PE_hydrostatic}),  
     189assuming that pressure in decibars can be approximated by depth in meters in (\autoref{eq:PE_eos}).  
    190190The hydrostatic pressure is then given by: 
    191 \begin{equation} \label{Eq_PE_pressure} 
     191\begin{equation} \label{eq:PE_pressure} 
    192192p_h \left( {i,j,z,t} \right) 
    193193 = \int_{\varsigma =z}^{\varsigma =0} {g\;\rho \left( {T,S,\varsigma} \right)\;d\varsigma }  
     
    213213% ------------------------------------------------------------------------------------------------------------- 
    214214\subsection{Free surface formulation} 
    215 \label{PE_free_surface} 
     215\label{subsec:PE_free_surface} 
    216216 
    217217In the free surface formulation, a variable $\eta$, the sea-surface height, is introduced  
    218218which describes the shape of the air-sea interface. This variable is solution of a  
    219219prognostic equation which is established by forming the vertical average of the kinematic  
    220 surface condition (\ref{Eq_PE_w_bbc}): 
    221 \begin{equation} \label{Eq_PE_ssh} 
     220surface condition (\autoref{eq:PE_w_bbc}): 
     221\begin{equation} \label{eq:PE_ssh} 
    222222\frac{\partial \eta }{\partial t}=-D+P-E 
    223223   \quad \text{where} \  
    224224D=\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\rm{\bf \overline{U}}}_h \,} \right] 
    225225\end{equation} 
    226 and using (\ref{Eq_PE_hydrostatic}) the surface pressure is given by: $p_s = \rho \, g \, \eta$. 
     226and using (\autoref{eq:PE_hydrostatic}) the surface pressure is given by: $p_s = \rho \, g \, \eta$. 
    227227 
    228228Allowing the air-sea interface to move introduces the external gravity waves (EGWs)  
     
    237237with the baroclinic structure of the ocean (internal waves) possibly in shallow seas,  
    238238then a non linear free surface is the most appropriate. This means that no  
    239 approximation is made in (\ref{Eq_PE_ssh}) and that the variation of the ocean  
     239approximation is made in (\autoref{eq:PE_ssh}) and that the variation of the ocean  
    240240volume is fully taken into account. Note that in order to study the fast time scales  
    241241associated with EGWs it is necessary to minimize time filtering effects (use an  
    242242explicit time scheme with very small time step, or a split-explicit scheme with  
    243 reasonably small time step, see \S\ref{DYN_spg_exp} or \S\ref{DYN_spg_ts}. 
     243reasonably small time step, see \autoref{subsec:DYN_spg_exp} or \autoref{subsec:DYN_spg_ts}. 
    244244 
    245245$\bullet$ If one is not interested in EGW but rather sees them as high frequency  
     
    247247not altering the slow barotropic Rossby waves. If further, an approximative conservation  
    248248of heat and salt contents is sufficient for the problem solved, then it is  
    249 sufficient to solve a linearized version of (\ref{Eq_PE_ssh}), which still allows  
     249sufficient to solve a linearized version of (\autoref{eq:PE_ssh}), which still allows  
    250250to take into account freshwater fluxes applied at the ocean surface \citep{Roullet_Madec_JGR00}. 
    251251Nevertheless, with the linearization, an exact conservation of heat and salt contents is lost. 
     
    255255or the implicit scheme \citep{Dukowicz1994} or the addition of a filtering force in the momentum equation  
    256256\citep{Roullet_Madec_JGR00}. With the present release, \NEMO offers the choice between  
    257 an explicit free surface (see \S\ref{DYN_spg_exp}) or a split-explicit scheme strongly  
    258 inspired the one proposed by \citet{Shchepetkin_McWilliams_OM05} (see \S\ref{DYN_spg_ts}). 
     257an explicit free surface (see \autoref{subsec:DYN_spg_exp}) or a split-explicit scheme strongly  
     258inspired the one proposed by \citet{Shchepetkin_McWilliams_OM05} (see \autoref{subsec:DYN_spg_ts}). 
    259259 
    260260%\newpage 
     
    265265% ================================================================ 
    266266\section{Curvilinear \textit{z-}coordinate system} 
    267 \label{PE_zco} 
     267\label{sec:PE_zco} 
    268268 
    269269 
     
    272272% ------------------------------------------------------------------------------------------------------------- 
    273273\subsection{Tensorial formalism} 
    274 \label{PE_tensorial} 
     274\label{subsec:PE_tensorial} 
    275275 
    276276In many ocean circulation problems, the flow field has regions of enhanced dynamics  
     
    294294associated with the positively oriented orthogonal set of unit vectors (\textbf{i},\textbf{j},\textbf{k})  
    295295linked to the earth such that \textbf{k} is the local upward vector and (\textbf{i},\textbf{j}) are  
    296 two vectors orthogonal to \textbf{k}, $i.e.$ along geopotential surfaces (Fig.\ref{Fig_referential}).  
     296two vectors orthogonal to \textbf{k}, $i.e.$ along geopotential surfaces (\autoref{fig:referential}).  
    297297Let $(\lambda,\varphi,z)$ be the geographical coordinate system in which a position is defined  
    298298by the latitude $\varphi(i,j)$, the longitude $\lambda(i,j)$ and the distance from the centre of  
    299299the earth $a+z(k)$ where $a$ is the earth's radius and $z$ the altitude above a reference sea  
    300 level (Fig.\ref{Fig_referential}). The local deformation of the curvilinear coordinate system is  
     300level (\autoref{fig:referential}). The local deformation of the curvilinear coordinate system is  
    301301given by $e_1$, $e_2$ and $e_3$, the three scale factors: 
    302 \begin{equation} \label{Eq_scale_factors} 
     302\begin{equation} \label{eq:scale_factors} 
    303303\begin{aligned} 
    304304 e_1 &=\left( {a+z} \right)\;\left[ {\left( {\frac{\partial \lambda  
     
