New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
apdx_s_coord.tex in NEMO/trunk/doc/latex/NEMO/subfiles – NEMO

source: NEMO/trunk/doc/latex/NEMO/subfiles/apdx_s_coord.tex @ 11596

Last change on this file since 11596 was 11596, checked in by nicolasmartin, 5 years ago

Application of some coding rules

  • Replace comments before sectioning cmds by a single line of 100 characters long to display when every line should break
  • Replace multi blank lines by one single blank line
  • For list environment, put \item, label and content on the same line
  • Remove \newpage and comments line around figure envs
File size: 29.6 KB
RevLine 
[10414]1\documentclass[../main/NEMO_manual]{subfiles}
2
[6997]3\begin{document}
[707]4
[2282]5\chapter{Curvilinear $s-$Coordinate Equations}
[11543]6\label{apdx:SCOORD}
[10414]7
[11435]8\chaptertoc
[707]9
[11337]10\vfill
11\begin{figure}[b]
12\subsubsection*{Changes record}
13\begin{tabular}{l||l|m{0.65\linewidth}}
14    Release   & Author        & Modifications \\
15    {\em 4.0} & {\em Mike Bell} & {\em review}  \\
16    {\em 3.x} & {\em Gurvan Madec} & {\em original}  \\
17\end{tabular}
18\end{figure}
19
[9393]20\section{Chain rule for $s-$coordinates}
[11543]21\label{sec:SCOORD_chain}
[2282]22
[3294]23In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
[11435]24(\ie\ an orthogonal curvilinear coordinate in the horizontal and
[10354]25an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical),
[11543]26we start from the set of equations established in \autoref{subsec:MB_zco_Eq} for
[10354]27the special case $k = z$ and thus $e_3 = 1$,
28and we introduce an arbitrary vertical coordinate $a = a(i,j,z,t)$.
29Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and
30the horizontal slope of $s-$surfaces by:
[10414]31\begin{equation}
[11543]32  \label{eq:SCOORD_s_slope}
[11335]33  \sigma_1 =\frac{1}{e_1 } \; \left. {\frac{\partial z}{\partial i}} \right|_s
[10414]34  \quad \text{and} \quad
[11335]35  \sigma_2 =\frac{1}{e_2 } \; \left. {\frac{\partial z}{\partial j}} \right|_s .
[707]36\end{equation}
37
[11335]38The model fields (e.g. pressure $p$) can be viewed as functions of $(i,j,z,t)$ (e.g. $p(i,j,z,t)$) or as
[11543]39functions of $(i,j,s,t)$ (e.g. $p(i,j,s,t)$). The symbol $\bullet$ will be used to represent any one of
40these fields.  Any ``infinitesimal'' change in $\bullet$ can be written in two forms:
[10414]41\begin{equation}
[11543]42  \label{eq:SCOORD_s_infin_changes}
[11335]43  \begin{aligned}
[11543]44    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,s,t}
45                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,s,t}
46                + \delta s \left. \frac{ \partial \bullet }{\partial s} \right|_{i,j,t}
[11335]47                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,s} , \\
[11543]48    & \delta \bullet =  \delta i \left. \frac{ \partial \bullet }{\partial i} \right|_{j,z,t}
49                + \delta j \left. \frac{ \partial \bullet }{\partial i} \right|_{i,z,t}
50                + \delta z \left. \frac{ \partial \bullet }{\partial z} \right|_{i,j,t}
[11335]51                + \delta t \left. \frac{ \partial \bullet }{\partial t} \right|_{i,j,z} .
52  \end{aligned}
53\end{equation}
54Using the first form and considering a change $\delta i$ with $j, z$ and $t$ held constant, shows that
55\begin{equation}
[11558]56  \label{eq:SCOORD_s_chain_rule1}
[11335]57      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,z,t}  =
58      \left. {\frac{\partial \bullet }{\partial i}} \right|_{j,s,t}
[11543]59    + \left. {\frac{\partial s       }{\partial i}} \right|_{j,z,t} \;
60      \left. {\frac{\partial \bullet }{\partial s}} \right|_{i,j,t} .
