New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_s_coord.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex @ 11567

Last change on this file since 11567 was 11558, checked in by nicolasmartin, 5 years ago

Review all figure envs + activation of listoflistings

  1. Figure env:
    • Replace center sub-env with only \centering cmd
    • Add alternate caption for \listoffigures (shorter one between square brackets, i.e. \caption[]{})
    • Place \label outside of \caption and remove useless \protect
  1. Namelist listings
    • Put \nlst with the namelist inlcusion in a listing float env with caption and label
    • Remove namelist duplicates

-- This line, and those below, will be ignored--
M subfiles/apdx_triads.tex
M subfiles/chap_model_basics_zstar.tex
M subfiles/chap_SBC.tex
M subfiles/apdx_DOMAINcfg.tex
M subfiles/apdx_s_coord.tex
M subfiles/chap_DOM.tex
M subfiles/chap_ASM.tex
M subfiles/chap_DIU.tex
M subfiles/chap_cfgs.tex
M subfiles/chap_ZDF.tex
M subfiles/chap_OBS.tex
M subfiles/chap_model_basics.tex
M subfiles/chap_time_domain.tex
M subfiles/apdx_algos.tex
M subfiles/chap_TRA.tex
M subfiles/chap_DYN.tex
M subfiles/chap_misc.tex
M subfiles/chap_DIA.tex
M subfiles/apdx_invariants.tex
M subfiles/chap_LBC.tex
M subfiles/apdx_diff_opers.tex
M subfiles/chap_STO.tex
M subfiles/chap_LDF.tex

File size: 30.4 KB
RevLine 
[10414]1\documentclass[../main/NEMO_manual]{subfiles}
2
[6997]3\begin{document}
[707]4
5% ================================================================
[10414]6% Chapter Appendix A : Curvilinear s-Coordinate Equations
[707]7% ================================================================
[2282]8\chapter{Curvilinear $s-$Coordinate Equations}
[11543]9\label{apdx:SCOORD}
[10414]10
[11435]11\chaptertoc
[707]12
[11337]13\vfill
14\begin{figure}[b]
15\subsubsection*{Changes record}
16\begin{tabular}{l||l|m{0.65\linewidth}}
17    Release   & Author        & Modifications \\
18    {\em 4.0} & {\em Mike Bell} & {\em review}  \\
19    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\
20\end{tabular}
21\end{figure}
22
23
[2282]24\newpage
[996]25
[2282]26% ================================================================
27% Chain rule
28% ================================================================
[9393]29\section{Chain rule for $s-$coordinates}
[11543]30\label{sec:SCOORD_chain}
[2282]31
[3294]32In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
[11435]33(\ie\ an orthogonal curvilinear coordinate in the horizontal and
[10354]34an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
[11543]35we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
[10354]36the special case $k = z$ and thus $e_3 = 1$,
37and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
38Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
39the horizontal slope of $s-$surfaces by:
[10414]40\begin{equation}
[11543]41  \label{eq:SCOORD_s_slope}
[11335]42  \sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
[10414]43  \quad \text{and} \quad
[11335]44  \sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
[707]45\end{equation}
46
[11335]47The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
[11543]48functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
49these fields.  Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
[10414]50\begin{equation}
[11543]51  \label{eq:SCOORD_s_infin_changes}
[11335]52  \begin{aligned}
[11543]53    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
54                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
55                + \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
[11335]56                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
[11543]57    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
58                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
59                + \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
[11335]60                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
61  \end{aligned}
62\end{equation}
63Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
64\begin{equation}
[11558]65  \label{eq:SCOORD_s_chain_rule1}
[11335]66      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t}  =
67      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
[11543]68    + \left. {\frac{\partial s       }{\partial i}} \right|_{j,z,t} \;
69      \left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
[11335]70\end{equation}
[11543]71The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
72(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
[11335]73$s$ and $j, t$ held constant
74\begin{equation}
[11543]75\label{eq:SCOORD_delta_s}
76\delta s|_{j,t} =
77         \delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
[11335]78       + \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
79\end{equation}
80Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
[11543]81(\autoref{eq:SCOORD_s_slope}) we obtain
[11335]82\begin{equation}
[11543]83\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
[11335]84         -  \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
85            \left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
86    = - \frac{e_1 }{e_3 }\sigma_1  .