    315315\begin{figure}[!tb]   \begin{center} 
    316316\includegraphics[width=0.60\textwidth]{Fig_I_earth_referential} 
    317 \caption{   \protect\label{Fig_referential}  
     317\caption{   \protect\label{fig:referential}  
    318318the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear  
    319319coordinate system (\textbf{i},\textbf{j},\textbf{k}). } 
     
    322322 
    323323Since the ocean depth is far smaller than the earth's radius, $a+z$, can be replaced by  
    324 $a$ in (\ref{Eq_scale_factors}) (thin-shell approximation). The resulting horizontal scale  
     324$a$ in (\autoref{eq:scale_factors}) (thin-shell approximation). The resulting horizontal scale  
    325325factors $e_1$, $e_2$  are independent of $k$ while the vertical scale factor is a single  
    326326function of $k$ as \textbf{k} is parallel to \textbf{z}. The scalar and vector operators that  
    327 appear in the primitive equations (Eqs. \eqref{Eq_PE_dyn} to \eqref{Eq_PE_eos}) can  
     327appear in the primitive equations (\autoref{eq:PE_dyn} to \autoref{eq:PE_eos}) can  
    328328be written in the tensorial form, invariant in any orthogonal horizontal curvilinear coordinate  
    329329system transformation: 
    330 \begin{subequations} \label{Eq_PE_discrete_operators} 
    331 \begin{equation} \label{Eq_PE_grad} 
     330\begin{subequations} \label{eq:PE_discrete_operators} 
     331\begin{equation} \label{eq:PE_grad} 
    332332\nabla q=\frac{1}{e_1 }\frac{\partial q}{\partial i}\;{\rm {\bf  
    333333i}}+\frac{1}{e_2 }\frac{\partial q}{\partial j}\;{\rm {\bf j}}+\frac{1}{e_3  
    334334}\frac{\partial q}{\partial k}\;{\rm {\bf k}}    \\ 
    335335\end{equation} 
    336 \begin{equation} \label{Eq_PE_div} 
     336\begin{equation} \label{eq:PE_div} 
    337337\nabla \cdot {\rm {\bf A}}  
    338338= \frac{1}{e_1 \; e_2} \left[  
     
    341341+ \frac{1}{e_3} \left[ \frac{\partial a_3}{\partial k }   \right] 
    342342\end{equation} 
    343 \begin{equation} \label{Eq_PE_curl} 
     343\begin{equation} \label{eq:PE_curl} 
    344344   \begin{split} 
    345345\nabla \times \vect{A} =  
     
    352352   \end{split} 
    353353\end{equation} 
    354 \begin{equation} \label{Eq_PE_lap} 
     354\begin{equation} \label{eq:PE_lap} 
    355355\Delta q = \nabla \cdot \left(  \nabla q \right) 
    356356\end{equation} 
    357 \begin{equation} \label{Eq_PE_lap_vector} 
     357\begin{equation} \label{eq:PE_lap_vector} 
    358358\Delta {\rm {\bf A}} = 
    359359  \nabla \left( \nabla \cdot {\rm {\bf A}} \right) 
     
    367367% ------------------------------------------------------------------------------------------------------------- 
    368368\subsection{Continuous model equations} 
    369 \label{PE_zco_Eq} 
     369\label{subsec:PE_zco_Eq} 
    370370 
    371371In order to express the Primitive Equations in tensorial formalism, it is necessary to compute  
    372372the horizontal component of the non-linear and viscous terms of the equation using  
    373 \eqref{Eq_PE_grad}) to \eqref{Eq_PE_lap_vector}.  
     373\autoref{eq:PE_grad}) to \autoref{eq:PE_lap_vector}.  
    374374Let us set $\vect U=(u,v,w)={\vect{U}}_h +w\;\vect{k}$, the velocity in the $(i,j,k)$ coordinate  
    375375system and define the relative vorticity $\zeta$ and the divergence of the horizontal velocity  
    376376field $\chi$, by: 
    377 \begin{equation} \label{Eq_PE_curl_Uh} 
     377\begin{equation} \label{eq:PE_curl_Uh} 
    378378\zeta =\frac{1}{e_1 e_2 }\left[ {\frac{\partial \left( {e_2 \,v}  
    379379\right)}{\partial i}-\frac{\partial \left( {e_1 \,u} \right)}{\partial j}}  
    380380\right] 
    381381\end{equation} 
    382 \begin{equation} \label{Eq_PE_div_Uh} 
     382\begin{equation} \label{eq:PE_div_Uh} 
    383383\chi =\frac{1}{e_1 e_2 }\left[ {\frac{\partial \left( {e_2 \,u}  
    384384\right)}{\partial i}+\frac{\partial \left( {e_1 \,v} \right)}{\partial j}}  
     