[11335]61\end{equation}
[11543]62The term $\left. \partial s / \partial i \right|_{j,z,t}$ can be related to the slope of constant $s$ surfaces,
63(\autoref{eq:SCOORD_s_slope}), by applying the second of (\autoref{eq:SCOORD_s_infin_changes}) with $\bullet$ set to
[11335]64$s$ and $j, t$ held constant
65\begin{equation}
[11543]66\label{eq:SCOORD_delta_s}
67\delta s|_{j,t} =
68         \delta i \left. \frac{ \partial s }{\partial i} \right|_{j,z,t}
[11335]69       + \delta z \left. \frac{ \partial s }{\partial z} \right|_{i,j,t} .
70\end{equation}
71Choosing to look at a direction in the $(i,z)$ plane in which $\delta s = 0$ and using
[11543]72(\autoref{eq:SCOORD_s_slope}) we obtain
[11335]73\begin{equation}
[11543]74\left. \frac{ \partial s }{\partial i} \right|_{j,z,t} =
[11335]75         -  \left. \frac{ \partial z }{\partial i} \right|_{j,s,t} \;
76            \left. \frac{ \partial s }{\partial z} \right|_{i,j,t}
77    = - \frac{e_1 }{e_3 }\sigma_1  .
[11543]78\label{eq:SCOORD_ds_di_z}
[11335]79\end{equation}
[11543]80Another identity, similar in form to (\autoref{eq:SCOORD_ds_di_z}), can be derived
81by choosing $\bullet$ to be $s$ and using the second form of (\autoref{eq:SCOORD_s_infin_changes}) to consider
[11335]82changes in which $i , j$ and $s$ are constant. This shows that
83\begin{equation}
[11543]84\label{eq:SCOORD_w_in_s}
85w_s = \left. \frac{ \partial z }{\partial t} \right|_{i,j,s} =
[11335]86- \left. \frac{ \partial z }{\partial s} \right|_{i,j,t}
[11543]87  \left. \frac{ \partial s }{\partial t} \right|_{i,j,z}
88  = - e_3 \left. \frac{ \partial s }{\partial t} \right|_{i,j,z} .
[11335]89\end{equation}
90
[11543]91In what follows, for brevity, indication of the constancy of the $i, j$ and $t$ indices is
92usually omitted. Using the arguments outlined above one can show that the chain rules needed to establish
[11335]93the model equations in the curvilinear $s-$coordinate system are:
94\begin{equation}
[11558]95  \label{eq:SCOORD_s_chain_rule2}
[10414]96  \begin{aligned}
97    &\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
[11543]98    \left. {\frac{\partial \bullet }{\partial t}} \right|_s
[11335]99    + \frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial t} , \\
[10414]100    &\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
101    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
[11335]102    +\frac{\partial \bullet }{\partial s}\; \frac{\partial s}{\partial i}=
[11543]103    \left. {\frac{\partial \bullet }{\partial i}} \right|_s
[11335]104    -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial \bullet }{\partial s} , \\
[10414]105    &\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
[11543]106    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
[11335]107    + \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
[11543]108    \left. {\frac{\partial \bullet }{\partial j}} \right|_s
[11335]109    - \frac{e_2 }{e_3 }\sigma_2 \frac{\partial \bullet }{\partial s} , \\
110    &\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} .