[11543]87\label{eq:SCOORD_ds_di_z}
[11335]88\end{equation}
[11543]89Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
90by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
[11335]91changes in which $i , j$ and $s$ are constant. This shows that
92\begin{equation}
[11543]93\label{eq:SCOORD_w_in_s}
94w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
[11335]95- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
[11543]96  \left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
97  = - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
[11335]98\end{equation}
99
[11543]100In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
101usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
[11335]102the model equations in the curvilinear $s-$coordinate system are:
103\begin{equation}
[11558]104  \label{eq:SCOORD_s_chain_rule2}
[10414]105  \begin{aligned}
106    &\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
[11543]107    \left. {\frac{\partial \bullet }{\partial t}} \right|_s
[11335]108    + \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
[10414]109    &\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
110    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
[11335]111    +\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
[11543]112    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
[11335]113    -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
[10414]114    &\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
[11543]115    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
[11335]116    + \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
[11543]117    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
[11335]118    - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
119    &\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
[10414]120  \end{aligned}
[707]121\end{equation}
122
123
[817]124% ================================================================
125% continuity equation
126% ================================================================
[9393]127\section{Continuity equation in $s-$coordinates}
[11543]128\label{sec:SCOORD_continuity}
[707]129
[11558]130Using (\autoref{eq:SCOORD_s_chain_rule1}) and
[10354]131the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
132the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
133obtain its expression in the curvilinear $s-$coordinate system:
[707]134
[10414]135\begin{subequations}
136  \begin{align*}
137    {
138    \begin{array}{*{20}l}
[11151]139      \nabla \cdot {\mathrm {\mathbf U}}
[10414]140      &= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
141        +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
142        + \frac{\partial w}{\partial z} \\ \\
143      &     = \frac{1}{e_1 \,e_2 }  \left[
144        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
145        - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
146        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s
147        - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right]
148        + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
149      &     = \frac{1}{e_1 \,e_2 }   \left[
150        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
151        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s         \right]
152        + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
153        -  \sigma_1 \frac{\partial u}{\partial s}
154        -  \sigma_2 \frac{\partial v}{\partial s}      \right] \\ \\
155      &     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
156        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_s
157        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s
158        + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
159        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right] \\
160      & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
161        + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
162        -  \sigma_1 \frac{\partial u}{\partial s}
163        -  \sigma_2 \frac{\partial v}{\partial s}      \right]      \\
164      %
165      \intertext{Noting that $
166      \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
167      =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
168      =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
169      =\frac{\partial \sigma_1}{\partial s}
170      $ and $
171      \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
172      =\frac{\partial \sigma_2}{\partial s}
173      $, it becomes:}
174    %
[11151]175      \nabla \cdot {\mathrm {\mathbf U}}
[10414]176      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
177        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
178        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right] \\
179      & \qquad \qquad \qquad \qquad \quad
180        +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
181      \\
182      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
183        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
184        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
185        + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right]
186    \end{array}
187        }
188  \end{align*}
[2282]189\end{subequations}
190
[11543]191Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
192Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
193and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and  $w_s$,
[11335]194one can show that the vertical velocity, $w_p$ of a point
[11543]195moving with the horizontal velocity of the fluid along an $s$ surface is given by
[10414]196\begin{equation}
[11543]197\label{eq:SCOORD_w_p}
[11335]198\begin{split}
199w_p  = & \left. \frac{ \partial z }{\partial t} \right|_s
[11543]200     + \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
[11335]201     + \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
202     = & w_s + u \sigma_1 + v \sigma_2 .
[11543]203\end{split}
[11335]204\end{equation}
205 The vertical velocity across this surface is denoted by
206\begin{equation}
[11543]207  \label{eq:SCOORD_w_s}
208  \omega  = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v )  .