    388388Using the fact that the horizontal scale factors $e_1$ and $e_2$ are independent of $k$  
    389389and that $e_3$  is a function of the single variable $k$, the nonlinear term of  
    390 \eqref{Eq_PE_dyn} can be transformed as follows: 
     390\autoref{eq:PE_dyn} can be transformed as follows: 
    391391\begin{flalign*} 
    392392&\left[ {\left( { \nabla \times {\rm {\bf U}}    } \right) \times {\rm {\bf U}} 
     
    427427 
    428428The last term of the right hand side is obviously zero, and thus the nonlinear term of  
    429 \eqref{Eq_PE_dyn} is written in the $(i,j,k)$ coordinate system: 
    430 \begin{equation} \label{Eq_PE_vector_form} 
     429\autoref{eq:PE_dyn} is written in the $(i,j,k)$ coordinate system: 
     430\begin{equation} \label{eq:PE_vector_form} 
    431431\left[ {\left( {  \nabla \times {\rm {\bf U}}    } \right) \times {\rm {\bf U}} 
    432432+\frac{1}{2}   \nabla \left( {{\rm {\bf U}}^2} \right)}   \right]_h  
     
    440440For some purposes, it can be advantageous to write this term in the so-called flux form,  
    441441$i.e.$ to write it as the divergence of fluxes. For example, the first component of  
    442 \eqref{Eq_PE_vector_form} (the $i$-component) is transformed as follows: 
     442\autoref{eq:PE_vector_form} (the $i$-component) is transformed as follows: 
    443443\begin{flalign*} 
    444444&{ \begin{array}{*{20}l} 
     
    509509 
    510510The flux form of the momentum advection term is therefore given by: 
    511 \begin{multline} \label{Eq_PE_flux_form} 
     511\begin{multline} \label{eq:PE_flux_form} 
    512512      \left[  
    513513  \left(    {\nabla \times {\rm {\bf U}}}    \right) \times {\rm {\bf U}} 
     
    529529the curvilinear nature of the coordinate system used. The latter is called the \emph{metric}  
    530530term and can be viewed as a modification of the Coriolis parameter:  
    531 \begin{equation} \label{Eq_PE_cor+metric} 
     531\begin{equation} \label{eq:PE_cor+metric} 
    532532f \to f + \frac{1}{e_1\;e_2}  \left(  v \frac{\partial e_2}{\partial i} 
    533533                        -u \frac{\partial e_1}{\partial j}  \right) 
     
    547547$\bullet$ \textbf{Vector invariant form of the momentum equations} : 
    548548 
    549 \begin{subequations} \label{Eq_PE_dyn_vect} 
    550 \begin{equation} \label{Eq_PE_dyn_vect_u} \begin{split} 
     549\begin{subequations} \label{eq:PE_dyn_vect} 
     550\begin{equation} \label{eq:PE_dyn_vect_u} \begin{split} 
    551551\frac{\partial u}{\partial t}  
    552552= +   \left( {\zeta +f} \right)\,v                                     
     
    568568\vspace{+10pt} 
    569569$\bullet$ \textbf{flux form of the momentum equations} : 
    570 \begin{subequations} \label{Eq_PE_dyn_flux} 
    571 \begin{multline} \label{Eq_PE_dyn_flux_u} 
     570\begin{subequations} \label{eq:PE_dyn_flux} 
     571\begin{multline} \label{eq:PE_dyn_flux_u} 
    572572\frac{\partial u}{\partial t}= 
    573573+   \left( { f + \frac{1}{e_1 \; e_2} 
     
    581581+   D_u^{\vect{U}} +   F_u^{\vect{U}} 
    582582\end{multline} 
    583 \begin{multline} \label{Eq_PE_dyn_flux_v} 
     583\begin{multline} \label{eq:PE_dyn_flux_v} 
    584584\frac{\partial v}{\partial t}= 
    585585-   \left( { f + \frac{1}{e_1 \; e_2} 
     
    594594\end{multline} 
    595595\end{subequations} 
    596 where $\zeta$, the relative vorticity, is given by \eqref{Eq_PE_curl_Uh} and $p_s $,  
     596where $\zeta$, the relative vorticity, is given by \autoref{eq:PE_curl_Uh} and $p_s $,  
    597597the surface pressure, is given by: 
    598 \begin{equation} \label{Eq_PE_spg} 
     598\begin{equation} \label{eq:PE_spg} 
    599599p_s =  \rho \,g \,\eta  
    600600\end{equation} 
    601 with $\eta$ is solution of \eqref{Eq_PE_ssh} 
     601with $\eta$ is solution of \autoref{eq:PE_ssh} 
    602602 
    603603The vertical velocity and the hydrostatic pressure are diagnosed from the following equations: 
    604 \begin{equation} \label{Eq_w_diag} 
     604\begin{equation} \label{eq:w_diag} 
    605605\frac{\partial w}{\partial k}=-\chi \;e_3  
    606606\end{equation} 
    607 \begin{equation} \label{Eq_hp_diag} 
     607\begin{equation} \label{eq:hp_diag} 
    608608\frac{\partial p_h }{\partial k}=-\rho \;g\;e_3  
    609609\end{equation} 
    610 where the divergence of the horizontal velocity, $\chi$ is given by \eqref{Eq_PE_div_Uh}. 
     610where the divergence of the horizontal velocity, $\chi$ is given by \autoref{eq:PE_div_Uh}. 
    611611 
    612612\vspace{+10pt} 
    613613$\bullet$ \textit{tracer equations} : 
    614 \begin{equation} \label{Eq_S} 
     614\begin{equation} \label{eq:S} 
    615615\frac{\partial T}{\partial t} =  
    616616-\frac{1}{e_1 e_2 }\left[ {      \frac{\partial \left( {e_2 T\,u} \right)}{\partial i} 
     