[10414]111  \end{aligned}
[707]112\end{equation}
113
[9393]114\section{Continuity equation in $s-$coordinates}
[11543]115\label{sec:SCOORD_continuity}
[707]116
[11558]117Using (\autoref{eq:SCOORD_s_chain_rule1}) and
[10354]118the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate,
119the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows in order to
120obtain its expression in the curvilinear $s-$coordinate system:
[707]121
[10414]122\begin{subequations}
123  \begin{align*}
124    {
125    \begin{array}{*{20}l}
[11151]126      \nabla \cdot {\mathrm {\mathbf U}}
[10414]127      &= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
128        +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
129        + \frac{\partial w}{\partial z} \\ \\
130      &     = \frac{1}{e_1 \,e_2 }  \left[
131        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
132        - \frac{e_1 }{e_3 } \sigma_1 \frac{\partial (e_2 \,u)}{\partial s}
133        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s
134        - \frac{e_2 }{e_3 } \sigma_2 \frac{\partial (e_1 \,v)}{\partial s} \right]
135        + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z} \\ \\
136      &     = \frac{1}{e_1 \,e_2 }   \left[
137        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s
138        + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s         \right]
139        + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
140        -  \sigma_1 \frac{\partial u}{\partial s}
141        -  \sigma_2 \frac{\partial v}{\partial s}      \right] \\ \\
142      &     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
143        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_s
144        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s
145        + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
146        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right] \\
147      & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
148        + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
149        -  \sigma_1 \frac{\partial u}{\partial s}
150        -  \sigma_2 \frac{\partial v}{\partial s}      \right]      \\
151      %
152      \intertext{Noting that $
153      \frac{1}{e_1} \left.{ \frac{\partial e_3}{\partial i}} \right|_s
154      =\frac{1}{e_1} \left.{ \frac{\partial^2 z}{\partial i\,\partial s}} \right|_s
155      =\frac{\partial}{\partial s} \left( {\frac{1}{e_1 } \left.{ \frac{\partial z}{\partial i} }\right|_s } \right)
156      =\frac{\partial \sigma_1}{\partial s}
157      $ and $
158      \frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}} \right|_s
159      =\frac{\partial \sigma_2}{\partial s}
160      $, it becomes:}
161    %
[11151]162      \nabla \cdot {\mathrm {\mathbf U}}
[10414]163      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
164        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
165        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right] \\
166      & \qquad \qquad \qquad \qquad \quad
167        +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma_1 }{\partial s}-v\frac{\partial \sigma_2 }{\partial s}-\sigma_1 \frac{\partial u}{\partial s}-\sigma_2 \frac{\partial v}{\partial s}} \right] \\
168      \\
169      & = \frac{1}{e_1 \,e_2 \,e_3 }  \left[
170        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
171        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
172        + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right]
173    \end{array}
174        }
175  \end{align*}
[2282]176\end{subequations}
177
[11543]178Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
179Using the first form of (\autoref{eq:SCOORD_s_infin_changes})
180and the definitions (\autoref{eq:SCOORD_s_slope}) and (\autoref{eq:SCOORD_w_in_s}) for $\sigma_1$, $\sigma_2$ and  $w_s$,
[11335]181one can show that the vertical velocity, $w_p$ of a point
[11543]182moving with the horizontal velocity of the fluid along an $s$ surface is given by
[10414]183\begin{equation}
[11543]184\label{eq:SCOORD_w_p}
[11335]185\begin{split}
186w_p  = & \left. \frac{ \partial z }{\partial t} \right|_s
[11543]187     + \frac{u}{e_1} \left. \frac{ \partial z }{\partial i} \right|_s
[11335]188     + \frac{v}{e_2} \left. \frac{ \partial z }{\partial j} \right|_s \\
189     = & w_s + u \sigma_1 + v \sigma_2 .
[11543]190\end{split}
[11335]191\end{equation}
192 The vertical velocity across this surface is denoted by
193\begin{equation}
[11543]194  \label{eq:SCOORD_w_s}
195  \omega  = w - w_p = w - ( w_s + \sigma_1 \,u + \sigma_2 \,v )  .
[707]196\end{equation}
[11543]197Hence
[11335]198\begin{equation}
[11543]199\frac{1}{e_3 } \frac{\partial}{\partial s}   \left[  w -  u\;\sigma_1  - v\;\sigma_2  \right] =
200\frac{1}{e_3 } \frac{\partial}{\partial s} \left[  \omega + w_s \right] =
201   \frac{1}{e_3 } \left[ \frac{\partial \omega}{\partial s}
202 + \left. \frac{ \partial }{\partial t} \right|_s \frac{\partial z}{\partial s} \right] =
203   \frac{1}{e_3 } \frac{\partial \omega}{\partial s} + \frac{1}{e_3 } \left. \frac{ \partial e_3}{\partial t} . \right|_s
[11335]204\end{equation}
205
[11543]206Using (\autoref{eq:SCOORD_w_s}) in our expression for $\nabla \cdot {\mathrm {\mathbf U}}$ we obtain
[11335]207our final expression for the divergence of the velocity in the curvilinear $s-$coordinate system:
208\begin{equation}
209      \nabla \cdot {\mathrm {\mathbf U}} =
210         \frac{1}{e_1 \,e_2 \,e_3 }    \left[
[10414]211        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
212        +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]
213        + \frac{1}{e_3 } \frac{\partial \omega }{\partial s}
[11335]214        + \frac{1}{e_3 } \left. \frac{\partial e_3}{\partial t} \right|_s .