[707]209\end{equation}
[11543]210Hence
[11335]211\begin{equation}
[11543]212\frac{1}{e_3 } \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right] =
213\frac{1}{e_3 } \frac{\partial}{\partial s} \left[  \omega + w_s \right] =
214   \frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
215 + \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
216   \frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
[11335]217\end{equation}
218
[11543]219Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
[11335]220our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
221\begin{equation}
222      \nabla \cdot {\mathrm {\mathbf U}} =
223         \frac{1}{e_1 \,e_2 \,e_3 }    \left[
[10414]224        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
225        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
226        + \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
[11335]227        + \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
228\end{equation}
[707]229
[11543]230As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
[10414]231\begin{equation}
[11543]232  \label{eq:SCOORD_sco_Continuity}
[10414]233  \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
234  + \frac{1}{e_1 \,e_2 \,e_3 }\left[
235    {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
236      +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
[11335]237  +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
[707]238\end{equation}
[11335]239An additional term has appeared that takes into account
[10354]240the contribution of the time variation of the vertical coordinate to the volume budget.
[707]241
[2282]242
[817]243% ================================================================
244% momentum equation
245% ================================================================
[9393]246\section{Momentum equation in $s-$coordinate}
[11543]247\label{sec:SCOORD_momentum}
[707]248
[10354]249Here we only consider the first component of the momentum equation,
[2282]250the generalization to the second one being straightforward.
251
252$\bullet$ \textbf{Total derivative in vector invariant form}
253
[11543]254Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
[10354]255Its total $z-$coordinate time derivative,
256$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
[2282]257its expression in the curvilinear $s-$coordinate system:
[707]258
[10414]259\begin{subequations}
260  \begin{align*}
261    {
262    \begin{array}{*{20}l}
263      \left. \frac{D u}{D t} \right|_z
264      &= \left. {\frac{\partial u }{\partial t}} \right|_z
265        - \left. \zeta \right|_z v
266        + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
267        + w \;\frac{\partial u}{\partial z} \\ \\
268      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]269        -  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
[10414]270        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
271        +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
272        +  w \;\frac{\partial u}{\partial z}      \\
273        %
[11558]274      \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
[10414]275      %
276      &= \left. {\frac{\partial u }{\partial t}} \right|_z
277        - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
278        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
279        \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
280        +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\
281      & \qquad \qquad \qquad \qquad
282        {
283        + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
284        - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
285        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
286        } \\ \\
287      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]288        - \left. \zeta \right|_s \;v
[10414]289        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
290      &\qquad \qquad \qquad \quad
291        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
[11335]292        + \left[   {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
[10414]293        - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v
294        - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
295      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]296        - \left. \zeta \right|_s \;v
[10414]297        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
298      &\qquad \qquad \qquad \quad
299        + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
300        +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
301        - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
302      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]303        - \left. \zeta \right|_s \;v
[10414]304        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
305        + \frac{1}{e_3} \left[  w - \sigma_2 v - \sigma_1 u  \right]
[11335]306        \; \frac{\partial u}{\partial s} .  \\
[10414]307        %
[11543]308      \intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
[10414]309      %
310      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]311        - \left. \zeta \right|_s \;v
[10414]312        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
[11335]313        + \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s}   \\
[10414]314    \end{array}
315    }
316  \end{align*}
[2282]317\end{subequations}
318%
[11558]319Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
[11543]320using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
[10414]321\[
322  {
323    \begin{array}{*{20}l}
[11335]324      \frac{w_s}{e_3\;\frac{\partial u}{\partial s}
325      = - \left. \frac{\partial s}{\partial t} \right|_z \;  \frac{\partial u }{\partial s}
326      = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
[10414]327    \end{array}
328  }
[10406]329\]
[11335]330This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
[11435]331\ie\ the total $s-$coordinate time derivative :
[10414]332\begin{align}
[11543]333  \label{eq:SCOORD_sco_Dt_vect}
[10414]334  \left. \frac{D u}{D t} \right|_s
335  = \left. {\frac{\partial u }{\partial t}} \right|_s
[11335]336  - \left. \zeta \right|_s \;v
[10414]337  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
[11543]338  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
[2282]339\end{align}
[10354]340Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
341$z-$ and $s-$coordinates.
342This is not the case for the flux form as shown in next paragraph.