    618618-\frac{1}{e_3 }\frac{\partial \left( {T\,w} \right)}{\partial k} + D^T + F^T 
    619619\end{equation} 
    620 \begin{equation} \label{Eq_T} 
     620\begin{equation} \label{eq:T} 
    621621\frac{\partial S}{\partial t} =  
    622622-\frac{1}{e_1 e_2 }\left[    {\frac{\partial \left( {e_2 S\,u} \right)}{\partial i} 
     
    624624-\frac{1}{e_3 }\frac{\partial \left( {S\,w} \right)}{\partial k} + D^S + F^S 
    625625\end{equation} 
    626 \begin{equation} \label{Eq_rho} 
     626\begin{equation} \label{eq:rho} 
    627627\rho =\rho \left( {T,S,z(k)} \right) 
    628628\end{equation} 
    629629 
    630630The expression of \textbf{D}$^{U}$, $D^{S}$ and $D^{T}$ depends on the subgrid scale  
    631 parameterisation used. It will be defined in \S\ref{PE_zdf}. The nature and formulation of  
     631parameterisation used. It will be defined in \autoref{eq:PE_zdf}. The nature and formulation of  
    632632${\rm {\bf F}}^{\rm {\bf U}}$, $F^T$ and $F^S$, the surface forcing terms, are discussed  
    633 in Chapter~\ref{SBC}. 
     633in \autoref{chap:SBC}. 
    634634 
    635635 
     
    640640% ================================================================ 
    641641\section{Curvilinear generalised vertical coordinate system} 
    642 \label{PE_gco} 
     642\label{sec:PE_gco} 
    643643 
    644644The ocean domain presents a huge diversity of situation in the vertical. First the ocean surface is a time dependent surface (moving surface). Second the ocean floor depends on the geographical position, varying from more than 6,000 meters in abyssal trenches to zero at the coast. Last but not least, the ocean stratification exerts a strong barrier to vertical motions and mixing.  
     
    648648 
    649649In fact one is totally free to choose any space and time vertical coordinate by introducing an arbitrary vertical coordinate : 
    650 \begin{equation} \label{Eq_s} 
     650\begin{equation} \label{eq:s} 
    651651s=s(i,j,k,t) 
    652652\end{equation} 
    653 with the restriction that the above equation gives a single-valued monotonic relationship between $s$ and $k$, when $i$, $j$ and $t$ are held fixed. \eqref{Eq_s} is a transformation from the $(i,j,k,t)$ coordinate system with independent variables into the $(i,j,s,t)$ generalised coordinate system with $s$ depending on the other three variables through \eqref{Eq_s}. 
     653with the restriction that the above equation gives a single-valued monotonic relationship between $s$ and $k$, when $i$, $j$ and $t$ are held fixed. \autoref{eq:s} is a transformation from the $(i,j,k,t)$ coordinate system with independent variables into the $(i,j,s,t)$ generalised coordinate system with $s$ depending on the other three variables through \autoref{eq:s}. 
    654654This so-called \textit{generalised vertical coordinate} \citep{Kasahara_MWR74} is in fact an Arbitrary Lagrangian--Eulerian (ALE) coordinate. Indeed, choosing an expression for $s$ is an arbitrary choice that determines which part of the vertical velocity (defined from a fixed referential) will cross the levels (Eulerian part) and which part will be used to move them (Lagrangian part). 
    655655The coordinate is also sometime referenced as an adaptive coordinate \citep{Hofmeister_al_OM09}, since the coordinate system is adapted in the course of the simulation. Its most often used implementation is via an ALE algorithm, in which a pure lagrangian step is followed by regridding and remapping steps, the later step implicitly embedding the vertical advection \citep{Hirt_al_JCP74, Chassignet_al_JPO03, White_al_JCP09}. Here we follow the \citep{Kasahara_MWR74} strategy : a regridding step (an update of the vertical coordinate) followed by an eulerian step with an explicit computation of vertical advection relative to the moving s-surfaces. 
     
    693693\subsection{\textit{S-}coordinate formulation} 
    694694 
    695 Starting from the set of equations established in \S\ref{PE_zco} for the special case $k=z$  
     695Starting from the set of equations established in \autoref{sec:PE_zco} for the special case $k=z$  
    696696and thus $e_3=1$, we introduce an arbitrary vertical coordinate $s=s(i,j,k,t)$, which includes  
    697697$z$-, \textit{z*}- and $\sigma-$coordinates as special cases ($s=z$, $s=\textit{z*}$, and  
    698698$s=\sigma=z/H$ or $=z/\left(H+\eta \right)$, resp.). A formal derivation of the transformed  
    699 equations is given in Appendix~\ref{Apdx_A}. Let us define the vertical scale factor by  
     699equations is given in \autoref{apdx:A}. Let us define the vertical scale factor by  
    700700$e_3=\partial_s z$  ($e_3$ is now a function of $(i,j,k,t)$ ), and the slopes in the  
    701701(\textbf{i},\textbf{j}) directions between $s-$ and $z-$surfaces by : 
    702 \begin{equation} \label{Eq_PE_sco_slope} 
     702\begin{equation} \label{eq:PE_sco_slope} 
    703703\sigma _1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s  
    704704\quad \text{, and } \quad  
     