215\end{equation}
[707]216
[11543]217As a result, the continuity equation \autoref{eq:MB_PE_continuity} in the $s-$coordinates is:
[10414]218\begin{equation}
[11543]219  \label{eq:SCOORD_sco_Continuity}
[10414]220  \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
221  + \frac{1}{e_1 \,e_2 \,e_3 }\left[
222    {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
223      +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
[11335]224  +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0 .
[707]225\end{equation}
[11335]226An additional term has appeared that takes into account
[10354]227the contribution of the time variation of the vertical coordinate to the volume budget.
[707]228
[9393]229\section{Momentum equation in $s-$coordinate}
[11543]230\label{sec:SCOORD_momentum}
[707]231
[10354]232Here we only consider the first component of the momentum equation,
[2282]233the generalization to the second one being straightforward.
234
235$\bullet$ \textbf{Total derivative in vector invariant form}
236
[11543]237Let us consider \autoref{eq:MB_dyn_vect}, the first component of the momentum equation in the vector invariant form.
[10354]238Its total $z-$coordinate time derivative,
239$\left. \frac{D u}{D t} \right|_z$ can be transformed as follows in order to obtain
[2282]240its expression in the curvilinear $s-$coordinate system:
[707]241
[10414]242\begin{subequations}
243  \begin{align*}
244    {
245    \begin{array}{*{20}l}
246      \left. \frac{D u}{D t} \right|_z
247      &= \left. {\frac{\partial u }{\partial t}} \right|_z
248        - \left. \zeta \right|_z v
249        + \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i}} \right|_z
250        + w \;\frac{\partial u}{\partial z} \\ \\
251      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]252        -  \frac{1}{e_1 \,e_2 }\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} }\right|_z
[10414]253        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} }\right|_z } \right] \; v
254        +  \frac{1}{2e_1} \left.{ \frac{\partial (u^2+v^2)}{\partial i} } \right|_z
255        +  w \;\frac{\partial u}{\partial z}      \\
256        %
[11558]257      \intertext{introducing the chain rule (\autoref{eq:SCOORD_s_chain_rule1}) }
[10414]258      %
259      &= \left. {\frac{\partial u }{\partial t}} \right|_z
260        - \frac{1}{e_1\,e_2}\left[ { \left.{ \frac{\partial (e_2 \,v)}{\partial i} } \right|_s
261        -\left.{ \frac{\partial (e_1 \,u)}{\partial j} } \right|_s } \right.
262        \left. {-\frac{e_1}{e_3}\sigma_1 \frac{\partial (e_2 \,v)}{\partial s}
263        +\frac{e_2}{e_3}\sigma_2 \frac{\partial (e_1 \,u)}{\partial s}} \right] \; v  \\
264      & \qquad \qquad \qquad \qquad
265        {
266        + \frac{1}{2e_1} \left(                                  \left\frac{\partial (u^2+v^2)}{\partial i} \right|_s
267        - \frac{e_1}{e_3}\sigma_1 \frac{\partial (u^2+v^2)}{\partial s}               \right)
268        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
269        } \\ \\
270      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]271        - \left. \zeta \right|_s \;v
[10414]272        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
273      &\qquad \qquad \qquad \quad
274        + \frac{w}{e_3 } \;\frac{\partial u}{\partial s}
[11335]275        + \left[   {\frac{\sigma_1 }{e_3 }\frac{\partial v}{\partial s}
[10414]276        - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v
277        - \frac{\sigma_1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} \\ \\
278      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]279        - \left. \zeta \right|_s \;v
[10414]280        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\
281      &\qquad \qquad \qquad \quad
282        + \frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
283        +\sigma_1 v\frac{\partial v}{\partial s} - \sigma_2 v\frac{\partial u}{\partial s}
284        - \sigma_1 u\frac{\partial u}{\partial s} - \sigma_1 v\frac{\partial v}{\partial s}} \right] \\ \\
285      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]286        - \left. \zeta \right|_s \;v
[10414]287        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
288        + \frac{1}{e_3} \left[  w - \sigma_2 v - \sigma_1 u  \right]
[11335]289        \; \frac{\partial u}{\partial s} .  \\
[10414]290        %
[11543]291      \intertext{Introducing $\omega$, the dia-s-surface velocity given by (\autoref{eq:SCOORD_w_s}) }
[10414]292      %
293      &= \left. {\frac{\partial u }{\partial t}} \right|_z
[11335]294        - \left. \zeta \right|_s \;v
[10414]295        + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
[11335]296        + \frac{1}{e_3 } \left( \omega + w_s \right) \frac{\partial u}{\partial s}   \\
[10414]297    \end{array}
298    }
299  \end{align*}
[2282]300\end{subequations}
301%
[11558]302Applying the time derivative chain rule (first equation of (\autoref{eq:SCOORD_s_chain_rule1})) to $u$ and
[11543]303using (\autoref{eq:SCOORD_w_in_s}) provides the expression of the last term of the right hand side,
[10414]304\[
305  {
306    \begin{array}{*{20}l}
[11335]307      \frac{w_s}{e_3\;\frac{\partial u}{\partial s}
308      = - \left. \frac{\partial s}{\partial t} \right|_z \;  \frac{\partial u }{\partial s}
309      = \left. {\frac{\partial u }{\partial t}} \right|_s  - \left. {\frac{\partial u }{\partial t}} \right|_z \ .