[2282]343
344$\bullet$ \textbf{Total derivative in flux form}
345
[10354]346Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
[11543]347Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
[10414]348% \begin{subequations}
349\begin{align*}
350  {
351  \begin{array}{*{20}l}
352    \left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_s
353    & -  \zeta \;v
354      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
355      + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
356                                      &= \left. {\frac{\partial u }{\partial t}} \right|_s
357    &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
358      + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
359      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
360                                      &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
361                                         + \frac{\partial(e_1 v)}{\partial j}    \right)
362                                         + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
363                                      &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
[11335]364                                         -u  \;\frac{\partial e_1 }{\partial j}  \right) . \\
[10414]365  \end{array}
366  }
[817]367\end{align*}
[2282]368%
[11543]369Introducing the vertical scale factor inside the horizontal derivative of the first two terms
[11435]370(\ie\ the horizontal divergence), it becomes :
[10414]371\begin{align*}
372  {
373  \begin{array}{*{20}l}
374    % \begin{align*} {\begin{array}{*{20}l}
[11543]375    %     {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
[10414]376    &= \left. {\frac{\partial u }{\partial t}} \right|_s
377    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
378      + \frac{\partial( e_1 e_3 \,u v )}{\partial j}
379      -  e_2 u u \frac{\partial e_3}{\partial i}
380      -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
381      + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
382    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
383       + \frac{\partial(e_1 e_3 \, v)}{\partial j}
384       -  e_2 u \;\frac{\partial e_3 }{\partial i}
385       -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
[11335]386       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
[10414]387    && - \frac{v}{e_1 e_2 }\left(   v  \;\frac{\partial e_2 }{\partial i}
388       -u  \;\frac{\partial e_1 }{\partial j}   \right) \\ \\
389    &= \left. {\frac{\partial u }{\partial t}} \right|_s
390    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
391      + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
392      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
393    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
394       + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
[11335]395       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]
[10414]396       - \frac{v}{e_1 e_2 }\left(   v   \;\frac{\partial e_2 }{\partial i}
[11335]397       -u   \;\frac{\partial e_1 }{\partial j}  \right)     .             \\
[10414]398     %
399    \intertext {Introducing a more compact form for the divergence of the momentum fluxes,
[11543]400    and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
[10414]401    it becomes : }
402  %
403    &= \left. {\frac{\partial u }{\partial t}} \right|_s
[11151]404    &+ \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
[10414]405      + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
[2282]406      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[10414]407      -u  \;\frac{\partial e_1 }{\partial j}    \right)
408    \\
409  \end{array}
410  }
[2282]411\end{align*}
[11543]412which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
[11435]413\ie\ the total $s-$coordinate time derivative in flux form:
[10414]414\begin{flalign}
[11543]415  \label{eq:SCOORD_sco_Dt_flux}
[10414]416  \left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
[11151]417  + \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
[10414]418  - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[11335]419    -u  \;\frac{\partial e_1 }{\partial j}            \right).
[2282]420\end{flalign}
421which is the total time derivative expressed in the curvilinear $s-$coordinate system.
[10354]422It has the same form as in the $z-$coordinate but for
423the vertical scale factor that has appeared inside the time derivative which
[11543]424comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
[10354]425the continuity equation.
[707]426
[2282]427$\bullet$ \textbf{horizontal pressure gradient}
428
429The horizontal pressure gradient term can be transformed as follows:
[10406]430\[
[10414]431  \begin{split}
432    -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
433    & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
434    & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
[11335]435    &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
[10414]436  \end{split}
[10406]437\]
[10354]438Applying similar manipulation to the second component and
[11543]439replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
[10414]440\begin{equation}
[11543]441  \label{eq:SCOORD_grad_p_1}
[10414]442  \begin{split}
443    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
444    &=-\frac{1}{\rho_o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
445      + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
446             %
447    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
448    &=-\frac{1}{\rho_o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
[11335]449      + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) . \\
[10414]450  \end{split}
[707]451\end{equation}
452
[11543]453An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
[10354]454the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
[707]455
[10354]456As in $z$-coordinate,
[11123]457the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
[10354]458Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
459and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
[2282]460The pressure is then given by:
[10414]461\[
462  \begin{split}
[11335]463    p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk   \\
464    &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
[10414]465  \end{split}
[10406]466\]
[2282]467Therefore, $p$ and $p_h'$ are linked through:
[10414]468\begin{equation}
[11543]469  \label{eq:SCOORD_pressure}
[11335]470  p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
[2282]471\end{equation}
472and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
[10414]473\[
[11335]474  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
[10406]475\]
[2282]476
[11543]477Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
[11335]478using the definition of the density anomaly it becomes an expression in two parts:
[10414]479\begin{equation}
[11543]480  \label{eq:SCOORD_grad_p_2}
[10414]481  \begin{split}
482    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
483    &=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
[11335]484      + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} ,  \\
[10414]485             %
486    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
487    &=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
[11335]488      + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
[10414]489  \end{split}
[2282]490\end{equation}
[10354]491This formulation of the pressure gradient is characterised by the appearance of
492a term depending on the sea surface height only
[11543]493(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
[10354]494This term will be loosely termed \textit{surface pressure gradient} whereas
495the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
496the $z$-coordinate formulation.