    707707We also introduce  $\omega $, a dia-surface velocity component, defined as the velocity  
    708708relative to the moving $s$-surfaces and normal to them: 
    709 \begin{equation} \label{Eq_PE_sco_w} 
     709\begin{equation} \label{eq:PE_sco_w} 
    710710\omega  = w - e_3 \, \frac{\partial s}{\partial t} - \sigma _1 \,u - \sigma _2 \,v    \\ 
    711711\end{equation} 
    712712 
    713 The equations solved by the ocean model \eqref{Eq_PE} in $s-$coordinate can be written as follows (see Appendix~\ref{Apdx_A_momentum}): 
     713The equations solved by the ocean model \autoref{eq:PE} in $s-$coordinate can be written as follows (see \autoref{sec:A_momentum}): 
    714714 
    715715 \vspace{0.5cm} 
    716716$\bullet$ Vector invariant form of the momentum equation : 
    717 \begin{multline} \label{Eq_PE_sco_u} 
     717\begin{multline} \label{eq:PE_sco_u} 
    718718\frac{\partial  u   }{\partial t}= 
    719719   +   \left( {\zeta +f} \right)\,v                                     
     
    724724   +   D_u^{\vect{U}}  +   F_u^{\vect{U}} \quad 
    725725\end{multline} 
    726 \begin{multline} \label{Eq_PE_sco_v} 
     726\begin{multline} \label{eq:PE_sco_v} 
    727727\frac{\partial v }{\partial t}= 
    728728   -   \left( {\zeta +f} \right)\,u    
     
    736736 \vspace{0.5cm} 
    737737$\bullet$ Vector invariant form of the momentum equation : 
    738 \begin{multline} \label{Eq_PE_sco_u} 
     738\begin{multline} \label{eq:PE_sco_u} 
    739739\frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t}= 
    740740   +   \left( { f + \frac{1}{e_1 \; e_2 } 
     
    749749   +   D_u^{\vect{U}}  +   F_u^{\vect{U}} \quad 
    750750\end{multline} 
    751 \begin{multline} \label{Eq_PE_sco_v} 
     751\begin{multline} \label{eq:PE_sco_v} 
    752752\frac{1}{e_3} \frac{\partial \left(  e_3\,v  \right) }{\partial t}= 
    753753   -   \left( { f + \frac{1}{e_1 \; e_2} 
     
    766766pressure have the same expressions as in $z$-coordinates although they do not represent  
    767767exactly the same quantities. $\omega$ is provided by the continuity equation  
    768 (see Appendix~\ref{Apdx_A}): 
    769 \begin{equation} \label{Eq_PE_sco_continuity} 
     768(see \autoref{apdx:A}): 
     769\begin{equation} \label{eq:PE_sco_continuity} 
    770770\frac{\partial e_3}{\partial t} + e_3 \; \chi + \frac{\partial \omega }{\partial s} = 0    
    771771\qquad \text{with }\;\;   
     
    777777 \vspace{0.5cm} 
    778778$\bullet$ tracer equations: 
    779 \begin{multline} \label{Eq_PE_sco_t} 
     779\begin{multline} \label{eq:PE_sco_t} 
    780780\frac{1}{e_3} \frac{\partial \left(  e_3\,T  \right) }{\partial t}= 
    781781-\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3\,u\,T} \right)}{\partial i} 
     
    784784\end{multline} 
    785785 
    786 \begin{multline} \label{Eq_PE_sco_s} 
     786\begin{multline} \label{eq:PE_sco_s} 
    787787\frac{1}{e_3} \frac{\partial \left(  e_3\,S  \right) }{\partial t}= 
    788788-\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3\,u\,S} \right)}{\partial i} 
     
    805805% ------------------------------------------------------------------------------------------------------------- 
    806806\subsection{Curvilinear \textit{z*}--coordinate system} 
    807 \label{PE_zco_star} 
     807\label{subsec:PE_zco_star} 
    808808 
    809809%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    810810\begin{figure}[!b]    \begin{center} 
    811811\includegraphics[width=1.0\textwidth]{Fig_z_zstar} 
    812 \caption{   \protect\label{Fig_z_zstar}  
     812\caption{   \protect\label{fig:z_zstar}  
    813813(a) $z$-coordinate in linear free-surface case ;  
    814814(b) $z-$coordinate in non-linear free surface case ;  
     
    837837detailed in Adcroft and Campin (2004). The major points are summarized 
    838838here. The position ( \textit{z*}) and vertical discretization (\textit{z*}) are expressed as: 
    839 \begin{equation} \label{Eq_z-star} 
     839\begin{equation} \label{eq:z-star} 
    840840H +  \textit{z*} = (H + z) / r \quad \text{and} \ \delta \textit{z*} = \delta z / r \quad \text{with} \ r = \frac{H+\eta} {H} 
    841841\end{equation}  
     
    855855To overcome problems with vanishing surface and/or bottom cells, we consider the  
    856856zstar coordinate  
    857 \begin{equation} \label{PE_} 
     857\begin{equation} \label{eq:PE_} 
    858858   z^\star = H \left( \frac{z-\eta}{H+\eta} \right) 
    859859\end{equation} 
     