[10414]310    \end{array}
311  }
[10406]312\]
[11335]313This leads to the $s-$coordinate formulation of the total $z-$coordinate time derivative,
[11435]314\ie\ the total $s-$coordinate time derivative :
[10414]315\begin{align}
[11543]316  \label{eq:SCOORD_sco_Dt_vect}
[10414]317  \left. \frac{D u}{D t} \right|_s
318  = \left. {\frac{\partial u }{\partial t}} \right|_s
[11335]319  - \left. \zeta \right|_s \;v
[10414]320  + \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
[11543]321  + \frac{1}{e_3 } \omega \;\frac{\partial u}{\partial s} .
[2282]322\end{align}
[10354]323Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in
324$z-$ and $s-$coordinates.
325This is not the case for the flux form as shown in next paragraph.
[2282]326
327$\bullet$ \textbf{Total derivative in flux form}
328
[10354]329Let us start from the total time derivative in the curvilinear $s-$coordinate system we have just establish.
[11543]330Following the procedure used to establish (\autoref{eq:MB_flux_form}), it can be transformed into :
[10414]331% \begin{subequations}
332\begin{align*}
333  {
334  \begin{array}{*{20}l}
335    \left. \frac{D u}{D t} \right|_&= \left. {\frac{\partial u }{\partial t}} \right|_s
336    & -  \zeta \;v
337      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i}
338      + \frac{1}{e_3} \omega \;\frac{\partial u}{\partial s} \\ \\
339                                      &= \left. {\frac{\partial u }{\partial t}} \right|_s
340    &+\frac{1}{e_1\;e_2}  \left(    \frac{\partial \left( {e_2 \,u\,u } \right)}{\partial i}
341      + \frac{\partial \left( {e_1 \,u\,v } \right)}{\partial j}     \right)
342      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
343                                      &&- \,u \left[     \frac{1}{e_1 e_2 } \left(    \frac{\partial(e_2 u)}{\partial i}
344                                         + \frac{\partial(e_1 v)}{\partial j}    \right)
345                                         + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
346                                      &&- \frac{v}{e_1 e_2 }\left(    v \;\frac{\partial e_2 }{\partial i}
[11335]347                                         -u  \;\frac{\partial e_1 }{\partial j}  \right) . \\
[10414]348  \end{array}
349  }
[817]350\end{align*}
[2282]351%
[11543]352Introducing the vertical scale factor inside the horizontal derivative of the first two terms
[11435]353(\ie\ the horizontal divergence), it becomes :
[10414]354\begin{align*}
355  {
356  \begin{array}{*{20}l}
357    % \begin{align*} {\begin{array}{*{20}l}
[11543]358    %     {\begin{array}{*{20}l} \left. \frac{D u}{D t} \right|_s
[10414]359    &= \left. {\frac{\partial u }{\partial t}} \right|_s
360    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u^2 )}{\partial i}
361      + \frac{\partial( e_1 e_3 \,u v )}{\partial j}
362      -  e_2 u u \frac{\partial e_3}{\partial i}
363      -  e_1 u v \frac{\partial e_3 }{\partial j}    \right)
364      + \frac{1}{e_3} \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
365    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
366       + \frac{\partial(e_1 e_3 \, v)}{\partial j}
367       -  e_2 u \;\frac{\partial e_3 }{\partial i}
368       -  e_1 v \;\frac{\partial e_3 }{\partial j}   \right)
[11335]369       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right] \\ \\
[10414]370    && - \frac{v}{e_1 e_2 }\left(   v  \;\frac{\partial e_2 }{\partial i}
371       -u  \;\frac{\partial e_1 }{\partial j}   \right) \\ \\
372    &= \left. {\frac{\partial u }{\partial t}} \right|_s
373    &+ \frac{1}{e_1\,e_2\,e_3}  \left\frac{\partial( e_2 e_3 \,u\,u )}{\partial i}
374      + \frac{\partial( e_1 e_3 \,u\,v )}{\partial j}    \right)
375      + \frac{1}{e_3 } \frac{\partial \left( {\omega\,u} \right)}{\partial s} \\ \\