497In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
498and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.
[2282]499
500$\bullet$ \textbf{The other terms of the momentum equation}
501
[10354]502The coriolis and forcing terms as well as the the vertical physics remain unchanged as
503they involve neither time nor space derivatives.
[11543]504The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.
[2282]505
506$\bullet$ \textbf{Full momentum equation}
507
[10354]508To sum up, in a curvilinear $s$-coordinate system,
509the vector invariant momentum equation solved by the model has the same mathematical expression as
510the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
[10414]511\begin{subequations}
[11543]512  \label{eq:SCOORD_dyn_vect}
[10414]513  \begin{multline}
[11543]514    \label{eq:SCOORD_PE_dyn_vect_u}
[10414]515    \frac{\partial u}{\partial t}=
516    +   \left( {\zeta +f} \right)\,v
517    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
518    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
519    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
520    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
[11335]521    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
[10414]522  \end{multline}
523  \begin{multline}
[11543]524    \label{eq:SCOORD_dyn_vect_v}
[10414]525    \frac{\partial v}{\partial t}=
526    -   \left( {\zeta +f} \right)\,u
527    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)
528    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
529    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
530    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
[11335]531    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
[10414]532  \end{multline}
[817]533\end{subequations}
[10354]534whereas the flux form momentum equation differs from it by
535the formulation of both the time derivative and the pressure gradient term:
[10414]536\begin{subequations}
[11543]537  \label{eq:SCOORD_dyn_flux}
[10414]538  \begin{multline}
[11543]539    \label{eq:SCOORD_PE_dyn_flux_u}
[10414]540    \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
[11335]541    - \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)
[10414]542    +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
543          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\
544    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
545    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
[11335]546    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
[10414]547  \end{multline}
548  \begin{multline}
[11543]549    \label{eq:SCOORD_dyn_flux_v}
[10414]550    \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
[11151]551    -  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,v}   \right)
[11335]552    -   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[10414]553          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\
554    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
555    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
[11543]556    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
[10414]557  \end{multline}
[2282]558\end{subequations}
559Both formulation share the same hydrostatic pressure balance expressed in terms of
[3294]560hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
[10414]561\begin{equation}
[11543]562  \label{eq:SCOORD_dyn_zph}
[11335]563  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
[2282]564\end{equation}
[707]565
[10354]566It is important to realize that the change in coordinate system has only concerned the position on the vertical.
567It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
568($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
569in particular the pressure gradient.
570By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
[11543]571\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.
[817]572
[2282]573
[817]574% ================================================================
575% Tracer equation
576% ================================================================
[9393]577\section{Tracer equation}
[11543]578\label{sec:SCOORD_tracer}
[817]579
[10354]580The tracer equation is obtained using the same calculation as for the continuity equation and then
581regrouping the time derivative terms in the left hand side :
[707]582
[10414]583\begin{multline}
[11543]584  \label{eq:SCOORD_tracer}
[10414]585  \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t}
586  = -\frac{1}{e_1 \,e_2 \,e_3}
587  \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
588    +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
[11335]589  -  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right)
[10414]590  +  D^{T} +F^{T}
[707]591\end{multline}
592
[11543]593The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
594the expression of the 3D divergence in the $s-$coordinates established above.
[707]595
[10414]596\biblio
597
[10442]598\pindex
599
[6997]600\end{document}
Note: See TracBrowser for help on using the repository browser.