    867867The surfaces of constant $z^\star$ are quasi-horizontal. Indeed, the $z^\star$ coordinate reduces to $z$ when $\eta$ is zero. In general, when noting the large differences between  
    868868undulations of the bottom topography versus undulations in the surface height, it  
    869 is clear that surfaces constant $z^\star$ are very similar to the depth surfaces. These properties greatly reduce difficulties of computing the horizontal pressure gradient relative to terrain following sigma models discussed in \S\ref{PE_sco}.  
     869is clear that surfaces constant $z^\star$ are very similar to the depth surfaces. These properties greatly reduce difficulties of computing the horizontal pressure gradient relative to terrain following sigma models discussed in \autoref{subsec:PE_sco}.  
    870870Additionally, since $z^\star$ when $\eta = 0$, no flow is spontaneously generated in an  
    871871unforced ocean starting from rest, regardless the bottom topography. This behaviour is in contrast to the case with "s"-models, where pressure gradient errors in  
     
    873873gradient solver. The quasi-horizontal nature of the coordinate surfaces also facilitates the implementation of neutral physics parameterizations in $z^\star$ models using  
    874874the same techniques as in $z$-models (see Chapters 13-16 of \cite{Griffies_Bk04}) for a  
    875 discussion of neutral physics in $z$-models, as well as Section \S\ref{LDF_slp}  
     875discussion of neutral physics in $z$-models, as well as \autoref{sec:LDF_slp}  
    876876in this document for treatment in \NEMO).  
    877877 
     
    902902% ------------------------------------------------------------------------------------------------------------- 
    903903\subsection{Curvilinear terrain-following \textit{s}--coordinate} 
    904 \label{PE_sco} 
     904\label{subsec:PE_sco} 
    905905 
    906906% ------------------------------------------------------------------------------------------------------------- 
     
    915915one along continental slopes. Topographic Rossby waves can be excited and can interact  
    916916with the mean current. In the $z-$coordinate system presented in the previous section  
    917 (\S\ref{PE_zco}), $z-$surfaces are geopotential surfaces. The bottom topography is  
     917(\autoref{sec:PE_zco}), $z-$surfaces are geopotential surfaces. The bottom topography is  
    918918discretised by steps. This often leads to a misrepresentation of a gradually sloping bottom  
    919919and to large localized depth gradients associated with large localized vertical velocities.  
     
    937937The main two problems come from the truncation error in the horizontal pressure  
    938938gradient and a possibly increased diapycnal diffusion. The horizontal pressure force  
    939 in $s$-coordinate consists of two terms (see Appendix~\ref{Apdx_A}), 
    940  
    941 \begin{equation} \label{Eq_PE_p_sco} 
     939in $s$-coordinate consists of two terms (see \autoref{apdx:A}), 
     940 
     941\begin{equation} \label{eq:PE_p_sco} 
    942942\left. {\nabla p} \right|_z =\left. {\nabla p} \right|_s -\frac{\partial  
    943943p}{\partial s}\left. {\nabla z} \right|_s  
    944944\end{equation} 
    945945 
    946 The second term in \eqref{Eq_PE_p_sco} depends on the tilt of the coordinate surface  
     946The second term in \autoref{eq:PE_p_sco} depends on the tilt of the coordinate surface  
    947947and introduces a truncation error that is not present in a $z$-model. In the special case  
    948948of a $\sigma-$coordinate (i.e. a depth-normalised coordinate system $\sigma = z/H$),  
     
    958958topography: a envelope topography is defined in $s$-coordinate on which a full or  
    959959partial step bottom topography is then applied in order to adjust the model depth to  
    960 the observed one (see \S\ref{DOM_zgr}. 
     960the observed one (see \autoref{sec:DOM_zgr}. 
    961961 
    962962For numerical reasons a minimum of diffusion is required along the coordinate surfaces  
     
    973973the ocean will stay at rest in a $z$-model. As for the truncation error, the problem can be reduced by introducing the terrain-following coordinate below the strongly stratified portion of the water column  
    974974($i.e.$ the main thermocline) \citep{Madec_al_JPO96}. An alternate solution consists of rotating  
    975 the lateral diffusive tensor to geopotential or to isoneutral surfaces (see \S\ref{PE_ldf}.  
     975the lateral diffusive tensor to geopotential or to isoneutral surfaces (see \autoref{subsec:PE_ldf}.  
    976976Unfortunately, the slope of isoneutral surfaces relative to the $s$-surfaces can very large,  
    977 strongly exceeding the stability limit of such a operator when it is discretized (see Chapter~\ref{LDF}).  
     977strongly exceeding the stability limit of such a operator when it is discretized (see \autoref{chap:LDF}).  
    978978 
    979979The $s-$coordinates introduced here \citep{Lott_al_OM90,Madec_al_JPO96} differ mainly in two  
     
    988988% ------------------------------------------------------------------------------------------------------------- 
    989989\subsection{\texorpdfstring{Curvilinear $\tilde{z}$--coordinate}{}} 
    990 \label{PE_zco_tilde} 
     990\label{subsec:PE_zco_tilde} 
    991991 
    992992The $\tilde{z}$-coordinate has been developed by \citet{Leclair_Madec_OM11}. 
     