376    && - \,u \left\frac{1}{e_1 e_2 e_3} \left(   \frac{\partial(e_2 e_3 \, u)}{\partial i}
377       + \frac{\partial(e_1 e_3 \, v)}{\partial j}  \right)
[11335]378       + \frac{1}{e_3}        \frac{\partial \omega}{\partial s}                       \right]
[10414]379       - \frac{v}{e_1 e_2 }\left(   v   \;\frac{\partial e_2 }{\partial i}
[11335]380       -u   \;\frac{\partial e_1 }{\partial j}  \right)     .             \\
[10414]381     %
382    \intertext {Introducing a more compact form for the divergence of the momentum fluxes,
[11543]383    and using (\autoref{eq:SCOORD_sco_Continuity}), the $s-$coordinate continuity equation,
[10414]384    it becomes : }
385  %
386    &= \left. {\frac{\partial u }{\partial t}} \right|_s
[11151]387    &+ \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
[10414]388      + \,u \frac{1}{e_3 } \frac{\partial e_3}{\partial t}
[2282]389      - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[10414]390      -u  \;\frac{\partial e_1 }{\partial j}    \right)
391    \\
392  \end{array}
393  }
[2282]394\end{align*}
[11543]395which leads to the $s-$coordinate flux formulation of the total $s-$coordinate time derivative,
[11435]396\ie\ the total $s-$coordinate time derivative in flux form:
[10414]397\begin{flalign}
[11543]398  \label{eq:SCOORD_sco_Dt_flux}
[10414]399  \left. \frac{D u}{D t} \right|_s   = \frac{1}{e_3}  \left. \frac{\partial ( e_3\,u)}{\partial t} \right|_s
[11151]400  + \left\nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)    \right|_s
[10414]401  - \frac{v}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[11335]402    -u  \;\frac{\partial e_1 }{\partial j}            \right).
[2282]403\end{flalign}
404which is the total time derivative expressed in the curvilinear $s-$coordinate system.
[10354]405It has the same form as in the $z-$coordinate but for
406the vertical scale factor that has appeared inside the time derivative which
[11543]407comes from the modification of (\autoref{eq:SCOORD_sco_Continuity}),
[10354]408the continuity equation.
[707]409
[2282]410$\bullet$ \textbf{horizontal pressure gradient}
411
412The horizontal pressure gradient term can be transformed as follows:
[10406]413\[
[10414]414  \begin{split}
415    -\frac{1}{\rho_o \, e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z
416    & =-\frac{1}{\rho_o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma_1 \frac{\partial p}{\partial s}} \right] \\
417    & =-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma_1 }{\rho_o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
[11335]418    &=-\frac{1}{\rho_o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho_o }\sigma_1 .
[10414]419  \end{split}
[10406]420\]
[10354]421Applying similar manipulation to the second component and
[11543]422replacing $\sigma_1$ and $\sigma_2$ by their expression \autoref{eq:SCOORD_s_slope}, it becomes:
[10414]423\begin{equation}
[11543]424  \label{eq:SCOORD_grad_p_1}
[10414]425  \begin{split}
426    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
427    &=-\frac{1}{\rho_o \,e_1 } \left(     \left.              {\frac{\partial p}{\partial i}} \right|_s
428      + g\;\rho  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right) \\
429             %
430    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
431    &=-\frac{1}{\rho_o \,e_2 } \left(    \left.               {\frac{\partial p}{\partial j}} \right|_s
[11335]432      + g\;\rho \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right) . \\
[10414]433  \end{split}
[707]434\end{equation}
435
[11543]436An additional term appears in (\autoref{eq:SCOORD_grad_p_1}) which accounts for
[10354]437the tilt of $s-$surfaces with respect to geopotential $z-$surfaces.
[707]438
[10354]439As in $z$-coordinate,
[11123]440the horizontal pressure gradient can be split in two parts following \citet{marsaleix.auclair.ea_OM08}.
[10354]441Let defined a density anomaly, $d$, by $d=(\rho - \rho_o)/ \rho_o$,
442and a hydrostatic pressure anomaly, $p_h'$, by $p_h'= g \; \int_z^\eta d \; e_3 \; dk$.
[2282]443The pressure is then given by:
[10414]444\[
445  \begin{split}
[11335]446    p &= g\; \int_z^\eta \rho \; e_3 \; dk = g\; \int_z^\eta \rho_o \left( d + 1 \right) \; e_3 \; dk   \\
447    &= g \, \rho_o \; \int_z^\eta d \; e_3 \; dk + \rho_o g \, \int_z^\eta e_3 \; dk .
[10414]448  \end{split}
[10406]449\]
[2282]450Therefore, $p$ and $p_h'$ are linked through:
[10414]451\begin{equation}
[11543]452  \label{eq:SCOORD_pressure}
[11335]453  p = \rho_o \; p_h' + \rho_o \, g \, ( \eta - z )
[2282]454\end{equation}
455and the hydrostatic pressure balance expressed in terms of $p_h'$ and $d$ is:
[10414]456\[
[11335]457  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
[10406]458\]
[2282]459
[11543]460Substituing \autoref{eq:SCOORD_pressure} in \autoref{eq:SCOORD_grad_p_1} and
[11335]461using the definition of the density anomaly it becomes an expression in two parts:
[10414]462\begin{equation}
[11543]463  \label{eq:SCOORD_grad_p_2}
[10414]464  \begin{split}
465    -\frac{1}{\rho_o \, e_1 } \left. {\frac{\partial p}{\partial i}} \right|_z
466    &=-\frac{1}{e_1 } \left(     \left.              {\frac{\partial p_h'}{\partial i}} \right|_s
[11335]467      + g\; d  \;\left. {\frac{\partial z}{\partial i}} \right|_s    \right)  - \frac{g}{e_1 } \frac{\partial \eta}{\partial i} ,  \\
[10414]468             %
469    -\frac{1}{\rho_o \, e_2 }\left. {\frac{\partial p}{\partial j}} \right|_z
470    &=-\frac{1}{e_2 } \left(    \left.               {\frac{\partial p_h'}{\partial j}} \right|_s
[11335]471      + g\; d \;\left. {\frac{\partial z}{\partial j}} \right|_s   \right)  - \frac{g}{e_2 } \frac{\partial \eta}{\partial j} . \\
[10414]472  \end{split}
[2282]473\end{equation}
[10354]474This formulation of the pressure gradient is characterised by the appearance of
475a term depending on the sea surface height only
[11543]476(last term on the right hand side of expression \autoref{eq:SCOORD_grad_p_2}).
[10354]477This term will be loosely termed \textit{surface pressure gradient} whereas
478the first term will be termed the \textit{hydrostatic pressure gradient} by analogy to
479the $z$-coordinate formulation.
480In fact, the true surface pressure gradient is $1/\rho_o \nabla (\rho \eta)$,
481and $\eta$ is implicitly included in the computation of $p_h'$ through the upper bound of the vertical integration.
[2282]482
483$\bullet$ \textbf{The other terms of the momentum equation}
484
[10354]485The coriolis and forcing terms as well as the the vertical physics remain unchanged as
486they involve neither time nor space derivatives.
[11543]487The form of the lateral physics is discussed in \autoref{apdx:DIFFOPERS}.