    10001000% ================================================================ 
    10011001\section{Subgrid scale physics} 
    1002 \label{PE_zdf_ldf} 
     1002\label{sec:PE_zdf_ldf} 
    10031003 
    10041004The primitive equations describe the behaviour of a geophysical fluid at  
     
    10191019The control exerted by gravity on the flow induces a strong anisotropy  
    10201020between the lateral and vertical motions. Therefore subgrid-scale physics   
    1021 \textbf{D}$^{\vect{U}}$, $D^{S}$ and $D^{T}$  in \eqref{Eq_PE_dyn},  
    1022 \eqref{Eq_PE_tra_T} and \eqref{Eq_PE_tra_S} are divided into a lateral part   
     1021\textbf{D}$^{\vect{U}}$, $D^{S}$ and $D^{T}$  in \autoref{eq:PE_dyn},  
     1022\autoref{eq:PE_tra_T} and \autoref{eq:PE_tra_S} are divided into a lateral part   
    10231023\textbf{D}$^{l \vect{U}}$, $D^{lS}$ and $D^{lT}$ and a vertical part   
    10241024\textbf{D}$^{vU}$, $D^{vS}$ and $D^{vT}$. The formulation of these terms  
     
    10291029% ------------------------------------------------------------------------------------------------------------- 
    10301030\subsection{Vertical subgrid scale physics} 
    1031 \label{PE_zdf} 
     1031\label{subsec:PE_zdf} 
    10321032 
    10331033The model resolution is always larger than the scale at which the major  
     
    10441044turbulent motions is simply impractical. The resulting vertical momentum and  
    10451045tracer diffusive operators are of second order: 
    1046 \begin{equation} \label{Eq_PE_zdf} 
     1046\begin{equation} \label{eq:PE_zdf} 
    10471047   \begin{split} 
    10481048{\vect{D}}^{v \vect{U}} &=\frac{\partial }{\partial z}\left( {A^{vm}\frac{\partial {\vect{U}}_h }{\partial z}} \right) \ , \\          
     
    10541054where $A^{vm}$ and $A^{vT}$ are the vertical eddy viscosity and diffusivity coefficients,  
    10551055respectively. At the sea surface and at the bottom, turbulent fluxes of momentum, heat  
    1056 and salt must be specified (see Chap.~\ref{SBC} and \ref{ZDF} and \S\ref{TRA_bbl}).  
     1056and salt must be specified (see \autoref{chap:SBC} and \autoref{chap:ZDF} and \autoref{sec:TRA_bbl}).  
    10571057All the vertical physics is embedded in the specification of the eddy coefficients.  
    10581058They can be assumed to be either constant, or function of the local fluid properties  
    10591059($e.g.$ Richardson number, Brunt-Vais\"{a}l\"{a} frequency...), or computed from a  
    1060 turbulent closure model. The choices available in \NEMO are discussed in \S\ref{ZDF}). 
     1060turbulent closure model. The choices available in \NEMO are discussed in \autoref{chap:ZDF}). 
    10611061 
    10621062% ------------------------------------------------------------------------------------------------------------- 
     
    10641064% ------------------------------------------------------------------------------------------------------------- 
    10651065\subsection{Formulation of the lateral diffusive and viscous operators} 
    1066 \label{PE_ldf} 
     1066\label{subsec:PE_ldf} 
    10671067 
    10681068Lateral turbulence can be roughly divided into a mesoscale turbulence  
     
    11241124\subsubsection{Lateral laplacian tracer diffusive operator} 
    11251125 
    1126 The lateral Laplacian tracer diffusive operator is defined by (see Appendix~\ref{Apdx_B}): 
    1127 \begin{equation} \label{Eq_PE_iso_tensor} 
     1126The lateral Laplacian tracer diffusive operator is defined by (see \autoref{apdx:B}): 
     1127\begin{equation} \label{eq:PE_iso_tensor} 
    11281128D^{lT}=\nabla {\rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad  
    11291129\mbox{with}\quad \;\;\Re =\left( {{\begin{array}{*{20}c} 
     
    11351135where $r_1 \;\mbox{and}\;r_2 $ are the slopes between the surface along  
    11361136which the diffusive operator acts and the model level ($e. g.$ $z$- or  
    1137 $s$-surfaces). Note that the formulation \eqref{Eq_PE_iso_tensor} is exact for the  
     1137$s$-surfaces). Note that the formulation \autoref{eq:PE_iso_tensor} is exact for the  
    11381138rotation between geopotential and $s$-surfaces, while it is only an approximation  
    11391139for the rotation between isoneutral and $z$- or $s$-surfaces. Indeed, in the latter  
    1140 case, two assumptions are made to simplify  \eqref{Eq_PE_iso_tensor} \citep{Cox1987}.  
     1140case, two assumptions are made to simplify  \autoref{eq:PE_iso_tensor} \citep{Cox1987}.  
    11411141First, the horizontal contribution of the dianeutral mixing is neglected since the ratio  
    11421142between iso and dia-neutral diffusive coefficients is known to be several orders of  
    11431143magnitude smaller than unity. Second, the two isoneutral directions of diffusion are  
    11441144assumed to be independent since the slopes are generally less than $10^{-2}$ in the  
    1145 ocean (see Appendix~\ref{Apdx_B}). 
     1145ocean (see \autoref{apdx:B}). 
    11461146 
    11471147For \textit{iso-level} diffusion, $r_1$ and $r_2 $ are zero. $\Re $ reduces to the identity  
     
    11501150For \textit{geopotential} diffusion, $r_1$ and $r_2 $ are the slopes between the  
    11511151geopotential and computational surfaces: they are equal to $\sigma _1$ and $\sigma _2$,  
    1152 respectively (see \eqref{Eq_PE_sco_slope} ). 
     1152respectively (see \autoref{eq:PE_sco_slope}). 
    11531153 
    11541154For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between the isoneutral  
    11551155and computational surfaces. Therefore, they are different quantities, 
    11561156but have similar expressions in $z$- and $s$-coordinates. In $z$-coordinates: 
    1157 \begin{equation} \label{Eq_PE_iso_slopes} 
     1157\begin{equation} \label{eq:PE_iso_slopes} 
    11581158r_1 =\frac{e_3 }{e_1 }  \left( \pd[\rho]{i} \right) \left( \pd[\rho]{k} \right)^{-1} \, \quad 
    11591159r_2 =\frac{e_3 }{e_2 }  \left( \pd[\rho]{j} \right) \left( \pd[\rho]{k} \right)^{-1} \, 
     