[2282]488
489$\bullet$ \textbf{Full momentum equation}
490
[10354]491To sum up, in a curvilinear $s$-coordinate system,
492the vector invariant momentum equation solved by the model has the same mathematical expression as
493the one in a curvilinear $z-$coordinate, except for the pressure gradient term:
[10414]494\begin{subequations}
[11543]495  \label{eq:SCOORD_dyn_vect}
[10414]496  \begin{multline}
[11543]497    \label{eq:SCOORD_PE_dyn_vect_u}
[10414]498    \frac{\partial u}{\partial t}=
499    +   \left( {\zeta +f} \right)\,v
500    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
501    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
502    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
503    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
[11335]504    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
[10414]505  \end{multline}
506  \begin{multline}
[11543]507    \label{eq:SCOORD_dyn_vect_v}
[10414]508    \frac{\partial v}{\partial t}=
509    -   \left( {\zeta +f} \right)\,u
510    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)
511    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
512    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
513    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
[11335]514    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
[10414]515  \end{multline}
[817]516\end{subequations}
[10354]517whereas the flux form momentum equation differs from it by
518the formulation of both the time derivative and the pressure gradient term:
[10414]519\begin{subequations}
[11543]520  \label{eq:SCOORD_dyn_flux}
[10414]521  \begin{multline}
[11543]522    \label{eq:SCOORD_PE_dyn_flux_u}
[10414]523    \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t} =
[11335]524    - \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,u}   \right)
[10414]525    +   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
526          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,v     \\
527    -   \frac{1}{e_1 } \left(    \frac{\partial p_h'}{\partial i} + g\; d  \; \frac{\partial z}{\partial i}    \right)
528    -   \frac{g}{e_1 } \frac{\partial \eta}{\partial i}
[11335]529    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} ,
[10414]530  \end{multline}
531  \begin{multline}
[11543]532    \label{eq:SCOORD_dyn_flux_v}
[10414]533    \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
[11151]534    -  \nabla \cdot \left(   {{\mathrm {\mathbf U}}\,v}   \right)
[11335]535    -   \left\{ {f + \frac{1}{e_1 e_2 }\left(    v  \;\frac{\partial e_2 }{\partial i}
[10414]536          -u  \;\frac{\partial e_1 }{\partial j}            \right)} \right\} \,u     \\
537    -   \frac{1}{e_2 } \left(    \frac{\partial p_h'}{\partial j} + g\; d  \; \frac{\partial z}{\partial j}    \right)
538    -   \frac{g}{e_2 } \frac{\partial \eta}{\partial j}
[11543]539    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} .
[10414]540  \end{multline}
[2282]541\end{subequations}
542Both formulation share the same hydrostatic pressure balance expressed in terms of
[3294]543hydrostatic pressure and density anomalies, $p_h'$ and $d=( \frac{\rho}{\rho_o}-1 )$:
[10414]544\begin{equation}
[11543]545  \label{eq:SCOORD_dyn_zph}
[11335]546  \frac{\partial p_h'}{\partial k} = - d \, g \, e_3 .
[2282]547\end{equation}
[707]548
[10354]549It is important to realize that the change in coordinate system has only concerned the position on the vertical.
550It has not affected (\textbf{i},\textbf{j},\textbf{k}), the orthogonal curvilinear set of unit vectors.
551($u$,$v$) are always horizontal velocities so that their evolution is driven by \emph{horizontal} forces,
552in particular the pressure gradient.
553By contrast, $\omega$ is not $w$, the third component of the velocity, but the dia-surface velocity component,
[11543]554\ie\ the volume flux across the moving $s$-surfaces per unit horizontal area.
[817]555
[9393]556\section{Tracer equation}
[11543]557\label{sec:SCOORD_tracer}
[817]558
[10354]559The tracer equation is obtained using the same calculation as for the continuity equation and then
560regrouping the time derivative terms in the left hand side :
[707]561
[10414]562\begin{multline}
[11543]563  \label{eq:SCOORD_tracer}
[10414]564  \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t}
565  = -\frac{1}{e_1 \,e_2 \,e_3}
566  \left[           \frac{\partial }{\partial i} \left( {e_2 \,e_3 \;Tu} \right)
567    +   \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)               \right]       \\
[11335]568  -  \frac{1}{e_3}  \frac{\partial }{\partial k} \left(                   Tw  \right)
[10414]569  +  D^{T} +F^{T}
[707]570\end{multline}
571
[11543]572The expression for the advection term is a straight consequence of (\autoref{eq:SCOORD_sco_Continuity}),
573the expression of the 3D divergence in the $s-$coordinates established above.
[707]574
[11584]575\onlyinsubfile{\input{../../global/epilogue}}
[10414]576
[6997]577\end{document}
Note: See TracBrowser for help on using the repository browser.