    11641164 When the \textit{eddy induced velocity} parametrisation (eiv) \citep{Gent1990} is used,  
    11651165an additional tracer advection is introduced in combination with the isoneutral diffusion of tracers: 
    1166 \begin{equation} \label{Eq_PE_iso+eiv} 
     1166\begin{equation} \label{eq:PE_iso+eiv} 
    11671167D^{lT}=\nabla \cdot \left( {A^{lT}\;\Re \;\nabla T} \right) 
    11681168           +\nabla \cdot \left( {{\vect{U}}^\ast \,T} \right) 
     
    11701170where ${\vect{U}}^\ast =\left( {u^\ast ,v^\ast ,w^\ast } \right)$ is a non-divergent,  
    11711171eddy-induced transport velocity. This velocity field is defined by: 
    1172 \begin{equation} \label{Eq_PE_eiv} 
     1172\begin{equation} \label{eq:PE_eiv} 
    11731173   \begin{split} 
    11741174 u^\ast  &= +\frac{1}{e_3       }\frac{\partial }{\partial k}\left[ {A^{eiv}\;\tilde{r}_1 } \right] \\  
     
    11831183between isoneutral and \emph{geopotential} surfaces. Their values are 
    11841184thus independent of the vertical coordinate, but their expression depends on the coordinate:  
    1185 \begin{align} \label{Eq_PE_slopes_eiv} 
     1185\begin{align} \label{eq:PE_slopes_eiv} 
    11861186\tilde{r}_n = \begin{cases} 
    11871187   r_n            &      \text{in $z$-coordinate}    \\ 
     
    11931193The normal component of the eddy induced velocity is zero at all the boundaries.  
    11941194This can be achieved in a model by tapering either the eddy coefficient or the slopes  
    1195 to zero in the vicinity of the boundaries. The latter strategy is used in \NEMO (cf. Chap.~\ref{LDF}). 
     1195to zero in the vicinity of the boundaries. The latter strategy is used in \NEMO (cf. \autoref{chap:LDF}). 
    11961196 
    11971197\subsubsection{Lateral bilaplacian tracer diffusive operator} 
    11981198 
    11991199The lateral bilaplacian tracer diffusive operator is defined by: 
    1200 \begin{equation} \label{Eq_PE_bilapT} 
     1200\begin{equation} \label{eq:PE_bilapT} 
    12011201D^{lT}= - \Delta \left( \;\Delta T \right)  
    12021202\qquad \text{where} \;\; \Delta \bullet = \nabla \left( {\sqrt{B^{lT}\,}\;\Re \;\nabla \bullet} \right) 
    12031203 \end{equation} 
    1204 It is the Laplacian operator given by \eqref{Eq_PE_iso_tensor} applied twice with  
     1204It is the Laplacian operator given by \autoref{eq:PE_iso_tensor} applied twice with  
    12051205the harmonic eddy diffusion coefficient set to the square root of the biharmonic one.  
    12061206 
     
    12091209 
    12101210The Laplacian momentum diffusive operator along $z$- or $s$-surfaces is found by  
    1211 applying \eqref{Eq_PE_lap_vector} to the horizontal velocity vector (see Appendix~\ref{Apdx_B}): 
    1212 \begin{equation} \label{Eq_PE_lapU} 
     1211applying \autoref{eq:PE_lap_vector} to the horizontal velocity vector (see \autoref{apdx:B}): 
     1212\begin{equation} \label{eq:PE_lapU} 
    12131213\begin{split} 
    12141214{\rm {\bf D}}^{l{\rm {\bf U}}}  
     
    12251225 
    12261226Such a formulation ensures a complete separation between the vorticity and  
    1227 horizontal divergence fields (see Appendix~\ref{Apdx_C}).  
     1227horizontal divergence fields (see \autoref{apdx:C}).  
    12281228Unfortunately, it is only available in \textit{iso-level} direction.  
    12291229When a rotation is required ($i.e.$ geopotential diffusion in $s-$coordinates  
    12301230or isoneutral diffusion in both $z$- and $s$-coordinates), the $u$ and $v-$fields  
    12311231are considered as independent scalar fields, so that the diffusive operator is given by: 
    1232 \begin{equation} \label{Eq_PE_lapU_iso} 
     1232\begin{equation} \label{eq:PE_lapU_iso} 
    12331233\begin{split} 
    12341234 D_u^{l{\rm {\bf U}}} &= \nabla .\left( {A^{lm} \;\Re \;\nabla u} \right) \\  
     
    12361236 \end{split} 
    12371237 \end{equation} 
    1238 where $\Re$ is given by  \eqref{Eq_PE_iso_tensor}. It is the same expression as  
     1238where $\Re$ is given by \autoref{eq:PE_iso_tensor}. It is the same expression as  
    12391239those used for diffusive operator on tracers. It must be emphasised that such a  
    12401240formulation is only exact in a Cartesian coordinate system, $i.e.$ on a $f-$ or  
Note: See TracChangeset for help on using the changeset viewer.